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ORDERED SHAPES IN NONEQUILIBRIUM GROWTH
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Patierns observed during nonequitibrium growth display complex ordering on many length scales. We focus on ordered patterns
which refect the interplay of microscos = and macroscopic dynamics. The fundamental morphologies which result, an® which
are the building blocks of more complex patterns, include dendritic and tip-splitting growth. The latter gives rise to the two-
dimensional dense-br. i-*ung \ rorphology (DBM). We review the current understanding of how dendritic growth and the DBM
anse from the microscopic dynamics of surface tension and surface kinetics. We emphasize the open questions, with particular
attention to the question of developing theory ‘or morphology selection and transitions between dendritic 2nd dense-branching
growth. In this context. we review our hypotheses of the selection of the fastest growing morphology, and the existence of first-
and second-order-like morpnology transitions. Theoretical 1ssues are illustrated using the Hele-Shaw and electrodeposition

expenments.

1. Intreduction

We are surrounded by a nature ous of equilibrium,
a nature which presents the scientist with a bewilder-
ing and mesmerizing vniverse of patterns. A princi-
pai challenge to physicists is 10 understand the ge-
cmetry of ihese nonequilibrium paiterss, wheiher
they anse as physical objecis - mouniains, snovw-
tlakes, dusi motes — or as mathematicai abstractions,
e.g. time correlations, or density fluctuations. The
quantification of the geometrical properties of these
nenequilibrium systems, and our understanding of
the dynamics which gives rise to these geometries, has
made large gains over the past decade. In large part
this has followed from a recognition that nature su-
percedes Euchid’s Elemenis. and that much of her
patterning is best understood with the *fractal™ ge-
ometry described by Mandelbrot | 1].

Cencurrent with the scientific communiiy's racog-
nit:on dhat notuce i3 not resivicted o pattems of En-
CaldCan dimeision, these pasi iew years have seen the
development of 2 new understanding of specific pai-
e fhat recur during nonequilibrivm zrowih 7.
These paiterns, the dendrite and tip-splitting “finger-

“a

ing™ 2rowin. appear on system-derendent length
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scales varying by many orders of magnitude. In ef-
fect, they are the short-length-scale building block
morphologies from which are composed the more
complex patterns visible on iarger length scales. While
the larger patterns which develop during solidifica-
tion, aggregation, or condensation still require new
insights to explain the global morphology assem-
blage, significant progress has been made in under-
standing the determinmng physics of dendritic and tip-
splitting growth, and their interrelationship as fun-
damental morphologies.

The cornerstone of the recent developments is the
recognition of the interplay of microscopic interfa-
cial dynamics with external macroscopic forces in the
determination of growth patierns. Most of the re-
search has focused on systems where the macro-
scopic dynamics are determined by a diffusion field.
We now understand thai for these sysiems, the pal-

temms that form. rzsuli fron competition between the

CoBy reiloe grest zswondmer Johannas hepier {2 was al-
ready captivated bv the beauttful shapes of snowflakes. which
15 perhaps 1he most sinking example of pattern formaiion in
tnorpanic systems See slso reit {31, For a review of the pre-
vious phase of the research on patiern format: mn during sol-
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diffusion field on the one hand. and the microscopic
dynamics of the interface on the other. The patterns
may be grouped into a small number of typical “es-
sential shapes™ or morphologies, obsers ed 1n duifer-
ent systems and over many different length scales
(from meters to micrometers). These are the faceted
[5]. dendritic [4]. dense-branching [6] and fractal
[7.8] °* morphologies (see fig. 1). It is the purpose
of this short review to provide a perspective on the
advances in the field of morphology selection with an
emphasis on general principles and the remaining
open questions.

