J Quant. Spectrosc Radwat Transfer Vol 42, No 4, pp 253-266, 1989 0022-4073/89 $3.00 + 0.00
Printed 1n Great Britain All nights reserved Copyright © 1989 Maxwell Pergamon Macmillan plc

BENCHMARK RESULTS FOR PARTICLE TRANSPORT IN
A BINARY MARKOV STATISTICAL MEDIUM

M. L. Apams

Lawrence Livermore National Laboratory, Livermore, CA 94550, U S.A

E. W. LARSEN
Department of Nuclear Engineering, The University of Michigan, Ann Arbor, MI 48109, U.S.A.

G. C. POMRANING T

School of Engineering and Apphed Science, University of California at Los Angeles,
Los Angeles, CA 90024, US A

(Recewed 27 January 1989)

Abstract—We give numerical benchmark results for particle transport in a randomly mixed
bimary medium, with the mixing statistics described as a homogeneous Markov process. A
Monte Carlo procedure 1s used to generate a physical realization of the statistics, and a discrete
ordinate numerical transport solution 1s generated for this realization. The ensemble averaged
solution, as well as the variance, 1s obtained by averaging a large number of such calculations.
Reflection and transmussion results are given for several problems in both rod and planar
geometry. In a separate development, two coupled transport equations are derived which
formally describe transport in a random binary mixture for arbitrary mixing statistics. Closing
these equations by approximating their coupling terms in a low order and intuitive way leads
to a model for stochastic transport previously obtained via the master equation. The present
derivation, based upon approximating exact equations, allows in principle the opportunity to
develop more accurate models by making higher order approximations 1n the coupling terms.

INTRODUCTION

In the last 3 years, a fair number of papers have been written dealing the the problem of describing
linear transport theory 1n a statistical medium consisting of two imiscible fluids.!™"* If we write the
underlying transport equation as

v oY(r,Q, 1)/ 0t + Q- VY (r,Q, 1) +a(r, W(r,Q, 1)
= [o(r, t)/(“”)]j dQyY @, Q, 1)+ S, Q,1), (1)

the effort has been to develop a formalism to describe ¥, the ensemble-averaged solution to
Eq. (1), when g, g,, and § are two-state discrete random variables. Here ¥ (r, 2, ¢) is the product
of the particle distribution function and the particle speed v, with r, , and ¢ representing the
spatial, angular, and temporal coordinates; a(r, ¢) is the total (collision) cross section; gy(r, ¢) is
the scattering cross section; and S(r, £, ) represents any external source of particles. In writing
Eq. (1) we have, for simplicity, restricted our attention to monoenergetic transport with isotropic
scattering, but such restrictions are not essential to this work or the work reported in the
literature."!? In treating stochastic transport associated with Eq. (1), the published works have
assumed that the medium in which the transport occurs is composed of a random mixture of two
materials, say 0 and 1. Each material has a well defined nonstochastic source S,(r, £2, #) and cross
sections o,(r, t) and g, (r, t), i =0, 1. The stochasticity in the problem arises from the probabalistic
nature of which material is present at any space-time point in the medium. The statistics of the
mixture are assumed completely known.

In the time-independent, purely absorbing (¢, = 0) case, a complete description for ¥, consisting
of two coupled first order ordinary differential equations, is known in the special case of Markov
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mixing statistics."*’ For non-Markov statistics, the theory of alternating renewal processes has been
used to again treat the time-independent, purely absorbing problem.*-*'%!3 In this case one obtains
an integral equation formulation, but for a certain restricted class of statistics describing the binary
mixture these integral equations can be reduced to differential equations.>'® If scattering is present
in the underlying transport problem, the only exact formulation available corresponds to the
case when o, /o, and S,/o, are nonstochastic; that is, these two ratios are both independent of the
index :. Further, this formulation only applies to time-independent transport in one dimensional
(rod and planar) geometries.” Explicit results have only been obtained in the purely scattering case
in finite rod geometry,*” and in half and full space geometries.?’

A phenomenological model has been suggested to treat the general problem, including time
dependence and scattering, in the case of Markov statistics.*>'*!! This model, first derived by
applying the master equation approach,’*® is known to be an approximate description, but it is
a robust model which seems to be semiquantitatively accurate, based upon a single comparison
with exact results in a purely scattering, time-independent, rod geometry transmission problem.’
This model states that i, the ensemble-averaged solution to Eq. (1), 1s given by

¥ =po+pi¥, (2)

where ¥, and ¥, satisfy the coupled set of transport equations

v 'op )t +Q Vpy)+apy,

= [o,/(4m)) L dQp, Q)+ p. S +pY, /4 —pY.fi, ]=0,1, j#i. (3)
Here y,(r, , t) is the ensemble averaged intensity, given that position r 1s in material / at time ¢;
and p,(r, r) 1s the probability that the space-time point r, ¢ is in material 1. The 4, in Eq. (3) are
the Markov transition probabilities which, in general, depend upon r, 2, and ¢. They are defined
as follows. If the medium 1s composed of material / at some space—time point s, then the probability
of the medium being in the other material a differential distance ds in direction £ away from s
is given by ds/4,. This Markov model has been extended to a certain class of non-Markov statistics,
and the result 1s again two coupled equations of the same general form as given by Eq. (3).%

