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Abstract--We give numerical benchmark results for particle transport in a randomly mixed 
binary medium, with the mixing statistics described as a homogeneous Markov process. A 
Monte Carlo procedure is used to generate a physical realization of the statistics, and a discrete 
ordinate numerical transport solution is generated for this realization. The ensemble averaged 
solution, as well as the variance, is obtained by averaging a large number of such calculations. 
Reflection and transmission results are given for several problems in both rod and planar 
geometry. In a separate development, two coupled transport equations are derived which 
formally describe transport in a random binary mixture for arbitrary mixing statistics. Closing 
these equations by approximating their coupling terms in a low order and intuitive way leads 
to a model for stochastic transport previously obtained via the master equation. The present 
derivation, based upon approximating exact equations, allows in principle the opportunity to 
develop more accurate models by making higher order approximations in the coupling terms. 

I N T R O D U C T I O N  

In the last 3 years, a fair number of  papers have been written dealing the the problem of  describing 
linear transport  theory in a statistical medium consisting of two imiscible fluids. '-~3 I f  we write the 
underlying transport  equation as 

v -t  c3~b (r, fl ,  Q/at  + ~ .  V~,(r, [~, t) + a(r,  t)~,(r, ~ ,  t) 
r *  

= [as(r, t)/(4rr)] / d ~ ' ¢ ( r ,  ~ ' ,  t) + S(r, [1, t), (1) 
d4 ~z 

the effort has been to develop a formalism to describe ~, the ensemble-averaged solution to 
Eq. (1), when a, as, and S are two-state discrete random variables. Here ~b(r, f~, t) is the product 
of  the particle distribution function and the particle speed v, with r, [1, and t representing the 
spatial, angular, and temporal coordinates; a(r ,  t) is the total (collision) cross section; qs(r, t) is 
the scattering cross section; and S(r, fl ,  t) represents any external source of  particles. In writing 
Eq. (1) we have, for simplicity, restricted our attention to monoenergetic transport  with isotropic 
scattering, but such restrictions are not essential to this work or the work reported in the 
literature, l-j3 In treating stochastic transport  associated with Eq. (1), the published works have 
assumed that the medium in which the transport  occurs is composed of a random mixture of  two 
materials, say 0 and 1. Each material has a well defined nonstochastic source S,(r,  II ,  t )  and cross 
sections a,(r, t) and as,(r, t), i = 0, 1. The stochasticity in the problem arises from the probabalistic 
nature of  which material is present at any space-time point in the medium. The statistics of  the 
mixture are assumed completely known. 

In the time-independent, purely absorbing (as, = 0) case, a complete description for i~, consisting 
of  two coupled first order ordinary differential equations, is known in the special case of  Markov  

tTo whom all correspondence should be addressed at. 6266 Boelter Hall, UCLA-Engineermg, Los Angeles, CA 90024, 
USA 

OSRT 42/~A 253 



254 M.L. ADAMS et al 

m~xmg statistics. ~.2.5 For non-Markov statistics, the theory of alternating renewal processes has been 
used to again treat the time-independent, purely absorbing problem. 3-5'~2,~3 In this case one obtains 
an integral equatmn formulation, but for a certain restricted class of statistics describing the binary 
mixture these integral equations can be reduced to differential equations. 5'13 If scattering is present 
m the underlying transport problem, the only exact formulation available corresponds to the 
case when as,/a, and S,/a, are nonstochastic; that is, these two ratios are both independent of the 
index ~. Further, this formulation only applies to time-independent transport in one dimensional 
(rod and planar) geometries. 7 Explicit results have only been obtained in the purely scattering case 
in finite rod geometry, 6,7 and in half and full space geometries. 8'9 

A phenomenological model has been suggested to treat the general problem, including time 
dependence and scattering, in the case of Markov statistics. 4'5,t°'lt This model, first derived by 
applying the master equation approach, 24~ is known to be an approximate description, but it is 
a robust model which seems to be semlquantitatively accurate, based upon a single comparison 
with exact results in a purely scattering, time-independent, rod geometry transmission problem. 7 
This model states that ~, the ensemble-averaged solution to Eq. (1), is given by 

= po~,o + p, g,~, (2) 

where ~o and ¢~ satisfy the coupled set of transport equations 

v ' ~ ( p , ~ , ) / ~ t  + n V(p,~,,) + G,p,~, 

= [tr,,/(4n)] ~ d~'p,~,(l'~')+p,S,+pj~zj/Zj-p,¢,/2,, i , j = 0 , 1 ,  j #t. (3) 
j4 

Here ¢,(r, £ ,  t) is the ensemble averaged intensity, given that position r is in material i at time t; 
and p,(r, t) is the probability that the space-time point r, t is m material t. The 2, in Eq. (3) are 
the Markov transition probabilities which, in general, depend upon r, $'~, and t. They are defined 
as follows. If the medium is composed of material i at some space-time point s, then the probability 
of the medium being m the other material a differential distance ds in direction l~ away from s 
is given by ds/2,. This Markov model has been extended to a certain class of non-Markov statistics, 
and the result is again two coupled equations of the same general form as given by Eq. (3). 4 