2. The selection problem for dendritic growth

The principal mystery in how microscopic dynam-
ics, operative on the scale of angstroms, is amplified
to the extent that in a system out of equilibrium it
controls the macroscopic shape on a scale of centi-
melers. From a theoretical perspective herein lies the
rub. The natural inclinatton is to atiempt theories of
growlh emphasizing macioscopic dynamics and rel-
egate the microscopic dynamics 10 subsequent re-
finements of theory. Indeed this was “ow the theon
ofdendnitic growth initially evolved. In 1947 Ivantson
showed [10] that propagating solutions. with a par-
abolic shape. exist for a sohid forming from an under-
cooled melt by assuming only diffusion control of the
heat field but neglecting surface tension and surface
kinetics. Both the parabolic shape and the predicted
constant velocity fit well a semi-quantitative descrip-
tion of a dendrite. However, a conundrum comes with
the Ivan:sov solution: 1t specifies only the product of
the dendrite nip’s radius of cun ature and velocu_ . but
cannot predict either one alone. The 1976 evpen-
menis of Ghcksman et al. [11] demenstrated thai
under conirolied conditions, jor givcn andereesliing
the same dendrite (ie. same Un velociiy and rad’us
of curmvatuce ) is reproducitly 2bzemved. Thivamzas

a “selection problem™: for gwen undercochng the

- Forareview of the recent deselopments in the sindy of dittu-
ston-limiod aggregaton iDL A 1 growth see ret [9)
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Ivantsov solution admits a continuous family of par-
abolic soluticns. and yet for specitied conditions anly
one is observed. Moreover. 1t was shown thas {hasg
Ivantsov solutions were also “hincarly uastan.e'.
meaning that they would be unable 10 maintain their
shape during growth.

Sensibly the first attempits (o resolve the stability
problems were based on a hope that incorporation of
surface tension would involve only a minor shape
modification of Ivantsov's parabolic fronts. while
stabilizing all parabolas below a characteristic length
scale. However. the selection problem remained in-
herent in this. In 1973 Oldheld [12] proposed that
the selected dendrite was the one moving with the
minimim speed (or maximum radws of tip) for
which the surface tension can stabilize the underlying
needle-crystal. Oldfield’s idea was revived and ¢lab-
orated in 1977 by Langer and Miiller-Krumbhaar
[ 13]. who performed extensive calculations in order
10 find this marginally stable operating point.

The real breakthroughs in undersianding dendr:tic
growth waited unuil this decade, and arrived with re-
sults of bro>der signilicance for morprology deier-
mination. The resobupon requared siffis o com.
puting power and the subsequent apphizaiesa of moje
advanced mathomatical methods. 1o prozerihy 19007
porae the Mcroscopic dynamics. L he suipirse was
that gospuie e smgil 5177, 507100 terad™ 2o sur-
face kinettcs are singular perturbations in the dy nam-
ical equations for interface evolut,on. Stngular per-
turbations. no maiter how small. 1otally change the
character of the soluiton. As such. the microscopic
dynamics cannot be treated as small corrections 1
solutions inmally determined from the macruscopie
Jynamics. “What has emergeg s that when surace
tension and surface Krnetics are Lorapic, dandriilc
gronth does mo: accu- Yrswead aip-sprtting hingans
Jevele picading o ihe domsedranthesz marehiofog
apieetrans i requernd nrhe meerread dinamic 10

sendoce Jondoo et Y The icture s sy Lot

This was 1irst demonstrated m 2 ncal moddd of selidibication
- the boundar laver mudel {13
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Fiz 1 The "essenual shapes” 1n ihe Hele-Shaw enpe mient Ay w2 &aplacs (3 the 1041 e endiess amr2: of shapes can by groeped :nig a

