baire IRRESOLVABLE SPACES AND LIFTING FOR A LAYERED IDEAL

Saharon SHELAH*
Instutute of Mathematics, The Hebren Unuerstin, Jerusalem, Israel, and EEECS and Mathematics, Unversi! of Muchgan, Ann Arbor, MI 48109. USA, and Department of Mahematics, Rutgers Unizersity, Neu Brunsuick, NJ08903, USA

Received 30 January 1986
Revised 8 August 1^{078}

We show the consistency (moduio reasonable large cardinals) of the existence of a topological space of power \aleph_{1} with no isolated points such that any real values function on it has a point of continuity This is deduced from the foilowing (by Kunen, Szymanski and Tall) We prove that If $2^{\lambda}=\lambda^{+}, I$ is a λ-complete ideal on a regular λ which is layered, then the naturd homomorphism from $\mathcal{P}(\lambda)$ to $\mathcal{P}(\lambda) / I$ (as Boolean algebras) can be ifted, 1 e, there 15 d homomorphism h from $P(\lambda)$ into atself with kernel I such that for every $A \subseteq \lambda$ we have $A \equiv h(A l(\bmod I)$

```
AMS (MOS)Subj Class 54A35,03E55,54C30
real valued functions }\mu\mathrm{ -Woodin cardinal
ponts of contiluty Boolean algebras
irresolvable spaces }\quad\lambda\mathrm{ -complete ideal
huge cardinal lifting
layered Ideal
```

Katětov [2] asked in the 1940s:
Question. Is there a topological space without isolated points such that any real valued function has a foint of continuity?

Malyhin [4] showed this could not happen if $V=L$, and showed its equivalence to the existence of irresolvable spaces satisfying the Baire category theorem.

Kunen, Szymanskı and Tall [3] showed it is equivalent (consistency-wise) to the existence of a measurable cardinal However, many mathematictans would not look at this as a satisfactory answer, as they are interested in smaller cardinals.

So Kunen, Szymanski and Tall rephrase the question.

[^0]Question. Is there such a space of power \mathbb{N}_{1} ? (and you can ask on \mathbb{N}_{2}, etc)
They proved that this is equivalent to the existence of an \aleph_{1}-complete ideal on ω_{1} with lifting and know it follows from the existence c f an \aleph_{1}-complete \aleph_{1}-dense ideal on ω_{1}.

Hence they could deduce the consequence from a result of Woodin using a hypothess $\mathrm{ZF}+\mathrm{DC}+\mathrm{ADR}+$ " θ regular". (DC is the axiom of determinancy, see Moschovakis [8] for explanation. if you want to know what this means)

Franek studies this question in his Ph D. thesis (Toronto 83)
The author encounters and solves this problem during his visit in Toronto, April 1985, by showing:
($*$) If I is a λ-complete layered ideal on $\mathscr{P}(\lambda), 2^{\lambda}=\lambda^{+}$, then $\mathscr{P}(\lambda) / I$ has lifting.

There are some proofs of consisiency of the existence of such ideals By Foreman, Magidor and Shelah [1], starting with a huge cardinal we can, by forcing, get for a regular λ, that on λ^{+}there is a layered normal ideal. By [6] supercompact cardinals suffice for showing the consistency of " $\mathrm{GCH}+$ on ω_{1} there is a layered normal ideal" By [7] much weaker large cardinals suffice λ strongly maccessible with $\left\{\kappa<\lambda .(\times)_{k}\right.$ or κ is Woodin $\}$ is stationary, in $(x)_{k}$ and Woodin cardinals (see [9]).

On previous applications of layered ideals on $\lambda, 2^{\lambda}=\lambda^{+}$see [1] (if \diamond_{λ} there is an ultrafilter D on λ which is not regular, moreover if $\lambda=\mu^{\top}$, then $\left.(\lambda)^{\lambda} / D=\lambda^{\prime}\right)$ and [5] (if $\lambda=\lambda^{-\lambda}$, then $\mathscr{P}(\lambda) / I-\{0 / I\}$ is the union of λ filters). Later Woodin gets an \aleph_{1}-dense ideal on ω_{1} from huge I thank Toronto General Topology group for their hospitality and the question, a referee for many connections and a referee and Isaac Gorelic for shortening the proof of Fact 7 and Kitty Gubbay for typing it nicely and quickly.