It seems clear that the complexity of stochastic transport theory will preclude an exact description 
for i~ in full generality including time dependence and scattering, even in the simplest case of 
Markov statistics, except perhaps in some abstract setting not suitable for computation. Thus from 
a practical point of view, a usable description will undoubtedly involve an approximate model. One 
such model is that represented by Eqs. (2) and (3). To test the accuracy of any such model, it is 
essential to have exact benchmark results. In this paper we make a first step in providing some 
meaningful benchmark results. We consider time-independent stochastic transport Including 
scattering, under the assumption of Markov mixing statistics for the two components of the 
random medium. Further, the statistics are taken as homogeneous, by which we mean that all 
points in the system have the same statistical properties. We consider rod geometry, in which 
particles are constrained to move along a line, as well as layered planar geometry. We populate 
the medium statistically via a Monte Carlo procedure to affect a given physical realization of the 
statistics. Given this realization, we numerically solve the transport equation. We repeat this 
procedure a large number of times and average the results to obtain ~, the ensemble averaged 
intensity. As part of this computational process, we also compute the variance of the solution, 
which gives an indication of the spread of the stochastic solution about the mean. The physical 
problem we consider is the transmission-reflection problem for a finite, source-free system, and we 
report the probabilities of transmission and reflection for a variety of choices for a,, trs,, 2,, and 
system thickness. We also compare the predictions of Eqs. (2) and (3) with these benchmark results. 

A second contribution of this paper is to provide a very simple derivation of a set of two coupled 
exact equations describing in complete generality particle transport in a binary statistical mixture 
for arbitrary mixing statistics. All of the statistical complexity is contained in couphng terms 
which need to be evaluated (approximated) to close these equations and turn them into a useful 
computational model. It is shown that one simple approximation for treating these coupling terms 
leads to the previously suggested model given by Eqs. (2) and (3). In contrast to the master equation 
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derivation of this model, the present derivation holds out the hope of being able to improve upon 
this model since it is obtained from a simple approximation to an exact set of equations. A better 
approximation should lead to a better model. The use of the master equation, including time 
dependence and scattering, is in itself an approximation, and hence there seems to be no avenue 
available to improve upon the master equation derivation. We hope to address in a future paper 
improved approximations based upon the exact equations we present here. 

B E N C H M A R K  RESULTS- -ROD GEOMETRY 

We consider time-independent transport in rod geometry with no external source (S = 0). By rod 
geometry we mean that the particles are constrained to move along a line, which we take to be 
the z axis. We assume ~sotropic scattering, which in this rod model implies that a particle, upon 
scattering, has an equal probability, (namely 1//2) of continuing its direction of travel, or reversing 
its &rection. The transport description for th~s s~tuaUon is given by the two coupled equations 

d~p +(z)/dz 4- ~r(z)~k +(z) = a~(z)[¢ +(z) 4- ¢ -(z)]/2, (4) 

-dq, -(z)tdz + ~(z)~ -(z) = as(z)[~ +(z) + ¢ -(z)]/2, (5) 

where ~b +(z) is the intensity moving in the +z  direction. We assume Eqs. (4) and (5) hold for a 
rod of length s, and we assign nonstochasUc boundary conditions of the form 

+(0) = 1, ¢ -(s) = 0. (6) 

These boundary conditions correspond to a unit intensity incident upon the rod at z = 0, with no 
intensity incident upon the rod at z = s. 

We take this rod to be statistically composed of alternating segments of two materials, labeled 
0 and 1. Each material has spatially independent cross sections denoted by a, and as,, i = 0, 1. The 
statistics of this situation is assumed to be a homogeneous Markov process. It is known L5'13 that 
this implies that the length of each segment of material i is chosen at random from an exponential 
distribution given by 

f ( ~ )  = 2 , '  exp ( -  ~/2,). (7) 

Here f ( ¢ )  d~ is the probability of a segment of material i having a length lying between ¢ and 
+ d~, with 2, denoting the mean (average) segment length, i.e., 

fo 2, = d ~ f ( ¢ ) .  (8) 

At any point in the rod, the probability p, of finding material i is given by 

p, = 2,/(20 + 2,). (9) 

To obtain ensemble-averaged results for this transport problem, we proceed as follows. We first 
generate a given physical reahzation of the statistics using a Monte Carlo procedure. Specifically, 
we choose the material present at z = 0 statistically according to the probabilities p,. We then 
sample from Eq. (7) for the value of i so determined to establish the length of the first segment 
of material i, with its left-hand boundary at z = 0. We next sample from Eq. (7) with the other 
material index to determine the length of the next segment of material. We then sample from 
Eq. (7) with the original index i to determine the length of the third segment. We continue this 
process of sampling from Eq. (7) with alternating material indices until the entire interval 0 ~< z ~< s 
is populated with alternating segments of the two materials. This process yields both a(z) and as(z) 
as particular histograms for this physical realization of the statistics. For this realization of the 
functions a(z) and as(z), we numerically solve the transport problem given by Eqs. (4)-(6). 

We used the well known diamond spatial differencing scheme ~4 to obtain this solution, with each 
material segment subdivided into smaller mesh intervals for numerical accuracy reasons. The size 
of each mesh interval in a given material segment was taken as a constant, not exceeding one-fifth 
of a mean free path, and each material segment contained at least one mesh interval. Specifically, 
we computed the probability of reflection R and transmission T for the rod, as given by 

R = ~-(0); T = ~O +(s). (10) 
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The probability of absorption, A, in the rod follows from particle conservation, i.e., 

R + T + A  =1 .  (11) 

This entire procedure was repeated a large number of times to obtain results for a large number 
of physical realizations of  the statistics. The ensemble-averaged solutions for the rod reflection and 
transmission, which we denote by/~ and T, were then computed as simple numencal averages, i.e., 

M M 

R = M  ' ~ Rm, : r = M  ' ~ Tin, (12) 
m = l  m = l  

where the subscript m on Rm and Tm is an index denoting a particular realization of the statistics, 
and M denotes the number of  realizations computed We also calculated the standard deviation 
S of these results according to 

M 

X2(R) = M - '  ~ R 2 - ~2 ,  (13) 
m = l  

M 

Y . 2 ( T ) = M - '  ~_, T2m - T 2, (14) 
m = l  

which gives an indication of the spread of the results, due to the statistical nature of  the problem, 
about the means. 