rgox o Jaminang aiects The same s1apes ithe geometncal CHAractenisiesy zre ob-
scived in different systems and on duferent fength scales {from meters (o micromeaters). (a)The dense branching morphology. The
charactenistic marpheliogy in the absence of cnysta'line amsotropy can be characlenised by the number of brarches as function of the
radws (he spacing bewween the branches and the branches” widih are the characienistic lengh scates) Mate that i has a well-defined
arcular envelope ¢b.0) Dendrues. As we nov undersiand anisotropy s sequired for dendntic growth to cecur. The dendrites are char-
actenized by a trunk wath a parabolic Up moving at constant seloeny T4, The (ruak s feathered with side branches w hich grow cutward
wile being s130ienan in ihe laboratony irame. ‘Under some growih condtions sidebranches are observed. We refer w0 the underlving
tunh 11he deadnite withoui the sidebrarch2sy as a reedle-cnaal. The Fendnies hove charactenstic length scaies: the rachus of the tip
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firmed by both expenmental |1
results [ 14.17] %,
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emarged with tha broader
understanding of pattern determination. The puzzle
is no longer the dendrite’s velocity and shape alone.
Now the questions are as to why dendriies are se-
l.cied for some parameters, and tip-splitting growth
for others. To study these new sclection problems we
turn to an experiment in which the interfacial dy-
namics is expressed on tne same length scale as the
pattern [15,19.20]. These experiments. discussed
below. permit unambiguous demonstration of mor-
phology sel=ction as a function of anisotropy.

3. The dense-branching morphology

To study pattern formation for isotropic interfacial
dynamics. we used a modification of the Hele-Shaw
cell #*. This simple. yet elegant, device for .udying
pattern formation consists of 1wo closely spaced
plexiglass plates sandwiching a layer of viscous fluid
- here dyed glycerine. The iop plate s circular and
open © air at its edge. Through .o inlet at the cenier
of the 1op plate a less viscous luid {¢ &. 2iror waier?
is ijjected into the glycerine.

In fie. 1a an exampls of the dansz-branchg mor-
nhology (BN
ciicuiad enyclope mivdulaied vy dcdwuug AN S s,
The ragulac vip-splitiing of the fingers distinguishes
them from dendrizes. Moreover. the lacunas or caps
betwe >n the fingers do not grow with the area of dis-
olaced fluid. This dizunguishes the mass dicitibulion
of the DEM from tha of 2 frazial obgec

¥n the ceilis shown 11 2onsisgs &

bosuch as a
diTusion-limned asgregate (LAY where tha gaps

grow aver larger with the ovarall sizs ol the pategrn
B Earogoaaoee moiemancat dostronon o he new dovelope
EARLEPRRC T

aanvs e Thaa oty e 2 maredw anne {00-

ETITE IR T R Y LN IRV BRIV LSS LR Ty
sivdy 1he flon SE WA DAL T I RME a2 s Do
af the el -Soaw ceit a5z very much o current cse el jor
cavate i I el e S L PeTSaTET LLA
P23 T o0 A 2e0r Ty s sk @ nplaved By FRer
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Instead. e DBI grows as o iwo-dimensional oi-
ject. alithough in some case: i

asy o oncalh I 200

nay REProach =2 aaly
Evperimeznial ovidenss saodocis he coaclangr
that. in the absence of anisotropy. the DBM is the
generic morphology {5.20). This is conirary 1o the
argument that fractal growth should be the usual
inacroscopic morphological organization [25] * The
DBM is observed in aggregaie growih by eleciro-
chemical deposition *” and precipitation frorm supsr-
saturated soluticn [297: during :o-hdmcau-a-r. N
undercoooled melis {30]*% arising during 2710~
phous annealing [6]: and in spherulitic growth [ 31 ]

Qur preseni understanding of the DB is based on
analyzing its branching raie. as opposed to iis mass
distribution or coastline. Generally, we expect ine
branching rate. or surface moduiation. to be the fe-
sult of the interplay between the macroscopic diftu-
sion field, which tends 10 make the interface irregu-
lar, and the microscopic effects of surtace tension and
surface kinencs. These introduce cutoff Lrpzths o
define the lengih scale of ordered srow:h Tunving
::ga-:-'n (o tae Hele-Shaw evamde, iz g e
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coelticient. b is the spacing between the plates. and »
is the fluid viscosity. The exponent » has been com-
puied as 1 fo7 @ unifoiin weiiiag layer. would be dif-
ferent for a non-New:oman fluid. and is taken as un-
ity in our simple analysis below. Although the
differential equation for the pressure field here is
Laplace’s. the physics of these equations is nearly iso-
morphic to problems where the governing equation
is strictly the diffusion equation. e.g., precipitation
from supersaturated solution. or solidification from
an undercooled meit.