It seems clear that the complexity of stochastic transport theory will preclude an exact description
for  in full generality including time dependence and scattering, even in the simplest case of
Markov statistics, except perhaps in some abstract setting not suitable for computation. Thus from
a practical point of view, a usable description will undoubtedly involve an approximate model. One
such model is that represented by Egs. (2) and (3). To test the accuracy of any such model, it 1s
essential to have exact benchmark results. In this paper we make a first step in providing some
meaningful benchmark results. We consider time-independent stochastic transport including
scattering, under the assumption of Markov mixing statistics for the two components of the
random medium. Further, the statistics are taken as homogeneous, by which we mean that all
points in the system have the same statistical properties. We consider rod geometry, in which
particles are constrained to move along a line, as well as layered planar geometry. We populate
the medium statistically via a Monte Carlo procedure to affect a given physical realization of the
statistics. Given this realization, we numerically solve the transport equation. We repeat this
procedure a large number of times and average the results to obtain i, the ensemble averaged
intensity. As part of this computational process, we also compute the variance of the solution,
which gives an indication of the spread of the stochastic solution about the mean. The physical
problem we consider 1s the transmission—reflection problem for a finite, source-free system, and we
report the probabilities of transmission and reflection for a variety of choices for a,, g, 4,, and
system thickness. We also compare the predictions of Egs. (2) and (3) with these benchmark results.

A second contribution of this paper is to provide a very simple derivation of a set of two coupled
exact equations describing in complete generality particle transport in a binary statistical mixture
for arbitrary mixing statistics. All of the statistical complexity is contained in coupling terms
which need to be evaluated (approximated) to close these equations and turn them into a useful
computational model. It 1s shown that one simple approximation for treating these coupling terms
leads to the previously suggested model given by Egs. (2) and (3). In contrast to the master equation
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derivation of this model, the present derivation holds out the hope of being able to improve upon
this model since it is obtained from a simple approximation to an exact set of equations. A better
approximation should lead to a better model. The use of the master equation, including time
dependence and scattering, is in itself an approximation, and hence there seems to be no avenue
available to improve upon the master equation derivation. We hope to address in a future paper
improved approximations based upon the exact equations we present here.

BENCHMARK RESULTS—ROD GEOMETRY

We consider time-independent transport in rod geometry with no external source (S = 0). By rod
geometry we mean that the particles are constrained to move along a line, which we take to be
the z axis. We assume 1sotropic scattering, which in this rod model implies that a particle, upon
scattering, has an equal probability, (namely 1/2) of continuing its direction of travel, or reversing
its direction. The transport description for this situation is given by the two coupled equations

dy *(z)/dz + o (2} *(2) = 0,(2) [Y *(2) + ¥ ~(2)]/2, Q)
—dy ~(2)/dz + 0 (2 ~(2) = 0,(2) ¥ *(2) + ¥ " (2)])2, &)

where i *(z) is the intensity moving in the +z direction. We assume Eqgs. (4) and (5) hold for a
rod of length s, and we assign nonstochastic boundary conditions of the form

¥rO)=1, Y (s)=0. (6)

These boundary conditions correspond to a unit intensity incident upon the rod at z = 0, with no
intensity incident upon the rod at z =s.

We take this rod to be statistically composed of alternating segments of two materials, labeled
0 and 1. Each material has spatially independent cross sections denoted by ¢, and o, i =0, 1. The
statistics of this situation is assumed to be a homogeneous Markov process. It is known'*'* that
this implies that the length of each segment of material J is chosen at random from an exponential
distribution given by

Si&) =47 exp(—¢/4). Q)

Here f,(¢) d¢ is the probability of a segment of material i having a length lying between £ and
¢ + d¢&, with 2, denoting the mean (average) segment length, i.e.,

3= r dEEf (). ®)

At any point in the rod, the probability p, of finding material i is given by
po=A4[(A+ 4y). ®

To obtain ensemble-averaged results for this transport problem, we proceed as follows. We first
generate a given physical realization of the statistics using a Monte Carlo procedure. Specifically,
we choose the material present at z = 0 statistically according to the probabilities p,. We then
sample from Eq. (7) for the value of i so determined to establish the length of the first segment
of material i, with its left-hand boundary at z = 0. We next sample from Eq. (7) with the other
material index to determine the length of the next segment of material. We then sample from
Eq. (7) with the original index i to determine the length of the third segment. We continue this
process of sampling from Eq. (7) with alternating material indices until the entire interval 0 <z <s
is populated with alternating segments of the two materials. This process yields both ¢(z) and o,(z)
as particular histograms for this physical realization of the statistics. For this realization of the
functions a(z) and o,(z), we numerically solve the transport problem given by Egs. (4)—(6).