We have used this procedure to obtain benchmark results for all combinations of three different 
sets of  or, and ~.,, three different sets of  the single scatter albedo as,/a,, and three different rod lengths 
s Thus m all we considered 27 different statistical transport problems. In each case, we chose 
M = 105 as the number of physical realizations of the statistics used to compute the ensemble 
averages. These values for a, and 2, are those used previously m other contexts, 4'7 and in all cases 
they correspond to an ensemble-averaged cross section, 6, equal to unity. The results are given in 
Tables 1-9 under the headings Exact 1 and Exact 2. These two columns of  results correspond to 
the use of two different sequences of random numbers to obtain the physical realizations of the 
statistics. The discrepancy between these two columns of results gives an indication of  the adequacy 
of using 105 realizations to compute ensemble averages. We typically see agreement between these 
two columns to somewhere between 2 and 3 significant figures. We also believe that our numerical 
dlscretization error in obtaining a solution for a given realization is of the same order, or less, than 
this statistical error. Thus we conclude that these benchmark results are accurate to somewhat 
better than 1%. Better accuracy could be achieved, of course, by using a larger value of  M and 

Table I. Reflection and transmission results 
for rod geometry 

S 

O1 

10 

100 

o o = 10/99 

~sd% = 0.00 

k o = 99/100 

EXACT 1 

0 0344 

Z(R) 0.0843 

0 9566 

Z(T) 0.0818 

0.2130 

Z(R) 0.2100 

T 0.7006 

Z(T) 0.1982 

g(R) 

5~(T) 

ol = I00/I I 

O s l / ~  1 = 1 (~ 

~1 = 11/100 

EXACT 2 MODEL 

0 0340 0.0337 

0.0841 

0 9569 0 9572 

0 0815 

0 2123 0 1948 

0 2101 

0 7012 0 7187 

0 1982 

0 4886 0.4393 

0 1313 

0 0526 00772 

0 0339 
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Table 2 Reflection and transmlssmn results 
for rod geometry. 

$ 

01 

10 

100 

o0= 10/99 o 1 = 100/11 

O'sO/O 0 = 1 00 osl/o 1 = 0 O0 

gO = 99/100 3.1 = 11/100 

EXACT 1 EXACT 2 MODEL 

00044 00045 00044 

E(R) 0 0014 0 0014 

T 0 9285 0 9301 0 9293 

Z(T) 0 1618 0 1603 

0 0325 0 0326 0 0292 

E(R) 00159 00159 

0 5699 0 5708 0 5699 

7.(T) 0 3494 0 3486 

P- 00615 00443 

Y.(R) 0 0486 

T 00047 00045 

z(T) 0 0223 

Table  3. Ref lect ion and transmiss ion results 
for rod geometry  

s 

01 

10 

100 

o 0 = 10/99 Ol = I{30/11 

Oso/O 0 = 0 90 I~sl/O" l = 0.90 

gO = 99/100 3.1 = I1/100 

EXACT I EXACT 2 MODEL 

0 0339 0 0332 0 0333 

E(R) 00717 00710 

q~ 0 9563 0 9572 0.9570 

Y.(T) 0 0938 0 0930 

R. 02120 02121 01929 

E(R) 0 1586 0 1584 

0 7017 0 7017 0 7182 

I£(T) 0 2437 0 2432 

05146 04338 

7..(R) 0 0123 

T 0 0557 0 0759 

~(T) 0 0623 

more mesh intervals in the numerical solution. We also comment that we have used this numerical 
procedure to compute known results in the literature, namely the purely scattering rod problem 6'7 
and the purely absorbing rod problem for which analytic results are available) '2 Comparison with 
these results led to the same conclusion regarding the accuracy of  these benchmark results given 
in Tables 1-9; we found agreement to somewhere between 2 and 3 significant figures. 

Also included in Tables 1-9, in the last column labeled Model, are the predictions of  the model 
given by Eqs. (2) and (3). Specifically, for this rod problem the model transport equations are 
written 

dq/+(z)/dz +a,q/+(z)=as,[d/+(z)+q/?(z)l/2+2.~[q/+(z)-q/+(z)], (15) 

- d• ;- ( z ) / d z  + a, ~/7 (z) = as, [~/+ (z) + ¢ ,- (z)]/2 + 2 7 t [~/f (z) - ~k g (z)], (16) 

Table 4 Reflection and transmission results 
for rod geometry 

$ 

Ol 

10 

100 

oo = 10/99 o I = 100/11 

o ~ o  o = 0.00 o,1/o I = 1 00 

gO = 99/10 3-1 = 11/10 

EXACT I EXACT 2 MODEL 

00319 00316 0.0315 

Y,(R) 0.0931 0 0927 

T 0.9591 0 9594 0 9594 

5~(T) 0.0901 0 0897 

01130 01105 01003 

F.,(R) 02531 0.2511 

T 0 8006 0.8029 0.8132 

~T) 0.2295 0.2275 

P, 0.2841 0.2158 

.~R) 0 2876 

0.1774 0.2294 

E(T) 0.1437 

Table  5 Ref lect ion and transmiss ion results 
for rod geometry  

s 

Ol 

I 0  

I00  

O 0 = 10/99 a I = I(30/11 

o~a o = 1.00 O,i/a I = 0 00 

gO = 99/10 3-I = II/I0 

EXACT I EXACT 2 MODEL 

P, 0 0045 0.0045 0 0045 

Y,(R) 0.0015 0 0015 

T 0 9343 0.9349 0 9350 

Z(T) 0.1768 0.1759 

0.0414 0.0414 00402 

~(R) 0.0154 0.0154 

T 0.7948 0.7961 0.7970 

7,,(T) 0.3384 0.3379 

0.2078 0.1568 

Y,(R) 0.1243 

T 0 2430 0 2352 

Z(T) 0.3067 
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Table 6. Reflection and transmission results 
for rod geometry 