Linear stability analysis [32] * can be used to in-
vestigate the branching rate of the DBM. Indeed. the
instability of a diffusion-controlled interface to any
perturbation in the absence of a Gibbs-Thomson-like
stabilization. is the Mullins-Sekerka instability. Us-
ing the above equations. we can compute the relative
growth rate of perturbations on a disk of radius R.
Taking the perturbation to be of the form r(8)=
R+6,, cos(mB) for small § we find that:

iy

0,10,
a, Xy ——
R/R
‘ _ : A I P +o' ’
Oy L
. S
— l -, \_l_l
e ATAT Y
X ‘-_n:b. \[I— \;J .
where
;= p;:_p”
ST daR,

.\'=RI'R.. .

K., the cell radius. Fig. 2 shov s that there 's a lastest
growang perturbation Experimentaiby. good agree-
ment 15 found bateeen ihis fast growing mode ano
Ui dumber e branches as a funcion of raGius [ 6.34 .

This analysis 1s consistent with the DL A-hike dimen-

© Lam:dar hinear analyyis to that presented bere was pedormed
mdependendls by Schnanz |33
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Fig. 2 The DBM and the hnear stability analysis (a) Resulis of
the Linecar stabihity analysis. show:ng the imtial growth rate as
function ol the mode number 1 for a sinusoidal perturbation ¢
of a circular interiace Line (1) 1s for constant pressure along the
interface (no surface tension and no surdace kineuic ). hine (2115
when surface tension 15 included and hine (3 15 1n the presence
of surface hinetics Note that in the latter case there 1s no fastest
growing mode. Line t4) 15 in the presence of both surface tension
and surface kinetic. (b) shows a companson of the linear stabil-
tly and an expenmental pow er specirum of the envelope of a DBM
developed in the Hewe-Shaw cell. Seerel’ [ 23] for more details

sian of mass of sma'l Heie-Shaw paiterns: howsver,
Mty
critical value. determiined by system parameters. the
growth i1s d=2 as observed visually [20].

in ihe absence of siabilizing effects at the interface,
<uch as surface tension or surface kinetics. the diffu-

pranclung rate increases wah \oswch that past a
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sive Mullins-Sckerka 1nstability results in an un-
stable interface. The result is noisy. apparently frac-
1al. growth. This is what happens in the modelling of
growth by the DLA algorithm [7.9]. where there is
no surface tension. This is also the case when two
miscible fluids are used [35]. or glass beads are added
[36]. in fluid low experiments. In both of these cases
the net result is to reduce the interfacial siabilization
effect of surface tension.

The nature of the envelope of the DBM 1s an inte-
gral part of the dynamics of the pattern but its under-
standing requires a nonlinear analysis *'°. A naive
understanding is that if one finger outgrows the oth-
ers. it has more space to spread out; part of the flow
goes sideways and the finger flattens and slows down.
[n our view, the most pressing unsolved problem is
to understand the branching rates and velocity of
DBM growth [19.31]. The latter is especially intri-
guing because there may be a seiection mechanism
operating with respect to the branching rate and in-
terfacial velocity akin to the tip-radius and velocity
of the dendrite selection problem |38].