We used the well known diamond spatial differencing scheme!* to obtain this solution, with each
material segment subdivided into smaller mesh intervals for numerical accuracy reasons. The size
of each mesh interval in a given material segment was taken as a constant, not exceeding one-fifth
of a mean free path, and each material segment contained at least one mesh interval. Specifically,
we computed the probability of reflection R and transmission T for the rod, as given by

R=y¢~(0); T=y~ @) (10)
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The probability of absorption, 4, in the rod follows from particle conservation, i.e.,
R+T+4=1 an

This entire procedure was repeated a large number of times to obtain results for a large number
of physical realizations of the statistics. The ensemble-averaged solutions for the rod reflection and
transmission, which we denote by R and T, were then computed as simple numerical averages, i.e.,

M M

R=M"'"3 R, T=M"'3T,, (12)
m=1 m=1

where the subscript m on R,, and T, is an index denoting a particular realization of the statistics,

and M denotes the number of realizations computed We also calculated the standard deviation

2 of these results according to

SXR)=M"" ‘f R:— R, (13)

m=1

M
IXTy=M""' > T,-T% (14)
m=1
which gives an indication of the spread of the results, due to the statistical nature of the problem,
about the means.

We have used this procedure to obtain benchmark results for all combinations of three different
sets of g, and 4,, three different sets of the single scatter albedo ¢, /0,, and three different rod lengths
s Thus n all we considered 27 different statistical transport problems. In each case, we chose
M = 10° as the number of physical realizations of the statistics used to compute the ensemble
averages. These values for ¢, and 4, are those used previously in other contexts,*” and in all cases
they correspond to an ensemble-averaged cross section, 4, equal to unity. The results are given in
Tables 1-9 under the headings Exact 1 and Exact 2. These two columns of results correspond to
the use of two different sequences of random numbers to obtain the physical realizations of the
statistics. The discrepancy between these two columns of results gives an indication of the adequacy
of using 10° realizations to compute ensemble averages. We typically see agreement between these
two columns to somewhere between 2 and 3 significant figures. We also believe that our numerical
discretization error in obtaining a solution for a given realization is of the same order, or less, than
this statistical error. Thus we conclude that these benchmark results are accurate to somewhat
better than 1%. Better accuracy could be achieved, of course, by using a larger value of M and

Table 1. Reflection and transmission results
for rod geometry

oy = 10/99 G, = 100/11

Gy/0g = 0.00 Gy/6) =100
Ap = 99/100 A = 11/100
S EXACT1 | EXACT 2 | MODEL
01 R 00344 00340 0.0337

Z(R) 0.0843 0.0841

T 09566 09569 09572
" 0.0818 00815

10 R 0.2130 02123 01948
Z(R) 0.2100 02101

T 0.7006 07012 07187
Z(T) 0.1982 01982

100 R 04886 0.4393
Z(R) 01313
T 00526 00772

[ (T) 00339
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Table 2 Reflection and transmssion results Table 3. Reflection and transmission results
for rod geometry. for rod geometry
G = 10/99 6, = 100/11 G = 10199 o, = 100711
Gy/Co = 100 G,/G; =000 Gy/G = 090 o,/0; = 0.90
A = 99/100 A, = 11/100 Ao = 99/100 A, = 11/100
s EXACT 1 | EXACT 2 | MODEL s EXACT 1 | EXACT 2 | MODEL
01 R 00044 00045 00044 01 R 00339 00332 00333
Z(R) 00014 00014 I(R) 00717 00710
T 09285 09301 09293 T 09563 09572 0.9570
XT) | 01618 01603 XT) | 00938 00930
10| R 00325 00326 00292 10| R 02120 02121 01929
Z(R) 00159 00159 I(R) 01586 01584
T 05699 05708 05699 T 07017 07017 07182
XT) 013494 03486 1) 02437 02432
100 R 00615 00443 100 R 05146 04338
Z(R) 00486 XR) 00123
T 00047 00045 T 00557 00759
p2¢y] 00223 T 00623

more mesh intervals in the numerical solution. We also comment that we have used this numerical
procedure to compute known results in the literature, namely the purely scattering rod problem®’
and the purely absorbing rod problem for which analytic results are available.'? Comparison with
these results led to the same conclusion regarding the accuracy of these benchmark results given
in Tables 1-9; we found agreement to somewhere between 2 and 3 significant figures.

Also included in Tables 1-9, in the last column labeled Model, are the predictions of the model
given by Eqgs. (2) and (3). Specifically, for this rod problem the model transport equations are
written