s 

01 

10 

100 

o.o = 10/99 ~1 = 100/11 

o.s#% = 0 90 ast/c 1 = 0 90 

~o = 9 9 / 1 0  k~ = 11/10 

EXACT I EXACT2 MODEL 

0 0315 0 0310 0 0311 

Z(R) 0 0785 0 0779 

T 0 9589 0 9595 0 9593 

Z(T) 0 1039 0 1031 

0 1181 0 1173 0 1045 

Z(R) 0 1632 0 1627 

T 0 8181 0.8194 0 8270 

.E(T) 0 2873 0 2866 

0 4301 0 2883 

Z(R) 0 1066 

T 0 2658 0 2961 

E(T) 0 2728 

Table 7 Reflection and transmission results 
for rod geometry 

s 

01 

10 

100 

O.O = 2/101 O.1 = 200/101 

o.so/~o = 0 O0 Osl/o. ~ = 1 O0 

= 101/20 ~.t = 101/20 

EXACT 1 EXACT 2 MODEL 

00450 00454 00451 

Z(R) 0 0448 0 0447 

T 0 9540 0 9536 0 9539 

E(T) 0 0438 0 0438 

R. 0 2586 0 2578 0 2562 

Z(R) 0 2338 0 2340 

T 0 7316 0 7324 0 7340 

Y(T) 0 2247 0 2248 

0 6804 0 6034 

E(R) 0 2528 

0 2310 0 3063 

X(T) 0 2029 

for i = 0, 1 with j # i. The boundary conditions for Eqs. (15) and (16) are 

~9+(0)=1; f i T ( s ) = 0 ,  t = 0 , 1 ,  (17) 

and the ensemble-averaged solution is given by Eq. (2) with the p, given by Eq. (9). We see from 
the numerical results that this model is quite accurate for small rods (s =0.1) .  This is not 
unexpected since it can be shown that both the exact treatment and the model approach the atomic 
mix limit as s, the rod length, approaches zero. This limit corresponds to using the usual transport  
equation written for ~, with a, as, and S taken as ensemble averaged quantities. L5 As the rod length 
s increases, the accuracy of the model generally deteriorates, but it appears that the model is 
qualitatively as well as semiquantltatively correct. The overall results seem to mdicate that the 
model generally underestimates the reflection and overestimates the transmission. The model 

Table 8 Reflection and transmission results 
for rod geometry 

s 

01 

10 

100 

o.o = 2/101 o" I = 200/101 

o.sO/o.o = 1 O0 o.sl/Ol = 0 O0 

7L 0 = 101/20 X 1 = 101/20 

EXACT 1 EXACT 2 MODEL 

P, 0.0005 0 0005 0 0005 

Z(R) 0 0005 0 0005 

0 9097 0 9099 0 9093 

Z(T) 0 0888 0 0887 

P, 0 0046 0.0046 0 0045 

Z(R) 0 0047 0 0047 

0.5396 0 5397 0 5396 

~Z(T) 0 4027 0 4025 

00217 00148 

Z(R) 0.0294 

00910 00913 

Z(T) 0 2467 

Table 9. Reflection and transmission results 
for rod geometry. 

$ 

01 

10 

100 

% = 2/101 G I = 200/101 

GsO/C o = 0 90 CsflO" I = 0 90 

= 101/20 7~ I = 101/20 

EXACT I EXACT 2 MODEL 

0.0406 0 0407 0 0406 

Z(R) 0 0394 0.0394 

0 9495 0 9494 0 9495 

Z(T) 00491 00491 

0 2152 0.2157 0.2129 

Z(R) 0 1852 0 1853 

T 0 6955 0 6948 0 6976 

Z(T) 0 2661 0 2663 

0.4688 0.3693 

Z(R) 0 1214 

T 0 1510 0 1798 

E(T) 0 2566 



Benchmark results for particle transport 259 

equations do not predict results for the standard deviations 2~(R) and 2~(T), although the master 
equation approach to deriving Eqs. (2) and (3) can be used to derive a model for these quantities. 
We do not pursue this here. 

BENCHMARK RESULTS- -PLANAR GEOMETRY 

We now consider time-independent transport in planar geometry with no external source of 
particles (S = 0). If we assume isotropic scattering, the transport equation is written 

dO(z, #)/Oz + a(z)~,(z, I.t) = [G(z)/2] d/~'0 (z, #'), (18) 
- I  

where/~ here is the cosine of the angle between the z axis and the particle flight direction. We take 
Eq. (18) to hold on the interval 0 ~< z ~< s, and we assign nonstochastic boundary conditions given 
by 

~b(0,/,)=2, /~>0; O(s ,~)=0 ,  p < 0 .  (19) 

These boundary conditions correspond to an isotropic intensity, normalized to a unit incoming 
flux, incident upon the planar system at z = 0, and no intensity incident upon the system surface 
at z = s. We take this planar system to be statistically composed of alternating slabs of two 
materials, which we again label with indices 0 and 1. As in the rod problem, each material has 
spatially independent cross sections a, and G,. The thickness of each slab is chosen at random from 
the exponential distribution given by Eq. (7). This statistical description corresponds to a 
homogeneous Markov process. 

