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Summary 

Including liquid compressibility, an approximate expression for acoustic 
energy radiated from a single collapsing bubble was derived based on the 
Noltingk-Nepp~ approach and experimental results. The statistical distri- 
butions of pulsation ~plitudes and acoustic energy emitted from multi- 
bubble collapses were analysed using the raudom pulse train model, and 
compared with new experimental results. These statistical considerations 
were used in analysis of the cavitation erosion effect. 

1. Introduction 

The shock wave radiated from collapsing bubbles is one of the main 
factors contributing to cavitation erosion. The dynamics of single bubbles 
at the collapse stage has been investigated expe~men~y by using electric- 
spark and laser-induced methods reported in the literature [l - 31. However, 
as shown by the experimental results, the values of maximum pressure 
amplitudes, even emitted from those bubbles which had the same maximum 
radius, were still quite scattered. This is probably caused by the effects of 
many other uncertain factors such as the air content in the bubble, the 
stability of the spherical shape of bubbles during collapse etc. 

It is well known that the cavitation phenomenon in flow systems is 
much more complicated than in single-bubble generators. To estimate this 
highly stochastic acoustic behaviour for the multibubble collapsing process, 
a random pulse train model was set up several years ago [4,5], It is useful 
for the mathematical treatment of such a random process. For a better 
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underst~ding of these stochastic features, a statistical study of multibubble 
collapse and the cavitation erosion effect, based on the pulse train model, 
was thus initiated. 

2. Single bubble collapse 

When a single bubble collapses, a considerable portion of the potential 
energy stored in the bubble is transformed into acoustic energy, radiating 
strong acoustic pulsations into the flow field. To evaluate the radiated 
acoustic energy, Rayleigh’s classical theory on bubble dynamics may be 
used to calculate the volume~i~ acceleration and radial velocity of the 
bubble, and the Noltingk-Nepp~~ equation to estimate the minimum 
radius at collapse { 61. Thus the acoustic energy E,, can be expressed as 

Ftxmin) 

where Epot is the potential energy of the collapsing bubble. Then 

4 
E Pot = - 7ru,,,3P~ 

3 

and x can be defined as the nondimension~ volume 

(2) 

(3) 

The function F(Xmin), from classical theory [6], is 

12 “min 1 - Sx + 16x2 
F(xmin) = - - - 

s 
dx 

6 3, X(X(1 - X)}l’2 

Following the Noltingk-Neppiras method, amin can be approximated as 

(4) 

(5) 

If the partial pressure of gas in the bubble Q is much less than the local 
pressure in the flow field, i.e. Q Q I$.,, and letting the adiabatic index 7 ?: 4/3, 
eqns. (4) and (5) can be simplified to 

a 
-%3?! min 

amax 43 

1 2 II2 
F(Xmin) = 3 3 
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X,in-r’*l 

The following relation is then deduced: 

(‘3) 

(7) 



As the cavitation bubble is developed initially from a gas nucleus with radius 
a,, at the equilibrium pressure P, it is approximately true, neglecting surface 
tension, that 

Q=p, (9) 

The Noltingk-Neppiras approach assumes an incompressible fluid. However, 
at the final stage of collapse, the compressibility of the surrounding fluid 
will significantly depress the high speed contracting motion of the bubble. 
Thus eqn. (8) gives too high an evaluation for the radiated acoustic energy. 
This is recognized in a past numerical analysis including compressibility [ 71. 

As an alternative, we let eqn. (8) have the following form: 

E 

14/3b7~:4,,,3 

= &( !5)“*(5) 

Here /3 is an empirical index, 0 < fl< 3/2, to include the effect of liquid 
compressibility. As shown by many experimental results, the acoustic 
pulsations emitted from bubble collapse decay rapidly. For example, it was 
reported [ 31 that the ratio of the bubble energy of a subsequent pulsation 
to the previous, E,,(2)/E,,(1) = 0.01 - 0.05, in the case of spark-generated 
bubbles, and E,, (*)/Eat(l) = 0.01 - 0.07, for laser-generated bubbles. Thus, 
from the viewpoint of cavitation damage, it is reasonable to consider only 
the first pulsation. The first pulsation can then be written in the following 
form [2]: 