4. Dendritic growth and merphology disgram in the
anisotropic Hele-Shaw cell

The Hele-Shaw cell can also be used 12 study ani-
sotropic growth, analogous to the solidification of a
crystalline material. There is a strikingly simple way
to mimic crystalline anisotropy in the fluid cell: one
engraves channels on one of the plates. The channels
modulate the spacing between the plates <2 as to cre-
ate deep and shallow paths for the flow o fluid. When
the grooved lattice has six-fold symmetry (three sels
of parallel channels oriented at 120" to each other).
the air bubble adopts beautitul snowflake-iike shapes
with six dendritic arms. Since snowizll on Mars is
compnosed of CO. flakes with fourreld anisotrony. a
fourfoid lawice preoduces the “kartian snowfiacs”
= nrel. 137 s claimed that the circulaniy of the envelope in
clectrechem cal deposition can be evplained so' iy on the ba-
<15 of linear stability analyvsis wi en the aggregaic has a fimie
resistinv iy,

21

ol fig. 1b. The emergence of dendrites 1n the Hele-
Shaw cell [15] provided the first direct experimental
demonstration that amsotropy is needed for dendrt-
tic grownth to occur.

But not only dendritic growth is observed in the
presence of anisotropy. As we vary the applied nres-
sure (the driving force) the air bubble assumes dif-
ferent shapes. Similarly. different morphologies arc
observed as the “*microscopic™ growth conditions are
changed. For example, we can change the level of an-
isotropy simply by changing the spacing between the
plates. The idea of a ““morphology diagram™ 10 or-
ganize the observations follows naturally [19. 20].

Fig. 3 depicts a morphology diagram tor a cell with
sixfold anisotropy. Faceted growth, the DBM. and rwo
trpes of dendrites now occur, for different values of
the applied pressure. As we will see later on. the ex-
istence of two types of dendrites play an important
role in our understanding of morphology iransitions.
A morphology diagram is also observed in electro-
chemical deposition experiments [ 27.28]. Hele-Shaw
cells using hquid crystals as the viscous flund [16].
and solidification from supersaturated sof **oans [ 3¢].

Se-eral quesi.oas arise now: why douvs wmsdirom
trigger dendritic growth. and i 1t does. why s the
DBNM still ousomved? Why g0 somz dendriles arpear
when the system 18 dres e for STom cgusithrium, bus
different ones appenr ciose 1o equahibaem ! 19 vhers
general selection »nnciple that will determine which
growth will be observed for specified conditions.
leading o a theoretical understanding of morphelogy
diagrams?

P/

. Amisorrep g ihe formation of dendrites

The first understanding and clear demwonstiniion oF
ibe singnlar naturs W omendse i Sect and T
weedd For anisoiropy for dendeic growth 2merged
Fros s siedy oo b0 o sk g dne o weTines
grovith [ 14,07 ], The immediate goalin the construc-
tion of thase models was to pinpoint the physical ef-
fects that were esseniial for dendmitic growth. Earlier
attempis without the drastic simpliticaitons of the lo-
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Fig 3 Morphology diagram for a sixfold anisotropic Hele-Shaw cell (the cell 1s the same as described in refs. [15.19].) Here P, 1s the
applied pressure measured roughly 1n centimeters of He (the actual manemeter fluid was a hght oil). The anisetropy of the ccll s
measured by the ratio @=b, /(b +b,). where b, 15 the depth of the grooves (0.015 in) and &, is the additional spacing between the top
plate and the top of the grooved plaic. The morphology regions are (1) faceted growth: (1f) surface-tension dendnitic growth (with
carcl' neoection it 15 possible 1o observe that the dendnites point at an angle of 30° 10 the ruhing of the grooves: {111 tip spliiting
growth, ¢V Kinetic dendriuc growih. The neeadle crystais erow parallel to the rufed channels. Cress hatching of curves separaiing la-
beliad morpholopy regiors indicaies the possitie eviiterds of parrow regions of other morphologres. € g, petween regrons § and li there s
eviden for DB growth The cendnites potntng at 30 from the channels occur at lower pressure. for which surtace tension 1s the
cracual facior, henee the name “surfacs tersion dendmies™. In the directions of the tips of the dendrites the change nintefad:  energy
v N AR (e anterace 5 smaker. making it easier 1o bend the interface. The effective surface iension s weaker and the surac