To obtain ensemble-averaged results for this problem, we proceed m complete analogy to the 
procedure used in rod geometry. We obtain a physical realization of the statistics via the Monte 
Carlo procedure of sampling the slab thicknesses from Eq. (7), and for this realization we solve 
the corresponding transport problem numerically. The angular variable/~ in Eq. (18) was treated 
using the standard discrete ordinate method,14 employing the 16-point Gauss-Legendre quadrature 
set. The spatial differencing used was simple diamond differencing.~4 The size Az of each mesh 
interval was chosen such that 

¢ T t A z / [ #  [mm ~ 1/5, (20) 

where [/z [ m,, is the smallest positive ordinate in the S- 16 quadrature set. Just as in the rod problem, 
we computed the probabilities of reflection R and transmission T for the system, which in this case 
are given by 

;o' f0' 
R = d/~#q/(0, -/~); T = d##~k(s,/~), (21) 

and the absorption probability A follows from particle conservation according to Eq. (11). 
Repeating this process for a large number of statistical realizations, ensemble-averaged results for 
the reflection and transmission follow from Eq. (12), and Eqs. (13) and (14) give the corresponding 
standard deviations. As in our rod calculations, we used 105 realizations to compute the ensemble 
averages. These calculations, performed on a Cray XMP at the Lawrence Livermore National 
Laboratory, required approx. 10 h of cpu time. 

Benchmark results for the same parameters a,, as,, and 2, as we used in rod geometry are 
displayed in Tables 10-18. Aside from the angular discretization error inherent in the S-16 
approximation, we believe these results to be accurate to somewhat better than 1%, just as in rod 
geometry. The error associated with using the S-16 discrete ordinate method is probably in general 
of this same order, but may be larger for highly absorbing thick systems, in particular for the 
transmission T. Also included in these tables are the predictions of the model given by Eqs. (2) 
and (3). For the time-independent, source-free planar problem under consideration, Eq. (3) is 
written 

+ ~r,~,,(z,#)= [G,/2] ~" d~*'q,,(z,U')+lt*la;-'[~',(z,*,)-q',(z,*')],  (22) # 8~,(z, # )/dz 
d -  I 
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Table 10 Reflection and trans- 
mission results for planar 

geometry. 

<50 = 10/99 OÁ = 100/11 

Os0,'O0 = 0 0 0  <5sl/Oi = 1 00 

X o = 99/100 ~ = 11/100 

S EXACT MODEL 

0 1 R 00491 00479 

Z(R) 0 1182 

T 09331 09343 

Y_,(T) 0 1132 

1 0 R 02495 0.2187 

.7.,(R ) 0 2354 

0 5950 0 6254 

Z(T) 0 2143 

10 0 P, 0.4342 0 3760 

7..~R) 0 1616 

0 0146 0 0259 

Z(T) 00152 

T a b l e  11 

m i s s i o n  

Reflection and trans- 
results for planar 
geometry 

<50 = 10/99 

<ss0/O0 = 1 00 

L 0 = 99/100 

s 

01 

Z(R) 

T 

X(T) 
10 ~-, 

X(R) 

Y(T) 

100 

Y.(R) 

Z(T) 

<51 = 100/11 

<5sl/<51 = 0 00 

~'1 = 11/100 

EXACT MODEL 

0 0087 0 0086 

0 0029 

09014 09004 

02111 

0 0548 0 0460 

0 0307 

0 4841 0 4834 

0 3632 

0 0856 0 0591 

0 0697 

00016 00015 

00121 

Table 12 Reflection and trans- 
mission results for planar 

geometry 

o o = 10/99 ol = 100/11 

<ssd<5o = 0 90 osl/o I = 0 90 

X o = 99/100 ~.1 = 11/100 

s EXACT MODEL 

0 ! R 0 0480 0 0473 

X(R) 0 0935 

T 0 9341 0 9344 

E(T) 0 1339 

1 0 R 02563 02178 

Z(R) 0 1546 

T 0 5985 0 6267 

Z(T) 0.2832 

10 0 R 0 4785 0 3707 

X(P.) 0.0038 

T 0 0159 0 0237 

E(T) 0 0314 

for t = 0, 1 with j # t. The boundary conditions on Eq. (22) are 

~b,(0,#)=2,  /~>0 ;  ~O,(s,/~)=0, # < 0 ,  (23) 

and the ensemble-averaged solution is given by Eq. (2) with the p, given by Eq. (9). Equations (22) 
and (23) were solved numerically using the S-16 discrete ordinate approximation and diamond 
spatial differencing, t4 The coupling term I/t I,~,' in Eq. (22) deserves a word of explanation. I f  the 
mean (average) slab thickness of material i is 2,, then the mean chord length seen by a particle 
traveling at an angle characterized by its cosine/~ is just 2,/[/~1. That  is, the Markov transition 
probabilities are, in this case of  a layered planar system, angularly dependent and given by 2,/1/~ I, 
which leads to this form of the coupling term in Eq (22). 