Ay @)dz + oy (@)= o, @) +Y @2+ 47 W) - ¢ (@), (15)
—dy ;7 ()dz + oy () = 0l @)+ ¥ @2+ AT, (@) =i @) (16)
Table 4 Reflection and transmission results Table 5 Reflection and transmission results
for rod geometry for rod geometry
oo = 10/99 oy = 10011 oy = 10/99 o, = 100111
Gy/Cp = 0.00 O /0, =100 G/C = 1.00 6,/0, =000
Ao = 99/10 A =1110 Ao =99/10 Ay = 11/10
] EXACT1 | EXACT 2 | MODEL 8 EXACT 1 | EXACT 2 | MODEL
01 R 00319 00316 0.0315 0l R 00045 0.0045 00045
Z(R) 0.0931 00927 Z(R) 0.0015 00015
T 0.9591 09594 09594 T 09343 0.9349 09350
Z(T) 0.0901 00897 pXyy] 0.1768 0.1759
10 R 01130 01105 01003 10 R 0.0414 0.0414 00402
Z(R) 02531 0.2511 Z(R) 0.0154 0.0154
T 0 8006 0.8029 0.8132 T 0.7948 0.7961 0.7970
mn 0.2295 0.2275 T 0.3384 0.3379
100 R 0.2841 0.2158 100 R 0.2078 0.1568
Z(R) 02876 Z(R) 0.1243
T 0.1774 0.2294 T 02430 02352
m 0.1437 pX¢y] 0.3067
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Table 6. Reflection and transmussion results

for rod geometry
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Table 7 Reflection and transmission results
for rod geometry

Gy = 10199 oy = 100/11 o = 2/101 6, = 200/101
G/ = 090 6,/0; = 090 Gy/0g = 000 Og/oy =100
A = 99/10 A = 11710 A = 101720 A = 101720
s EXACT 1 | EXACT 2 | MODEL s EXACT 1 | EXACT 2 { MODEL
01 R 00315 00310 00311 01 R 00450 00454 00451
R) | 00785 00779 R) | 00448 00447
T 09589 09595 09593 T 09540 09536 09539
XT) | 01039 0103t XT) | 00438 00438
10} R 01181 01173 01045 10| R 02586 02578 02562
IR) | 01632 01627 ER) | 02338 02340
T 08181 0.8194 038270 T 07316 07324 07340
XT) | 02873 02866 XT) | 02247 02248
100 | R 04301 02883 100 | R 06804 06034
%R) 01066 Z(R) 02528
T 02658 02961 T 02310 03063
XT) 02728 =(T) 02029
for i =0, 1 with j #i. The boundary conditions for Eqs. (15) and (16) are
YO =1, ¢ 7(s)=0, 1=0,1, an

and the ensemble-averaged solution is given by Eq. (2) with the p, given by Eq. (9). We see from
the numerical results that this model is quite accurate for small rods (s =0.1). This is not
unexpected since it can be shown that both the exact treatment and the model approach the atomic
mix limit as s, the rod length, approaches zero. This limit corresponds to using the usual transport
equation written for i, with ¢, o, and S taken as ensemble averaged quantities.'” As the rod length
s increases, the accuracy of the model generally deteriorates, but it appears that the model is
qualitatively as well as semiquantitatively correct. The overall results seem to indicate that the
model generally underestimates the reflection and overestimates the transmission. The model

Table 8 Reflection and transmission results

for rod geometry

Table 9. Reflection and transmission results
for rod geometry.

ag = 2/101 6, = 200/101 & = 2/101 6, = 200/101
Gy/Cp = 100 o, /0, =000 Gy/T =090 c,/0, =090
A = 101/20 A = 101/20 Ag = 101720 Ay = 101720
s EXACT 1 | EXACT 2 | MODEL s EXACT 1 | EXACT 2 | MODEL
01 R 0.0005 00005 00005 01 R 0.0406 00407 00406
Z(R) | 00005 00005 IR) | 00394 0.0394
T 09097 09099 09093 T 09495 09494 09495
I(T) | 00888 00887 XT) | 00491 00491
10| R 00046 0.0046 00045 10| R 02152 0.2157 02129
IR) | 00047 00047 XR) | 01852 01853
T 0.5396 05397 05396 T 06955 06948 06976
Ty | 04027 04025 XT) | 02661 02663
100 | R 00217 00148 100 | R 0.4688 0.3693
I(R) 0.0294 (R) 01214
T 00910 00913 T 01510 01798
(T) 02467 (T) 02566
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equations do not predict results for the standard deviations Z(R) and 2(T'), although the master
equation approach to deriving Egs. (2) and (3) can be used to derive a model for these quantities.
We do not pursue this here.

BENCHMARK RESULTS—PLANAR GEOMETRY

We now consider time-independent transport in planar geometry with no external source of
particles (S = 0). If we assume isotropic scattering, the transport equation is written

woy(z, w)joz + oW (z, u)=[o(2)/21 | du'v(z ), (18)

where u here is the cosine of the angle between the z axis and the particle flight direction. We take
Eq. (18) to hold on the interval 0 < z < s, and we assign nonstochastic boundary conditions given
by

yO,u)=2, u>0; Y(,u)=0 p<O0. (19)

These boundary conditions correspond to an isotropic intensity, normalized to a unit incoming
flux, incident upon the planar system at z = 0, and no intensity incident upon the system surface
at z =s. We take this planar system to be statistically composed of alternating slabs of two
materials, which we again label with indices 0 and 1. As in the rod problem, each material has
spatially independent cross sections o, and o,,. The thickness of each slab 1s chosen at random from
the exponential distribution given by Eq. (7). This statistical description corresponds to a
homogeneous Markov process.