VUM ZMSCITORY  Prefers’ thess Juradua s w0 AIghis orcssure the surace Jiaet.ds domimates. "orefemng” dendries thai poiat aiong

S arrrets T s el ran g wettine ozt ave s atior and the sgloiy 0Tt 330 pressuee gradiem ks hizher, dence the rame

“suttace Kinetic dendrites . in (he diviGing regime The iw erfecis (surface 1ension ang surface Kinei:ds aniselropy » are¢ ol comparaple
strcrgth and cancel 2ach other, lead:ng 10 vamshing effective anisoureps and hence 2 TBM growih There are additioral detzils not
pizsented in the morpha.ogy diagram For excmpie as the pressure 15 ingrcased kinetic dendmies v nih differept siructure of sidebranches
are obsened. Oniv the main fectures of the mampha'ozy diagram are presented here (at-1d) are {aceled. surface tension dendrites.
C20 and sintece cinciic dendnites. respectively

cal raocels nad failed because of the dul¥iculyy or'scls- cendanl soluon on the compuier cxplicitly snowing
0L &2 numITCaiy i iuH difusion probiem. in the interfacial evelution. In this way it was first rec-
tne docal modeals. the interface is ireated as 3 dhvnam- zed that in the abience of anisotrepy ap-splitting
TR ety 2 Tsring” n iwo dimens \*m\ “h);u al 1h3: xcessary for

FELTETNL AR L In eer 1) el ity equnlon of

ALY ATV

TV TE Aandh o mo e owcde g g L 2o =k
(LT, vas mspire;‘ by solid:ficaiion fom an un- 3fter the demonstrancrn oithe anisotropic Hele-Shaw
DIt 4] b s madel vae g iTusion deld sspemmei vas thz role of anisouregy waden
s Wit b aaoungdan Iaver ar ‘r,l_:f_i- i stiing, EIRS TR

SR ENARS AT Al gy Jlazalme gl SoRecisid arcosesi can be providel 10 enplain

P amEngal ""-’CHI-'-‘LIIH? Fhos aiow s o umeade- wiiorohs o Lentnvoto, o sbbag el snEtung

P
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the dendrite’s tip. Consider 2 paraboia of the form
r=-—ax-. Let & be the angle between a sarface nor-
mal and the r-axis direcuon. The simplest way 10 in-
troduce anisotropy is in the surface tension &(8)
where the angular dependence is presumed to arise
from variations of surface tension with different
crystallographic orientations. Explicitly we write the
Gibbs-Thomson relationship relating the surface
temperature 7 and the melling temperature 7

Ts=TM —d(@) K
and
d(0)=d,[1—d, cos(66)]

for the case of sixfold symmeiry. First consider the
case of no anisotropy. d,=0. Then the tip. 8=0. is
the coldest point on the interface. As such it experi-
ences the maximum temperature gradient and is the
fastest growing point on the interface. The dynamic
response of the sysiem 10 this circumsnance must be
diffuston of heal along the interface tovard the tip.
This will cause ihe tip to slow down, We further rea-
sgn thai symmetricaily placed poiin can Govelop or
ihe mierface which grow more rapidly (han the tip.
The result is a spl:tting of the v "2 as these other points

overwherm 1t o avoird (his scenare and e 3
siakle tip hess flov tosvards the (o must b sue-
Tess

sed. This is “\adl) the effect providad by crys-
l:nlﬂm: anisotropy *'*. Witk anssotrony tha ceides:
point moves av-ay {rom the tip in a pomnt wiily a dif-
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10 this question now [48]. with the debate focusing
on the relative role of noise as opposed to determin-
1stic dynamics in the growth of side branches. Either
they emerge as a result of noise that excites the dit-
fusive instability and linear stability is sufficient to
predict their evolution, or an additional solvability
principle is required. We believe the latter to be the
case: however, we must leave this topic outside the
scope of the present article.