1. Definition. For Boolean algebras \mathscr{A}, \mathscr{F} :
(1) $\mathscr{A} \subseteq \mathscr{B}$ means $\mathscr{A l}$ is a subalgebra of \mathscr{B}
(2) $\mathscr{A}<0 \mathscr{B}$ means \mathscr{A} is a subalgebra of \mathscr{B} and every maximal anticham of \mathscr{A} is a maximal antichain of \mathscr{B}.
(3) $\mathscr{A}<0, \mathscr{B}$ means there are $\alpha<\lambda$ and $\mathscr{A}_{\beta} \subseteq \mathscr{A}$ for $\beta<\alpha$ such that
(i) $\mathscr{A l}=\bigcup_{\beta, a} \mathscr{\Lambda}_{\beta}$, moreover for every finite $A \subseteq \mathscr{A l}$ for some $\beta, A \subseteq\left\{\hat{d}_{\beta}\right.$
(ii) $2 d_{\beta}<\mathscr{B}$ for each $\beta<\alpha$.
(4) for λ a cardinal, $\mathscr{P}(\lambda)$ is the boolean algebra of subsets of λ
2. Definition. For I an ideal on λ, i.e., of $\mathscr{P}(\lambda))$ let $\mathscr{B}^{I}=\mathscr{P}(\lambda) / I$
3. Definition. If \mathscr{B} is a Boolear algebra of power λ^{+}, λ regular, \mathscr{B} is called λ-layered if for every (\equiv some) representation of \mathscr{A} as $\bigcup_{5-\lambda^{-}} \mathscr{B}_{z}, \mathscr{B}_{z}$ increasing continuous, $\left\|\mathscr{B}_{\xi}\right\| \leqslant \lambda$, the set $\left\{\delta<\lambda^{-}: \mathrm{cf} \delta=\lambda \Rightarrow \mathscr{B}_{\xi}<0 \mathscr{A}\right\}$ contains a closed unbounded set.
4. Definition. We say (for I an ideal on λ) that $\mathscr{B}^{I} \stackrel{\text { def }}{=} \mathscr{P}(\lambda) / I$ hfts if there is a homomorphism h from \mathscr{B}^{\prime} into $\mathscr{P}(\lambda)$ such that for $A \subseteq \lambda$, we have $h(A / I) \in A / I$, i.e , $(h(A / I)-A) \cup(A-h(A / I)) \in I$
5. Theorem. If λ is regular, $2^{\lambda}=\lambda^{+}, I$ a λ-complete ideal on λ and $\mathscr{P}(\lambda) / I ; s \lambda$-layered, then $\mathscr{P}(\lambda) / I$ lifts

We first prove some facts.
6. Fact. If λ is regular, $\mathscr{A},<0 \mathscr{B}$ for $1<\alpha, \alpha<\lambda, \mathscr{A}$ increasing in i, then $\bigcup_{1-\alpha} \mathscr{A},<0_{\lambda} \mathscr{B}$.

Proof. Immediate
7. Fact. If $\mathscr{A}_{0}<0 \mathscr{B}, x \in \mathscr{R}, \mathscr{A}_{1}=\left\langle\mathscr{A}_{\theta}, x\right\rangle$ (the subalgebra of \mathscr{B} generated by $\left.\mathscr{A}_{0}, x\right)$, then $\mathscr{A}_{1}<0 \mathscr{B}$

Proof. Clearly $\mathscr{A}_{1} \subseteq \mathscr{F}$ Let $\left\{a_{,}: l_{l}<j\right\}$ be a maximal antichain of \mathscr{A}_{1}.
W1 o.g. $(\forall i)\left[a_{1} \leqslant x \vee a_{1} \leqslant 1-x\right]$; hence there is $c_{1} \in \mathscr{A}_{0}$ such that $a_{1} \in\left\{c_{1} \cap x, c_{1}-x\right\}$.
W.l.og for some $J(1) \leqslant J . a_{2}=c_{1} \cap x$ for $l<J(1), a_{i}=c_{1}-x$ for $j(1) \leqslant i<J$