To obtain ensemble-averaged results for this problem, we proceed in complete analogy to the
procedure used in rod geometry. We obtain a physical realization of the statistics via the Monte
Carlo procedure of sampling the slab thicknesses from Eq. (7), and for this realization we solve
the corresponding transport problem numerically. The angular variable u in Eq. (18) was treated
using the standard discrete ordinate method,'* employing the 16-point Gauss-Legendre quadrature
set. The spatial differencing used was simple diamond differencing.'* The size Az of each mesh
interval was chosen such that

0, 8z/|pt|mn < 1/5, (20)

where ’ u ]mm 1s the smallest positive ordinate in the S-16 quadrature set. Just as in the rod problem,
we computed the probabilities of reflection R and transmission T for the system, which in this case
are given by

1

R =L dppp (0, —p); T = J; dupi (s, 1), (21)

and the absorption probability 4 follows from particle conservation according to Eq. (11).
Repeating this process for a large number of statistical realizations, ensemble-averaged results for
the reflection and transmission follow from Eq. (12), and Eqgs. (13) and (14) give the corresponding
standard deviations. As in our rod calculations, we used 10° realizations to compute the ensemble
averages. These calculations, performed on a Cray XMP at the Lawrence Livermore National
Laboratory, required approx. 10 h of cpu time.

Benchmark results for the same parameters ¢,, g, and 4, as we used in rod geometry are
displayed in Tables 10-18. Aside from the angular discretization error inherent in the S-16
approximation, we believe these results to be accurate to somewhat better than 1%, just as in rod
geometry. The error associated with using the S-16 discrete ordinate method is probably in general
of this same order, but may be larger for highly absorbing thick systems, in particular for the
transmission T. Also included in these tables are the predictions of the model given by Egs. (2)
and (3). For the time-independent, source-free planar problem under consideration, Eq. (3) is
written

1oy (z, p)/0z + 0.y.(z, 4) =[0/2] f_] du'y, (2, u) + | 1|27 (2, 1) = (2, 1)), (22)
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Table 10 Reflection and trans-
mission results for planar

geometry.

Gp = 10/99 o, = 100/11
Gy/Cp =000 oy/o; =100
Ao =9%100 Ay =11/100

3 EXACT | MODEL

01 R 00491 00479

IR) | 01182
T 09331 09343
XT) | 01132

10 R 02495 0.2187

IR) | 02354

T 05950 06254

XT) | 02143

100 R 0.4342 03760
IR) | 01616

T 00146 | 00259
T) | 00152

for 1 =0, 1 with j # 1. The boundary conditions on Eq. (22) are
¥.0,1)=2, u>0;

M. L. ADpaMs et al

Table 11 Reflection and trans-
mussion results for planar
geometry

Sp = 10/99 o, = 100/11
Cy/Ty =100 ©y/c; =000
Ao = 99/100 Ay = 11/100

H EXACT | MODEL

01 R 00087 00086
ZR) | 00029

T 09014 09004

XT) 02111
10 R 00548 00460
IR) 00307

T 04841 04834

(T 03632

100 R 00856 00591

%(R) 00697

T 00016 00015

T 00121

Y (s, p)=0, p<O0,

Table 12 Reflection and trans-
mission results for planar
geometry

o = 10/99 oy = 100/11
Oyop =090 oy/c, =090
Ao = 99/100 Ay = 117100

s EXACT | MODEL
01 R 00480 00473
IR) | 00935

T 09341 09344

Ty | 01339
10 R 02563 02178
ZR) | 01546
T 05985 06267
X(T) | 0.2832

100 R 04785 03707
Z(R) | 0.0038

T 00159 00237
XT) | 00314

(23)

and the ensemble-averaged solution 1s given by Eq. (2) with the p, given by Eq. (9). Equations (22)
and (23) were solved numerically using the S-16 discrete ordinate approximation and diamond
spatial differencing." The coupling term | U Mf' m Eq. (22) deserves a word of explanation. If the
mean (average) slab thickness of material i 1s 4,, then the mean chord length seen by a particle
traveling at an angle characterized by its cosine u is just ).,/]u | That is, the Markov transition
probabilities are, in this case of a layered planar system, angularly dependent and given by 4,/ | U (
which leads to this form of the coupling term in Eq (22).

Table 13. Reflection and trans-
mission results for planar

geometry
ag = 10/99 o = 100/11
Oy/0p =000 oy/0, =100
Ag=99/100 A, =11/100
s EXACT | MODEL
0.t R 00434 | 00432
IR) | 01267
T 09388 09390
T) | 01209
1.0 R 01224 0.1068
IR) | 02726
T 07233 0.7385
(T | 0.2306
00| R 02369 | 01799
IR) | 02860
T 0.0981 01278
T) | 0.0887