Table 13. Reflection and trans- Table 14 Reflection and trans- Table 15 Reflection and trans- 
mission results for planar mission results for planar mission results for planar 

geometry geometry geometry 

<5o = 10/99 

o d o  o = 0 00 
X o = 99/100 

s 

0.1 

x0~) 

x(T) 
1.0 

X(R) 

T 

X(T) 
100 

X(R) 

T 

X(T) 

<st = 100/11  

O'sl[~ I = 1 0 0  

~'l = 11/100 

EXACT MODEL 

0 0434 0 0432 

0 1267 

0 9388 0 9390 

0 1209 

0 1224 0.1068 

0.2726 

0 7233 0.7385 

0.2306 

0 2369 0 1799 

0 2860 

0.0981 0 1278 

0.0887 

<50 = 10/99 o 1 = 100/11 

os0/o o = 1.00 <5sl/O1 = 0 00 

= 99/100 ~q = 11/100 

s EXACT MODEL 

0 1 ~ 0.0089 0 0089 

Z(P.) 0 0030 

T 09140 09140 

'r(T) 0.2217 

1 0 R 0.0744 00717 

Z(R) 0.0278 

T 0.7588 07581 

~'(T) 0.3325 

10.0 R" 02897 0.2193 

Z(R) 0 1631 

T 0 1960 0 1787 

Z(T) 0 2551 

<5o = 10/99 <st = 100/11 

osd<5 o = 0 90 <5sl/ol = 0 90 

ko = 99/100 gl = 11/100 

s EXACT MODEL 

0 1 ~ 0.0426 0 0426 

g(R) 0 0985 

0 9398 0 9397 

X(T) 0 1446 

1.0 R 0 1440 0 1255 

g(R) 0 1452 

T 0 7666 0.7733 

X(T) 0.3011 

100 R 04344 02910 

]~(R) 0.0572 

T 0.1861 0 1945 

Z(T) 0 2134 
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Table 16. Reflection and trans- 
mission results for planar 

geometry 

O" 0 = 2/101 g l  = 200/101 

O'so/% = 0 00 Osl/O l = 1 00 

7k 0 = 101/20 ~-1 = 101/20 

s EXACT MODEL 

0 1 R 0 0763 0.0758 

X(R) 0 0751 

T 09218 0.9223 

Y.(T) 0 0732 

1 0 R 03210 03157 

Y.(R) 0 2865 

T 0 6599 0 6652 

ZCF) 0 2688 

10 0 R 0 6916 0.6070 

Y-4"R) 02615 

01615 02391 

Z(T) 0 1740 

Table 17. Reflection and trans- 
mission results for planar 

geometry. 

o" o = 2/101 o I = 2001101 

O'so/O" o = 1.00 Osl/o I = 0 00 

~o = 101/20 ~-1 = 101/20 

s EXACT MODEL 

0 1 R 00010 00010 

Z(R) 0 0010 

T 0 8509 0 8503 

Z(T) 0 1464 

1 0 R 0 0088 0.0085 

Y~(R) 0 0091 

T 04818 04826 

Z(T) 0 4361 

10 0 R 0 0369 0 0243 

X(R) 0 0500 

T 0 0766 0 0755 

E(T) 0 2252 

Table 18. Reflectmn and trans- 
mission results for planar 

geometry 

60 = 2/101 01 = 200/101 

Osd % = 0.90 a f l / a  I = 0 90 

k 0 = 101/20 ;Z~ = 101/20 

s EXACT MODEL 

0 1 R 0 0670 0 0669 

Z(R) 0.0646 

T 09136 09137 

Z(T) 0 0834 

1 0 R 02435 02381 

Z(R) 0 1991 

T 0 6045 0 6086 

E(T) 0 3346 

10 0 R 0 4466 0 3272 

E(R) 0 0923 

T 01037 01195 

Z(T) 0 2290 

The numerical results given in Tables 10-18 for planar geometry follow the same general trends 
as the rod geometry results given in Tables 1-9. The model equations in general underestimate the 
ensemble averaged reflection probability/~ and overestimate the ensemble-averaged transmission 
probability T, with the accuracy becoming better as the thickness of the system decreases. 

STATISTICAL T R A N S P O R T  E Q U A T I O N S  

In this section we give a simple derivation of two coupled, formally exact, transport equations 
descrtbmg particle flow m a binary statisucal mixture. The mixing statistics are arbitrary, and 
assumed known. Our considerations are completely general in that they include time dependence 
and scattering in full three-dimensional geometry. We start by considering a particular physical 
realization of the statistics, and for this realization we consider an arbitrary convex volume V, 
bounded by the surface B, within the medium under consideration. In general, both materials, 
which we label by indices 0 and 1, will be present within the volume F, and we define F as the 
union of all surfaces in the interior of V which separate materials 0 and 1. Each material is 
characterized by a nonstochastic source S,(r, fl ,  t) and nonstochastic cross sections a,(r, t) and 
trs,(r, t). As implied by the arguments of S,, a,, and trs,, we consider only monoenergetlc transport; 
1.e., we ignore energy as an independent variable. We also restrict our considerations to isotropm 
scattering. These two restrictions are not essential and are made only for simplicity of exposition. 
To obtain a formally exact set of statistical equations, we simply write down, for the particular 
(but arbitrary) physical realization of  the statistics under consideration, a statement of particle 
balance for each of  the two materials in F. We subsequently perform an ensemble average of these 
equations. If we take the volume V to be time independent and fixed in space, our balance 
considerations constitute an Eulerian derivation. 