I P 
OmaX 

e-tlor 
p(t) = 

t>o 

t<o 
(11) 

where a! can be approximately expressed as 

(12) 

Thus 

47rr* m 

s 

2?rr* 
E,, = - p*(t) dt = - mnax* 

PC 0 PC 
(13) 

The acoustic peak value pm is approximately proportional to u,,,~‘*. From 
the experimental observations [l - 31, it has the form 

P max = Kamax3’* (14) 
Comparing eqns. (10) and (13), and considering eqns. (9) and (14), we have 

K= 

23/4ph7/6 

t&,k’/2p l/6= l/2 
e e 
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3. Pulsation trains at collapse 

The distribution of gas nuclei may be expressed as [S] 

1 
BX”‘V 

waw = 
ael <X < ae2 

* 
X<a,, or X> ue2 

(17) 

where 

B = (-y + l)(ae2++ l - aelm’+ ‘)-I (18) 

The critical size a* for unstable growth can also be computed [ 91. 
If the density of gas nuclei is N, then the effective density of nuclei 

cont~but~g to cavitation N,,, can be calculated 

%2 
N eff =N 

s 
BX-V dX = 42_I)::l- (a*Y+1 N 

-v+1 
a* ae2 -ael 

(19) 

In a constant and uniform low pressure field with pressure Pi, the bubble 
finally reaches its maximum size amax [6] 

2 PI 
%ax 

= 3p ( 1 _- 
lfZT 

(20) 

The pressure pulses radiated from collapsing bubbles in a high pressure field 
Pi, are treated as. a train of pulsations with the exponential decay form 
defined in eon. (II), but with random peak values pm and random time 
intervals AT between successive pulses. 

For randomly distributed bubbles, the average distance between two 
neighbouring bubbles is given by 

d-1 = Neff’/3 
(21) 

Thus the average time interval mis 

AT= f (22) 

Now we estimate the amplitude probability density dis~bution of 
multipulses, i.e. the pulse train, under the assumption of a stationary random 
process. A cut-off value of the amplitude p. is introduced (Fig. 1). We are 
now only interested in the distribution of those amplitudes higher than pC, 
since those below pc scarcely contribute to cavitation damage, but rather to 
noise. With this consideration, the amplitude density distribution W,(X) may 
be expressed as 

w,(X) = /.I ; j-- r;v,(X) dX 
X 

(X > PA (23) 

where Wp(X) is the density distribution of pulse peaks and g the normali- 
zation factor. It may be found from eqns. (14) and (17) that 
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Fig. 1. Cavitation pulse train. 
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Substit~t~g eqn. (25) into eqns. (23) and (24), it is found that 
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where 
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It is convenient to represent eqn. (27) in a dimensionless form. Let 

X=&TX, PC = AX, and 



Fig. 2. Dimensionless amplitude distribution: - - * -, experimental results 
(ref. lo), CI, = 0.030, X0= 26.85 bar; ---, ~x~~rj~~~t~‘~e~u~~ (ref. lo), U, = 0.025, 
x0 = 23.35 bar. 

Then eqn. (27) becomes 

\O d>l 

where 

C-L 
i 

1 

xe 2(v- 1) 
+lnj& + 

(p7)2@-1) ln _-* 
1 _ ($x)2’“-1’ 

I 
(30) 

Comp~ison of these theoretical results with the measured pulse height 
spectra reported in ref. 10 shows (Fig. 2) that for the high amplitudes, the 
experimental curve has a power function form similar to the theoretical 
curve of eqn. (29). However, for the low amplitudes, the measured curve 
approximates an exponenti~ rather than a power form. This discrepancy is 
presumably caused by the peak detection method used in ref. 10. It is an 
even-time-interval sampling method. Therefore it is not very precise for 
small peak counting. 

4. Cavitation erosion 

It was reported [lo] that ca~tation damage was linearly propo~ion~ 
to cavitation acoustic power calculated from pulse height spectra. Thus the 
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cavitation erosion efficiency ne is introduced fll - 131 to characterize the 
ratio of erosion to acoustic power, or the ratio of the portion of energy 
absorbed by the material to the pressure pulse energy adjacent to damaged 
material. If we assume that 7, depends only on the properties of the material, 
and is basically independent of the detailed flow conditions, then it should 
be possible to use the acoustical method to predict cavitation erosion for an 
otherwise untested condition. Thus the stochastic characteristics of the 
cavitation acoustic power concerning the erosion can be statistically con- 
sidered as follows. 