Suppose $y_{0} \in \mathscr{B}, y_{0}>0 ;$ wlog $y_{0} \leqslant x$ Clearly $K_{0} \stackrel{\text { der }}{=}\left\{b \in \mathscr{A}_{0}: b>0\right.$ and $V_{, ~} b \leqslant c$ or $\left.\Lambda_{1<}, b \cap c_{1}=0\right\}$ is a dense subset of $\hat{\mathscr{A}}_{0}$, hence there is $K \subseteq K_{0}$ which is a maximal antichain of \mathscr{B}. As $\mathscr{A}_{0}<0 \mathscr{B}$ for some $b \in K$, we have $b \cap y_{0} \neq 0$. As we assumed $y_{0} \leqslant x$, we have $b \cap x \neq 0$. Now $b \cap x \in \mathscr{A}_{1}$ cannot be disjoint to every $a_{1}(t<j)$ [as $\left\{a_{i} \cdot i<j\right\}$ is a maximal antichain of $\left.\mathscr{A}_{1}\right]$ so there is $i<j$ such that $b \cap x \cap a, \neq 0$, so necessarily $i<j(1)$ and $a_{i}=c_{i} \cap x$ So $b \cap c_{i} \neq 0$ hence (as $b \in K \subseteq K_{3}$) $b \leqslant c_{i}$, so $y_{0} \cap a_{t}=y_{9} \cap\left(x \cap c_{1}\right)=y_{0} \cap c_{t} \geqslant y_{0} \cap b>0$.
8. Fact. If $\mathscr{A}<0_{\lambda} \mathscr{B}, A \subseteq \mathscr{B},|A|<\lambda, \mathscr{A}^{\prime}=\langle\mathscr{A}, A\rangle$, then $\mathscr{A}^{\prime}<0_{\lambda} \mathscr{B}$.

Proof. The family of finite subsets of $A,\left\{A_{y}: y<\gamma^{\theta}\right\}$ has cardinality $<\lambda$. Let $\mathscr{A}=$ $\bigcup_{\xi<\xi} \mathscr{A}_{\xi}, \xi<\lambda$ exemplify Definition $1(3)$. Now $\left\{\left\langle A_{\gamma}, \mathscr{A}_{\zeta}\right\rangle: \gamma<\gamma^{0}, \zeta<\xi\right\}$ exemplifies $\mathscr{A}^{\prime}<0_{\lambda} \mathscr{B}$ (clearly every finite subset of \mathscr{A}^{\prime} is included in one of them, and $\left\langle A_{\gamma}, A_{\zeta}\right\rangle<0 \mathscr{B}$ by Fact 7 (by induction on $\left|A_{\gamma}\right|$).
9. Conclusion. If $|\mathscr{B}|=\lambda^{+}(\lambda$ regular $)$ and \mathscr{B} is λ-layered, then ue can find \mathscr{B}_{6} for $\zeta<\lambda^{+}$such that $\mathscr{B}=\bigcup_{\zeta<\lambda}+\mathscr{B}_{\zeta},\left\|\mathscr{P}_{0}\right\|=2, \mathscr{B}_{\xi}$ increasing conttnuous, $\mathscr{B}_{\zeta}<0_{\lambda} \mathscr{B}$ and $\mathscr{B}_{\zeta+1}=\left\langle\mathscr{B}_{\zeta}, x_{\xi}\right\rangle$.

Proof. Let $\left\langle\mathscr{B}_{\zeta}<\lambda^{+}\right\rangle$be such that $\mathscr{B}=\bigcup_{\zeta<\lambda} \mathscr{B}_{\xi},\left\|\mathscr{B}_{5}\right\| \leqslant \lambda, \mathscr{B}_{\zeta}$ increasing continuous. As \mathscr{B} is λ-layered we know that for some closed unbounded $C \subseteq$ $\lambda^{+},(\forall \zeta \in C)\left[\operatorname{cf} \zeta=\lambda \Rightarrow \mathscr{B}_{\zeta}<0 \mathscr{B}\right]$. By thinning the sequence $\left\langle\mathscr{B}_{\xi}: \zeta<\lambda^{+}\right\rangle$we can assume $\mathscr{B}_{0}<0 \mathscr{B}, \mathscr{B}_{\zeta+1}<0 \mathscr{B}$, and cf $\zeta=\lambda \Rightarrow \mathscr{B}_{\zeta}<0 \mathscr{B}$. So by Fact $6(\forall \zeta) \mathscr{B}_{\zeta}<0_{\lambda} \mathscr{B}$.
W.log. $\mathscr{\mathscr { A }}_{0}=\{0,1\}$. let $\left\|\mathscr{P}_{\zeta-1}\right\|=\left\{x_{1}^{2}: 1<\lambda\right\}$, let \mathscr{B}_{5}^{\prime} be defined oy $\mathscr{A}_{0}^{\prime}=\mathscr{B}_{0} . \mathscr{B}_{\lambda \zeta+1}=$ $\left\langle\mathscr{P}_{s},\left\{x_{1}^{z} \quad 1<J\right\}\right.$ for $j<\lambda$ ($\lambda \check{c}$ ordinal multiplication) Ciearly $\mathscr{B}_{\varepsilon}^{\prime}$ is increasing continuous, $\bigcup_{\varepsilon, A} \mathscr{F}_{z}^{\prime}=\mathscr{B}, \mathscr{B}_{:}^{\prime}=\{0,1\}, \mathscr{B}_{\varepsilon-1}^{\prime}=\left\{\mathscr{P}_{E}^{\prime}, \lambda_{\varepsilon}\right\rangle$ foi appropnate x_{z}. Why $\mathscr{M}_{t}^{\prime}<0_{A}$? By Fact $8 \square$