6. The * iastest growing morphology’ selection
hypothesis and the morphology diagram

Despite Lhe discovery of the microscopic solvabil-
1ty criterion. the problem of dendritic growth is not
fully resolved [49]. Time-evolution studies of the in-
terface in the boundary-layer model. and the aniso-
tropic Hele-Shaw experiment. present a nagging
problem. Both show that even with anisotropy pres-
ent. dendrites are noi always observeu. As we de-
crease the driving force (pressure in the Hele-Shaw
cell and undercooling in the BLM ) there 1s a critical
value below which dendritic growth is no longer ob-
sernved. instead tip-splitting ( the DBMM ) occurs. Sim-
Har behavior is also obsen ed durng {reezing of water
{30]. These results contradiet the selection principiz
ior dendnuc growth. which suggests that as long as
anisotropy is present, a specific dendrite (corre-
sponding 10 the fastest needle-crystal ) can exist and
is lincarly siable. The observation of the DBM under
growth conditions suitable for dendrites as well means
that with present theory the iwo morphologies can
coenist. "Microscopic solvability ™ can clearly be only
part of the picture. A more general principle 1s needed
o disitnguish between different morphologies and
determune the one which is selected.

"We have proposed [ 19 the more general princiole
that 12 s 1o favtesi growing moepot sgv v b s the
v Huslicd S selecied v, That 1s, i more than one
marphology 1s possible. only the fastest one s nonhip-
carly siable and il be opsened. Thus. one mizht
ofer that below some cntical dining force the veloc-
11y of the DEM s hugher ithan that of dendritic growth.

and so the former 1s selected. Motivated by our Hele-
Shaw experiment we have also studied the case of
compeling amsotropies. Both surface tension and
surface kinetic anisotropies are included and they
have preferred growth directions offset by 30° as in
the sixfold Hele-Shaw cell. We calculated the selected
velocity both along the surface tension and the sur-
face kinetic directions. The results (fig. 4) show that
above a critical undercooling .4, both types of den-
drites are possible, with the surface kinetic ones hav-
ing the higher velocity. Time-dependent simulations
of the BLM demonstrate that indeed the surface ki-
netic dendrites are the dynamically selected mor-
phology in this regime.

Let us explore further the analogy between phase
and morphology diagrams. For phases in equilib-
rium, for a given set of cornditions the phase that min-
imizes the free energy is the selected one, indepen-
dent of the prior history of the system: the concepts
of a selection prirciple and a phase diagram go hand
in hand. In contrast. nonequilibrium growth pro-
cesses are time dependent. so it is not clear a prion
that a morphology diagram should exist {that is, that
the shape will depend only upon the growth condi-
trions and not on the histony ). However, if 1t does ex-
wl, g selection principle must evist if a given mor-
shology 15 reproducible for a given set of growth
conditions. Given such a morphology selection prin-
ciple. 1t is possible to generate a map of what shapes
should be observed for what growth conditions. The
existence of a morphology diagram has been con-
firmed experimentaily in various systems, suggesting
that a selection principle must evist. Is this principle
the “fastest grow ing morphology™ hypothesis that we
have proposed? We believe that the latter is not the
most general principle we seek. but 1s a step » the
right direction.

When a system s driven out of equitibrium by the
mpastion of a gradient 1m one of he thermods -
namic vanables (e.g. the tlemperature or the concen
iration ), the response of the system is described by
the conjugate Moy (the heat 1y and particle tlux, re-
spectinely i, These tuves may in general be viewed as

ine raie of entropy oved action. or the rate of ap-
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Fig 4 (a)The morphology diagram and the needle-enstal selected velocny o tinthe dimession’ess anis wtrels e 2o voer compr-

m anmsotropres t the BLA Both surface tension and surface hinehics amasiranges arc mcioded ang thics havs proenod growtl dor