From eqns. (13) and (24), the statistical distribution of acoustic energy 
emitted from collapsing bubbles can be reduced as 

: 

&&2w)X~-2 

wE(x) = 

0 

where 

47Ta 1/Z 
K,= - ( 1 K PC 
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(31) 

(32) 

For a given acoustic energy dist~bution and any chosen time interval, 
the total acoustic energy is proportional to the number of collapsing bubbles. 
Therefore the damage to the material depends on the total number of 
collapsing bubbles M which is also a stochastic variable. It is known [ 51 
that the distribution of time intervals between pairs of successive bubble- 
collapsing events obeys an exponential law with the mean value as given in 
eqn. (22). Therefore the distribution of the time required for completing a 
number M of collapsing bubbles W,(X) should have a gamma distribution 
form, i.e. 

AM 
W,(X) = - -p- le-hX 

ww (X>O) (33) 

where h-i = m, defined in eqn. (22). Equation (33) shows that when the 
value of M increases, W,(X) spreads more widely with a smaller peak at 
X = (M - 1)/X *M m. This coincides quite well with the experimental 
observation that cavitation damage test results, if not treated statistically, 
are always quite scattered, even under carefully controlled test conditions, 
especially those referring to long time periods. Thus the total energy E 
required for certain damage in terms of the number of collapsing bubbles 
M is 

r=M 
J 

=XW,(X)dX=M- - 
u-l K12 1 -(2y 

0 v a* 1 - (.p)w-l) (34) 
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We now estimate the influence of flow velocity V on the total acoustic 
energy e. For the given testing period r the average value of M is equal to 
~/m. Inserting this value into eqn. (34), we have 

From eqns. (22) and (20), it follows that 

ma V-l 

a max a v-’ 

(35) 

(36) 

For a turbo-impeller driven system, it is approximately true that 

Ph a V2 

Then we have 

(37) 

e a V2j3 (33) 

Comparing this with the experimental results from the University of 
Mchigan venturi [lo] where the relation E 00 Voe2 was found, it now appears 
that the theoretical model should include details of the flow conditions, 
such as those in the actual flow device (venturi) to get more precise results. 

5. Conclusions 

(1) If we consider the compressibility of the liquid during bubble 
collapse, the acoustic energy emitted from a single collapsing bubble can be 
estimated from the relation in eqn. (lo), in which 0 < /3 < 312. For cavitation 
damage, the value of /I can be considered as l/3. 

(2) For multibubble collapses, the statistical distribution of pulsation 
amplitudes has a power function form as shown in eqn. (29). It coincides 
well with experimental results for large amplitudes. 

(3) The statistical distribution of acoustic energy emitted from multi- 
bubble collapses was derived using the random pulse train model, which has 
the function form shown in eqn, (31). 

(4) Cavitation damage to any particular material is proportional to the 
number of collapsing bubbles M. For a given time period, M is a stochastic 
variable. However for a given value of M, the time required to achieve M 
is also a stochastic variable with the statistical distribution of a gamma 
function (eqn. (33)). This is a good explanation of the fact that experimental 
results for cavitation damage are usually quite scattered. 

(5) Cavitation damage to various materials could be predicted by 
estimating the acoustic energy based on the measurement of cavitation pulse 
spectra in the flow field to which the material is exposed. 
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Appendix A: Nomenclature 

4 

kc 
E pot 
N 
N eff 

:: 

Q 

r 

T 
AT 
V 

it 

bubble radius 
speed of sound 
acoustic energy 
potential energy 
number density of gas nuclei 
effective number density of gas nuclei 
acoustic pressure 
pressure of flow field 
partial pressure of gas in the bubble for radius, a_, 
space distance 
bubble growth time 
time interval between successive pulses 
stream velocity 
nondimensional volume of bubble 
random variable 

Greek symbols 
a characteristic time of bubble collapse 
Y adiabatic index 
P mass density uf water 