Proof of Theorem 5. By Conclusion $9, \mathscr{B}^{I}$ can be represented as $\bigcup_{z-\lambda}{ }^{\prime} \mathscr{F}_{z}^{I}, \mathscr{B}_{6}^{l}$ increasing continuous (in ζ) $\left\|\mathscr{B}_{o}^{\prime}\right\|=2, \mathscr{B}_{\zeta-1}^{\prime}=\left\langle\mathscr{B}_{\zeta}^{\prime}, x_{E}\right\rangle, B_{\varepsilon}^{\prime}<{ }_{\lambda} \mathscr{B}_{5}$. We define by induction on $\zeta<\lambda^{-}$a hemomorphism h_{ξ} from $\mathscr{F}_{\zeta}^{\prime}$ into $\mathscr{P}(\lambda)$ such that $h_{\xi}(A / I) \in A / I$. i.e. $\left(h_{Z}(A / I)\right) / I=A / I$ and such that $h_{\underline{E}}$ is increasing continuous (in ζ) This suffices, as then $\bigcup_{E=1}+h_{S}$ is a lifting as desired

For $\zeta=0, \zeta$ limit we have no problem.
For $\zeta+1 . h_{i}$ de.ined
Let $x_{5}=A_{5} / I$. It suffices to find $A_{\zeta}^{\prime} \in \mathscr{B}(\lambda)$ such that.
(i) $A_{\xi}^{\prime} / I=A_{z} / I$,
(ii) $y \in \mathscr{B}_{5} ; \cap x_{5}=0 \Rightarrow A_{z}^{\prime} \cap h_{5}(1)=0$ (the empty set),
(iii) $\left.y \in \mathscr{B}_{\underline{L}}\right\} \leqslant x_{2} \Rightarrow\left(\lambda-A_{z}^{\prime}\right) \cap h_{L}(y)=0$

Let

$$
Q_{z}^{+}=\left\{y \in B_{z} y \leqslant x_{\zeta}\left(\operatorname{in} B_{z}\right)\right\}, \quad Q_{\xi}^{-}=\left\{y \in 刃_{z}^{-} y \cap x_{\xi}=0\left(\text { in } B_{z}\right)\right\}
$$

Let

$$
\left.A_{\xi}^{0}=A_{\xi} . \quad A_{\zeta}^{1}=A_{\xi}^{0}-\bigcup\left\{h h_{y}\right) . y \in Q_{\zeta}^{-}\right\}, \quad A_{\zeta}^{2}=A_{\zeta}^{1} \cup \bigcup\left\{h(y) y \in Q_{\zeta}^{+}\right\}
$$

Now A_{ζ}^{2} satisfies (iii) trivially. It satusfies (ii) as $y \in Q_{S}^{+} \wedge z \in Q_{\zeta}^{-} \Rightarrow y \cap z=0 \Rightarrow$ $h(y) \cap h(z)=0$, hence $z \in Q_{\zeta}^{-} \Rightarrow h(z) \cap A_{5}^{2}=h(z) \cap A_{i}^{\prime}$ which is \emptyset by $A_{\zeta}^{1,}$ s defintion. What about (i)? We shall prove:

(b) $A_{5}^{1} / I=A_{\bar{G}}^{2} /$ I.