Table 14 Reflection and trans-
mission results for planar
geometry

Go = 10/99 o, = 100/11
Oy/og =100 oy/c; =000
Ag = 99/100 Ay = 11/100

s EXACT | MODEL

01 R 0.0089 00089
I[R) | 00030
T 09140 09140

Py Y] 0.2217

10 R 0.0744 00717

IR) | 0.0278
T 0.7588 07581
£T) | 03325

10.0 R 02897 02193
ER) | 01631

T 01960 01787

(T 02551

Table 15 Reflection and trans-
mission results for planar
geometry

6o = 10/99 oy = 100/11
OOy =090 0Oy/o, =090
A =99%100 Ay =11/100

s EXACT | MODEL
01 R 0.0426 | 00426
ZR) | 00985
T 09398 09397
I(T) | 01446
1.0 R 0 1440 01255
IR) | 01452

T 07666 0.7733

XT) | 03011
100 R 04344 02910
ZR) | 00572

T 0.1861 01945

L Py 02134
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Table 16. Reflection and trans- Table 17. Reflection and trans- Table 18. Reflection and trans-
mission results for planar mission results for planar mission results for planar
geometry geometry. geometry

Tp = 2101 G, = 200/101 6o =2/101 o = 200/101 6o = 2/101 o, = 200/101
Gy/0p =000 o,/c, =100 Oy/0p =100 o4 /o, =000 Cy/0y =090 oy/o; =090
ho=10120 X, =101/20 Ao = 10120 Ay = 101720 Ap = 101720 Ay = 101720
s EXACT | MODEL s EXACT | MODEL s EXACT | MODEL
01 R 00763 0.0758 0l R 00010 00010 01 R 00670 00669
I®) | 00751 I®) | 00010 IR) | 0.0646
T 09218 0.9223 T 08509 08503 T 09136 09137
M | 00732 XT) | 01464 XT) | 00834
10 R 03210 03157 10 R 00088 0.0085 10 R 02435 02381
I®R) | 02865 I®) | 00091 IR) | 01991
T 06599 06652 T 04818 04826 T 06045 06086
XT) | 02688 XT) | 04361 (T | 03346
00| R 06916 0.6070 100 R 00369 00243 100 R 04466 032712
IR) | 02615 I®) | 00500 IR) | 00923
T 01615 02391 T 00766 00755 T 01037 01195
T) | 01740 T | 02252 XT) | 0229

The numerical results given in Tables 10-18 for planar geometry follow the same general trends
as the rod geometry results given in Tables 1-9. The model equations in general underestimate the
ensemble averaged reflection probability R and overestimate the ensemble-averaged transmission
probability T, with the accuracy becoming better as the thickness of the system decreases.

STATISTICAL TRANSPORT EQUATIONS

In this section we give a simple derivation of two coupled, formally exact, transport equations
describing particle flow mn a binary statistical mixture. The mixing statistics are arbitrary, and
assumed known. Our considerations are completely general mn that they include time dependence
and scattering in full three-dimensional geometry. We start by considering a particular physical
realization of the statistics, and for this realization we consider an arbitrary convex volume V,
bounded by the surface B, within the medium under consideration. In general, both materials,
which we label by indices 0 and 1, will be present within the volume V, and we define I" as the
union of all surfaces in the interior of ¥ which separate materials 0 and 1. Each material is
characterized by a nonstochastic source S,(r, £, ¢) and nonstochastic cross sections o,(r, #) and
o, (r, t). As implied by the arguments of S,, o,, and o,,, we consider only monoenergetic transport;
1., we ignore energy as an independent variable. We also restrict our considerations to isotropic
scattering. These two restrictions are not essential and are made only for simplicity of exposition.
To obtain a formally exact set of statistical equations, we simply write down, for the particular
(but arbitrary) physical realization of the statistics under consideration, a statement of particle
balance for each of the two materials in V. We subsequently perform an ensemble average of these
equations. If we take the volume V¥ to be time independent and fixed in space, our balance
considerations constitute an Eulerian derivation.

We define f(r, 2, t) as the distribution function for particles such that f dr dQ is the number of
particles in drdQ at time r. We also define, in the usual way, Y (r, Q, 1) = vf(r, Q, t), where v 1s
the particle speed. The balance equation for material i in ¥ simply states that the time rate of change
of the number of particles, in / and V, is the gain rate of particles minus the loss rate of particles.
Our considerations constitute a completely standard Eulerian derivation of the transport equation,
with due account taken of the existence of two materials in V. The fact that two materials are
present leads to an additional term in the balance equation for material i/ involving flow across the
interface surfaces I'. This term gives the formal coupling between the two materials.
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To facilitate the derivation, we introduce the characteristic function yx,(r, z), defined as

1, if position r is in material ; at time ¢
r (1) = {0, otherwise ' (24)

Performing a balance for particles in material i in the volume V gives four standard gain/loss terms,
just as in the derivation of the transport equation for a nonstochastic medium. These are:

External source rate

=Ldr %@ 0S(r,Q,t)dR, (25)
Collision loss rate

= Ldr x(r, t)o (r, VW (r,Q,1)dQ, (26)

Scattering gain rate

= (4n)"! J dr x(r, t)o,(r, 1) dQ j dQy(r, ', 1), 27

4n

Leakage loss rate across the bounding surface B

=f ds y,(r, t)(n- QY (r, Q, 1) dO. (28)