We definef(r, f~, t) as the distribution function for particles such t h a t f d r  df~ is the number of 
particles in d r d ~  at time t. We also define, in the usual way, ~b(r, fl ,  t ) =  vf(r, fl ,  t), where v ts 
the particle speed. The balance equation for material i in V simply states that the time rate of  change 
of the number of  particles, in i and F, is the gain rate of particles minus the loss rate of particles. 
Our considerations constitute a completely standard Eulerian derivation of  the transport equation, 
with due account taken of  the existence of two materials in V. The fact that two materials are 
present leads to an additional term in the balance equation for material i involving flow across the 
interface surfaces F. This term gives the formal coupling between the two materials. 
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To facilitate the derivation, we introduce the characteristic function ;(,(r, t), defined as 

1, if position r is in material i at time t 
x,(r, t) = 0, otherwise (24) 

Performing a balance for particles in material i in the volume V gives four standard gain/loss terms, 
just as in the derivation of the transport equation for a nonstochastic medium. These are: 

External source rate 

= ~ dr L(r, t)S,(r, 1-1, t) df l ,  (25) 
J V 

Collision toss rate 

[ dr L(r, t)a,(r, t)~k(r, IL t ) d ~ ,  (26) 
d V 

Scattering gain rate 

= (4n)- '  fv  drL(r,t)as,(r,t)dI't f4r~ d n ' $  (r, n ' ,  t), (27) 

Leakage loss rate across the bounding surface B 

fBds L(r, t)(n.  fl)~k (r, f / ,  t) dr/ .  (28) 

The vector n In Eq. (28) is a unit normal outward pointing vector at a local surface point on B. 
Aside from the occurrence of the factor z,(r, t) and the index t on S,, a, and as, in Eqs. (25)-(28), 
these are the usual four gain/loss terms which enter into the Eulerian derivation of the classic 
nonstochastic transport equation. This factor x,(r, t) and the indices extant account for the fact 
that our balance considerations within the volume V are only for material t. In the present context, 
however, one additional term must be present in the particle balance. This term accounts for the 
loss and gain of particles in material i due to flow across the internal interface surfaces F. This 
is given by 

Leakage loss rate across the internal surfaces F 

= f ds(n,. ~)~(r,  fl, t) d~,  (29) 
dr 

where n, in this equation is a local normal unit vector pointing out of matenal i. 
The balance equation for material i in volume V follows by equating the time derivative of the 

number of particles in material i in volume V and solid angle increment d ~  to the sum, with the 
appropriate sign to account for gains and losses, of Eqs. (25)-(29). Cancelling the differential di'l 
common to each term, we find 

l a fvdrx,¢(ll)= f drx, S,(fl)- f drx, a,J/(ll) -v ~t .2v v 

+ (4n)- '  fv  dr)c, as, (j4~ d"'@(ll')-fBdsL(n'fl)@(ll)-frds(n"l'l)#/(l'l)" (30, 

In writing Eq. (30), we have dropped the r and t dependences of all quantities for notational 
simplicity. This equation can also be obtained by multiplying Eq. (1) by z,(r, t), integrating over 
the volume V, and applying Gauss's theorem. 

Equation (30) is an exact balance equation for material i for one particular physical realization 
of the statistics. The next step is to ensemble average this result over all statistical realizations. To 
this end, we define 

p,(r, t) = <L(r, t)) ,  (31) 

~,(r, f l ,  t) = ()c,(r, t)~(r,  f l ,  t))/(z,(r, t)), (32) 
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where the ( . )  notation means ensemble average. It is clear that p,(r, t) is simply the probability 
of finding material i at position r and time t, and ~,,(r, 12, t) is the ensemble averaged value of the 
intensity given that position r is in material i at time t. In ensemble averaging Eq. (30), the averaging 
operator passes inside the volume integrals as well as the integral over the bounding surface B, since 
V and B are common to all physical realizations of the statistics. However, this operator does not 
pass inside the surface integral over F, since F depends upon the statistical realization. Taking this 
into account, an ensemble averaging Eq. (30) gives 

v ~t v 

fvdras, P, f4 fvdrp, ). (33) 

We apply the divergence theorem to convert the integral over the closed surface B to a volume 
integral, and subsequently take the limit of the entire equation as the volume V approaches zero. 
We then arrive at our final result given by 

v -' c~[p,~/,(12)]/t3t + 12. V[p,~,,(~)] + tr,p,d/,(~) 
/ dfl'~b,(f~') +p,S,(F~) + 0,(fl), (34) [as,/(4~)]p, d4 I t  

where we have defined 

O,(r, 12, t)= -limI V-'(~(") frds(n" (35) 

We note that 00 + 0~ = 0 since no = - n j .  Equations (34) and (35), which hold for each material 
i = 0, l, constitute an exact, albeit formal, description of transport in a binary statistical medium 
for arbitrary statistics. The statistical information is embodied in the probabilities p, and in the 
coupling terms 0,, which must be evaluated (approximated) to turn this description into a useful 
computational algorithm. We consider one simple approximation for 0, in this paper. 

It suffices to consider 00, since 0t follows from 01 = -00.  We consider the integral in Eq. (35) 
as the sum of two integrals, one for no' 12 > 0 and one for no. 12 < 0. We then have 

Oo=V-'[-(¢(a) (36) 

where we have used n~ = -no ,  and the limit V ~ 0  is implied in Eq. (36). The notation F, means 
the subset of the surfaces composing F such that n,. f l  > 0. The two terms in Eq. (36) are of the 
same form, and it suffices to consider only one of them. Accordingly, we consider the term To, 
defined as 

To=V-'(O(f )frodS(no..) ), (37) 

where again the limit V--*0 is implied. We rewrite Eq. (37) as 

To = (~k(~flofr°dS(n°'f~)lds(no" ~ ) )  IV-'(frodS(no'[~))l. (38) 

The second bracketed term is simply a geometric quantity dependent upon the statistics, and we 
define A0(r, f~, t) in terms of this quantity as 

po/Ao = V-t(frodS(n O • f~)), (39, 

where po(r, t) is the probability of finding material 0 at position r and time t. Equation (38) then 
becomes 