This suffices, and the two proofs are the same so we prove (a)
To prove (a) it suffices to prove:

$$
A_{\zeta}^{0} \cap \cup\left\{h(y): y \in Q_{\zeta}^{-}\right\} \in I
$$

As $\mathscr{B}_{7}<0_{1} \mathscr{B}$, there are $\alpha_{i}<\lambda$ and $\mathscr{A}_{i v}, \gamma<\alpha_{i}$, such that $\mathscr{B}_{i}=\bigcup_{\gamma-\alpha_{i}} \mathscr{B}_{i v}$, $\mathscr{B}_{\tilde{\sigma} \gamma}<0 \mathscr{B}$ As I is λ-complete it suffices to prove for each γ

$$
\left.A_{i}^{0} \cap \cup\left\{h(y): y \in Q_{S}^{-} \cap \mathscr{B}_{\Sigma}\right\}\right\}
$$

Call this set Y, suppose $Y \notin I$, so $Y / I \in \mathscr{R}, Y / I>0_{\beta}$ in \mathscr{P}. As $\mathscr{P}_{\zeta \gamma}<0 \mathscr{B}$ there is $t \in \mathscr{B}_{\text {i, }}, t>0$, such that $(\forall s)\left[s \in \mathscr{R}_{\vdots, \gamma} \wedge 0<s \leqslant t \Rightarrow s \cap Y / I \neq 0\right.$ in $\left.\mathscr{B}\right]$. As $Y / I \leqslant A_{-}^{0} / I=x_{5}$, clearly $\left(\forall s \in \mathscr{B}_{z_{\gamma}}\right)\left(0<s \leqslant t \Rightarrow \mathrm{~s} \cap x_{5} \neq 0\right)$ hence $\left(\forall s \in \mathscr{B}_{z \gamma}\right)$ ($0<s \leqslant t \Rightarrow s \notin Q_{\xi}^{-}$) hence (as Q_{ξ}^{-}is downward closed) $z \in Q_{亏}^{-} \Rightarrow t \cap z=0$ hence (by the induction hypothesis) $h(t) \cap h(z)=0$ for $z \in Q_{\zeta}^{-} \cap \mathscr{B}_{z \gamma}$ hence $h(t) \cap$ $\bigcup\left\{h(z): z \in Q_{\zeta}^{-} \cap \mathscr{B}_{\zeta}\right\}=0$, but Y is included in the latter set so $h(1) \cap Y=0$.

But remember $t \cap Y / I \neq 0$ in \mathscr{B} hence

$h(t) \cap Y \notin I$, hence $h(t) \cap Y \neq \emptyset$, a contradiction.

Similaily (b) holds, su A_{c}^{2} satisfics (1), (ii), (iii). We catend $h_{Z} \mathscr{M}_{\zeta} \rightarrow \mathscr{P}(\lambda)$ to $h_{\zeta+1}: B_{\zeta+1} \rightarrow \mathscr{P}(\lambda)$ by $h_{\zeta \neq 1}\left(x_{\zeta}\right)=A_{\zeta}^{2}$, so h_{ζ} is deinned and $U_{\zeta-A}, h_{\zeta}$ is as required

References

[1] $\mathbf{1}$ Foreman, M Magidor and S Shelah, Martin maximum, saturated ideals and non-regular ultrafilters II, Ann of Math, to appear
[2] M Katětov, On topological spaces containing no disjoint dense sets, Mat So 21 (1947) 3-12
[3] K Kunen. A Szymanski and F Tall, Bare irresolvable spaces and ideal theory, Ann Math Silestan Univ 2/14 (1986) 98-107
[4] V1 Malyhin, On the resolvabilty of the produci of two spaces and a problem of Katertov, Dokl Akad Nauk SSSR 222 (1975) 725-729
[5] S Shelah, On normal ideals and Boolean dgebras, in Lecture Notes in Mathematics 1182 (Springer, Berlan, 1986) 247-259
[6] S S'elah, fterated forcing and normal ideals on ω_{1}, Israel J Math. 60 (1987) 345-380
[7] S Shelah, Proper and improper forcing, in preparation
[8] Y N Moschovakis, Descriptuve Set Theory (North-Holland, Amsterddm, 1980)
[9] S Shelah and H Woodin, Large cardinals imples every reasondbly definable set is measurable, Israel J Math, to appear

[^0]: * Research partially supported by an NSF grant