The vector n 1n Eq. (28) is a unit normal outward pointing vector at a local surface point on B.
Aside from the occurrence of the factor y,(r, ¢) and the index : on S,, o, and o, in Eqs. (25)-(28),
these are the usual four gain/loss terms which enter into the Eulerian derivation of the classic
nonstochastic transport equation. This factor y,(r, z) and the indices extant account for the fact
that our balance considerations within the volume JV are only for material . In the present context,
however, one additional term must be present in the particle balance. This term accounts for the
loss and gain of particles in material / due to flow across the internal interface surfaces I'. This
is given by

Leakage loss rate across the internal surfaces I'
= J ds(n,- Q)Y (r, R, 1)dQ, (29)
r

where n, in this equation 1s a local normal unit vector pointing out of matenal i.

The balance equation for material i in volume V follows by equating the time derivative of the
number of particles in material / in volume V and solid angle increment d€2 to the sum, with the
appropriate sign to account for gains and losses, of Eqgs. (25)—(29). Cancelling the differential dQ
common to each term, we find

% g; L dr 1,y () = Ldr 6S.(R) — fydr 6oy (82)

+ (‘W“J drx,as,f dﬂ’w(ﬂ')~j dsx,(n'ﬂ)lﬁ(ﬂ)—J ds(n, - )y (). (30)

In writing Eq. (30), we have dropped the r and  dependences of all quantities for notational
simplicity. This equation can also be obtained by multiplying Eq. (1) by x,(r, 1), integrating over
the volume ¥, and applying Gauss’s theorem.

Equation (30) is an exact balance equation for material i for one particular physical realization
of the statistics. The next step is to ensemble average this result over all statistical realizations. To
this end, we define

p(r, 1) = (g (r, 1)), €2y
W, (r, 2, 1) = (i (r, DY (r, &, 05/, 1), (32)
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where the {-) notation means ensemble average. It is clear that p,(r, 7) is simply the probability
of finding material i at position r and time ¢, and ¥, (r, £2, ¢) is the ensemble averaged value of the
intensity given that position r is in material / at time ¢. In ensemble averaging Eq. (30), the averaging
operator passes inside the volume integrals as well as the integral over the bounding surface B, since
V and B are common to all physical realizations of the statistics. However, this operator does not
pass inside the surface integral over I', since I depends upon the statistical realization. Taking this
into account, an ensemble averaging Eq. (30) gives

% % L drp.y,(Q) + f ds(n - Q)p.y,(?) + Ldf o.p Y,

= (4n)~! J dro,p, f aQy () + f drp,s,(n)—< f ds(n,-Q)¢(Q)>. (33)

We apply the divergence theorem to convert the integral over the closed surface B to a volume
integral, and subsequently take the limit of the entire equation as the volume V approaches zero.
We then arrive at our final result given by

v 0lpy,(Q))/ot + Q- Vp Y, (V)] + 0,p.Y,()
= [0 /(4n)] p, J dQy, () + p:S. () +6,(8), (34

4n

where we have defined
8.(r,Q,1)= —lVin(EI:V"<¢(Q)J. ds(n, - Q)>]. (35)

We note that 6, + 6, = 0 since n, = —n,. Equations (34) and (35), which hold for each material
i =0, 1, constitute an exact, albeit formal, description of transport in a binary statistical medium
for arbitrary statistics. The statistical information is embodied in the probabilities p, and in the
coupling terms 6,, which must be evaluated (approximated) to turn this description into a useful
computational algorithm. We consider one simple approximation for 8, in this paper.

It suffices to consider 6,, since 6, follows from 8, = —6,. We consider the integral in Eq. (35)
as the sum of two integrals, one for n,- € > 0 and one for n, - Q < 0. We then have

0, = V—'[—<¢(n) f ds(no-ﬂ)> + <¢(ﬂ) f ds(n, -ﬂ)>], (36)

where we have used n, = —n,, and the limit V-0 is implied in Eq. (36). The notation I', means
the subset of the surfaces composing I' such that n,- Q > 0. The two terms in Eq. (36) are of the
same form, and it suffices to consider only one of them. Accordingly, we consider the term T,
defined as

T,= V-'<w(n) J ds(no-n)>, 37

where again the limit ¥ — 0 is implied. We rewrite Eq. (37) as

<w<m f ds(no-n)>
Ty = fo |:V“< f ds(no-ﬂ)>]. (38)
<j ds(nO-Q)> fo

The second bracketed term is simply a geometric quantity dependent upon the statistics, and we
define A,(r, £2, ) in terms of this quantity as

PolAg= V—l<f ds(no'ﬂ)>, (39)

where p,(r, ¢) is the probability of finding material 0 at position r and time . Equation (38) then
becomes

T, =po %o /Ay, (40)
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where we have defined

Wo(9)=<'1/(ﬂ)f dS(no'ﬂ)>/<J dS(no'9)>~ 1)

At this point we have made no approximations, Eq. (40) is exact.