To = Po ~o/Ao, (40) 
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where we have defined 

= f, odS(,,o, n)) / IfrodS(no. n) ). (41) 

At this point we have made no approximations, Eq. (40) is exact. 
To proceed, we note that ~0 is an average, in the ensemble average sense, of values of the intensity 

at interface points, i.e., on F 0. We approximate this average by using an analog of upwind 
differencing encountered in numerical analysis of hyperbolic equations. Specifically, we replace ~0 
in Eq. (40) with ~0, the ensemble-averaged intensity within material 0. ~0 here is the same ~k0 
contained in Eq. (34). With this approximation, Eq. (40) becomes 

To = Poq;o/Ao, (42) 

and recalling the origin of  T o [see Eq. (37)] and the definition of  the coupling term [see Eq. (36)], 
we have 

00(r, f/, t) = Pl (r, t)~ 1 (r, 1~, t)/A 1 (r, f/, t) - p0(r, t)~0(r , ~ ,  t)/Ao(r , f/, t), (43) 

where A~ is defined by Eq. (39) with the 0 subscripts replaced with I. The coupling term 01 (r, f/, t) 
follows in this approximation from 0~ = -00 .  Using this form of the coupling term in Eq. (34), 
we see we have reproduced the model given by Eq. (3). This model was first derived using the master 
equation 4'5 and a second derivation has recently been given by Sahni) °'ll In these two derivations, 
considerations were restricted to Markov statistics, but the present derivation shows that this 
model, while approximate, applies to arbitrary statistics. The details of  the statistics are embodied 
in the evaluation of the expression for A, given by [see Eq. (39)] 

P'/A'=llmFVv-o L 1 / f r ,  ds(n' " f l ) / l "  (44) 

This model is known to be exact for time-independent, purely absorbing (as, = 0) mixtures 
obeying Markov statistics, and w~thin the context of the present derivation it is clear why this is 
so. The approximation of  replacing the interface ensemble-averaged intensity with the volumetric 
ensemble-averaged intensity, i.e., setting ~, = @,, is in this case not an approximation; it is an exact 
replacement. This observation follows from the fact that for purely absorbing, time-independent 
transport the solution at any spatial point depends only upon the optical depths from the point 
in question to the system boundary and the source points. For Markov statistics, the ensemble- 
averaged optical depth between one spatial point and another is the same if one of the points is 
an interface, or if this point is chosen at random in one of the materials. Further, in the Markov 
case, A, is simply the fundamental Markov transition probability quantity. That is, dx/A, is the 
probability of  transition from material i to the other material in a distance dx. These items are 
discussed in detail elsewhere. 13 

The final item we wish to show in thxs section is that for homogeneous statistics, by which we 
mean that any point along a particular ray in the medium obeys the same statistics, the parameter 
A, defined by Eq. (44) can be identified as the mean (average) chord length in material i. It suffices 
to show this for Ao, since the arguments for A~ are identical. We consider the evaluation of the 
quantity Q0(r, l'L t), defined as 

Qo(~)=limlV-'(f r ds(no • fl))].  (45) 
V ~ 0  0 

Referring to Fig. 1, we take the direction f l  to be the x axis, and consider a differential volume 
of thickness dx and cross-sectional area dA. Evaluating the ensemble averaged integral in Eq. (45) 
is equivalent to placing this volume at random on the x axis, computing the integral, and then 
averaging over all possible random placements. We first note that the randomly placed volume has 
a probability P0 of being in material 0. Given that the volume is in material 0, the probability of 
the volume containing an interface with no' £~ > 0 is just dx/2o, where 2o is the mean (average) 
chord length in material 0. Finally, we use the fact that simple geometric considerations give 
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F~g 1 

I Volume V 

dA / 

~--- dx 

eo 
1 

Contribution 

0 ) - .  

A differential volume placed on a hne consBtmg of alternating material segments 0 and 1 

dA = ds(n0" fl). Putting all of  these considerations together, we have 

lim [(frv~0 o d s ( n ° ' ~ ) l ] = p ° d x d A / 2 ° "  (46) 

Since the volume is given by dx dA, we then find, using this volume and Eq. (46) in Eq. (45), 

Q0 = p0/20. (47) 

Recalling the definition of Q0 [see Eq. (45)], we see that Eq. (47) is identical to Eq. (44) with t = 0 
if one identifies A0 in Eq. (44) with 20, the mean chord length in material 0. 

In thts case of  homogeneous statistics, a simple physical interpretation of  our approximation to 
the coupling terms can be given. For  homogeneous statistics, we have p, = 2,/(20 + 21), a result 
written earlier [see Eq. (9)] for homogeneous Markov statistics, but true for any homogeneous 
statistics. Using this expression for p, in Eq. (43) with A, = 2, and using the fact that 01 = - 00, we 
find that O, can be written very simply in terms of  the mean chord lengths 2, as 

O, = (~,j - ~,,)1(2o + ,~, ), J ~ i. (48) 

We also recall that 0, is the ensemble-averaged rate at which particles flow through F from material 
j to material i [see Eqs. (29) and (35)]. With this in mind, we can interpret Eq. (48) as a particular 
(discretized) form of  a Fick's law of diffusion. This law states that the rate at which particles diffuse 
across an interface is proportional  to their concentration gradient at the interface or, more 
generally, this rate is proportional to the change in concentration across the interface. Fick's law 
has been applied in many areas of  physics, and our approximation to the coupling terms can be 
physically interpreted as a form of this law. 

In future work, we hope to be able to approximate the coupling term 0, in Eq. (34) more 
accurately, to produce a better model describing particle transport  in a binary statistical medium. 
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