To proceed, we note that i, is an average, in the ensemble average sense, of values of the intensity
at interface points, i.e., on I'j. We approximate this average by using an analog of upwind
differencing encountered 1n numerical analysis of hyperbolic equations. Specifically, we replace ¥,
m Eq. (40) with ¥, the ensemble-averaged intensity within material 0. v, here is the same y,
contained in Eq. (34). With this approximation, Eq. (40) becomes

Ty = poto/ Ay, (42)

and recalling the origin of T, [see Eq. (37)] and the definition of the coupling term [see Eq. (36)],
we have

90(", Qs t) =D (l', t)wl (l', 99 t)/Al (l', Q’ t) - pO(rs t)'/’O(L Q’ t)/AO(rs Q, t)’ (43)
where A, is defined by Eq. (39) with the 0 subscripts replaced with 1. The coupling term 6, (r, £, ¢)
follows in this approximation from 8, = —§,. Using this form of the coupling term in Eq. (34),

we see we have reproduced the model given by Eq. (3). This model was first derived using the master
equation*® and a second derivation has recently been given by Sahni.'!" In these two derivations,
considerations were restricted to Markov statistics, but the present derivation shows that this
model, while approximate, applies to arbitrary statistics. The details of the statistics are embodied
in the evaluation of the expression for A, given by [see Eq. (39)]

plA, = lm})[V‘ <j ds(n, Q)>]. (44)
Vo r

This model is known to be exact for time-independent, purely absorbing (o, = 0) mixtures
obeying Markov statistics, and within the context of the present derivation it is clear why this is
so. The approximation of replacing the interface ensemble-averaged intensity with the volumetric
ensemble-averaged intensity, i.e., setting §, = ., is in this case not an approximation; it is an exact
replacement. This observation follows from the fact that for purely absorbing, time-independent
transport the solution at any spatial point depends only upon the optical depths from the point
in question to the system boundary and the source points. For Markov statistics, the ensemble-
averaged optical depth between one spatial point and another is the same if one of the points is
an interface, or if this point is chosen at random in one of the materials. Further, in the Markov
case, 4, is simply the fundamental Markov transition probability quantity. That is, dx/A, is the
probability of transition from material i to the other material in a distance dx. These items are
discussed in detail elsewhere.'?

The final item we wish to show in this section is that for homogeneous statistics, by which we
mean that any point along a particular ray in the medium obeys the same statistics, the parameter
A, defined by Eq. (44) can be identified as the mean (average) chord length in material i. It suffices
to show this for A,, since the arguments for A, are identical. We consider the evaluation of the
quantity Qq(r, £, t), defined as

() = lim [V“<J ds(n, - 9)>]. (45)
Vo ro

Referring to Fig. 1, we take the direction € to be the x axis, and consider a differential volume
of thickness dx and cross-sectional area d4. Evaluating the ensemble averaged integral in Eq. (45)
is equivalent to placing this volume at random on the x axis, computing the integral, and then
averaging over all possible random placements. We first note that the randomly placed volume has
a probability p, of being in material 0. Given that the volume is in material 0, the probability of
the volume containing an interface with n,- £ > 0 is just dx/4,, where A, is the mean (average)
chord length in material 0. Finally, we use the fact that simple geometric considerations give
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Volume V

T
dA
4

Y <
I~
|
(=]
ol

—> € dx T

Contribution
to I

Fig 1 A differential volume placed on a line consisting of alternating material segments 0 and 1

dA = ds(n, - ). Putting all of these considerations together, we have

lin}) |:<J ds(n, - Q)>] =podx d4 /2. (46)

Vo I

Since the volume is given by dx d4, we then find, using this volume and Eq. (46) in Eq. (45),
Qo= Do/ 4o @7

Recalling the definition of Q, [see Eq. (45)], we see that Eq. (47) is identical to Eq. (44) with : =0
if one identifies 4, in Eq. (44) with A,, the mean chord length in material 0.

In this case of homogeneous statistics, a simple physical interpretation of our approximation to
the coupling terms can be given. For homogeneous statistics, we have p, = 4,/(J,+ 4,), a result
written earlier [see Eq. (9)] for homogeneous Markov statistics, but true for any homogeneous

statistics. Using this expression for p, in Eq. (43) with A, = 4, and using the fact that §, = —6,, we
find that 6, can be written very simply in terms of the mean chord lengths 4, as
0, =0, —¥)/(h+i), J#iL (48)

We also recall that 8, is the ensemble-averaged rate at which particles flow through I" from material
Jj to material i [see Eqgs. (29) and (35)]. With this in mind, we can interpret Eq. (48) as a particular
(discretized) form of a Fick’s law of diffusion. This law states that the rate at which particles diffuse
across an interface is proportional to their concentration gradient at the interface or, more
generally, this rate is proportional to the change in concentration across the interface. Fick’s law
has been applied in many areas of physics, and our approximation to the coupling terms can be
physically interpreted as a form of this law.

In future work, we hope to be able to approximate the coupling term 6§, in Eq. (34) more
accurately, to produce a better model describing particle transport in a binary statistical medium.
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