uons oflset by 30 as 1n the siviold Heic-Shaw cell We have caiculated tne selected velociy at both tne Recale-crysials poImimg in thc
picierred direction of the surface tension anmisotropy (the crosses) and of those pointing 1n the surface hinetie preferred direcuon (dia-
monds ). for more detals see ret. [19] The dashed hines represent our espectavon of the DBM velocny The insets show results of the
time-dependent simulations in the three regimes of the morphology diagram. (1) “Surtace tension™ dendrites « pornting 1 the surface
tension preferred growth directions). (11) up-sphiung. and (1) surface kinenc dendnies [0 regime 1! the 1wo anisotrepies are Close 10
etfecune strength {when acuing alene. the 1wo kead 1o dendnites with sinudar selocities as 1s discussed morei {12]0 The mesuit ir o

dramauc dechine in the selected yvelocity of the surface wension deadrites, the disappearance of the surface hinetwe ones 2nd the appearance
of up-sphitting Above 4, the surtace kiretic dendrites have the higher veloainy and are the absened maphology There s aump nthe
velocity at 1 hence the DBM—surface kinetic dendnites 15 a fivst-order trapsipon The supace ensn—DEM v a secona-order cchenge
n the slope of the velociiy as function of 43 (b (cand (d) are exampies o me evoutions 2 resiries o and 174 resaedt vweb

proach towards gicbal equilibrium. In crowth pro-
cesses. spectitcally. the driving foirce (e.g. the under-
cochineg v schdificatian) is the cqun g~ of the
thermodynamic gradient. The average velocity meas-
ures the rate of anproach vwards equilibrium, and
serves nainrally as a response funci:on. But the global
rate of change of the tree energy {at the interface ) (s
given by the integral of the velocity along the inter

face. Thus. by (e leim "3 emaga vliac v T w2 il
the velaory vaanted aotosding 0 2R geomtn of

she 1neetac . and thesy ohe o Lo rany e gloab

‘1

shape of 1th: abrect, We ¢uvacet this average velos-
iy T 1o be oo impartant vaniablc. but by no means ihe
only one. [t should has ¢ 3 counierpart 1at Sresdii Jn-
known) thai will represent the eguilibrium proper-

tres of the interfars and the selected arowng phase
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The fastest growing morphology is probably a good
approximation of the general selection principle far
enough from equilibrium, where the ratc becomes the
more dominant part in the competition. It may be
viewed as a high-temperature limit of an equilibrium
system coupled to a heat bath where the entropy
dominates. In the same way we expect that far from
equilibrium the entropy production is dominant in
selecting the morphology.

The analogy with equilibrium systems may be car-
ried even further. We have proposed the existence of
two (ypes of morphology transitions [ 19], as we vary
the growth conditions, in analogy 1o phase transi-
tions in equilibrium. The first kind shows a discon-
tinuous jump in the velocily at the transition point
{hence classified as a first order morphology transi-
tion). In the other type (characierized as second or-
der). the velocity itself is continuous as the morphol-
ogy changes. but shows discontinuity in its derivative.

In fig. 4 we show an example of both first-order

7

and second-order morphology transitions found in the
BLM. Again we wonder: is this a general phenome-
non or an artifact of the BLM? Chan et al. have made
a careful study of solidification from supersaturated
NH.CI solutions [39]. In particular, their experi-
mental data include information about the velocity
of growth which fits well in the {ramework of mor-
phology transitions described above. They found that.
corresponding to changes in crystallographic orien-
tation of the growing dendrites, there was cither a
jump discontinuity (first order) or a discontinuity in
the slope (second order) of the observed dendritic
velocity versus supersaturation.

Expcriments in growth by electrochemical deposi-
tion also produce results in qualitative agreement with
the characterization ol morphology transitions ad-
vanced here. Sawada et al. [27] have plotted the in-
terfacial velocity versus applied voltage and found
sudden changes in slope when the morphoiogy
changes. In our own experiments of electrochemical

TR

w5 Merphedegs wan ibonoan electrochemical deposiion of Zn from O 03 M of Zn$1), solunion sandwiched between two pleviglass

Plates with apout 0 3 i spacing | 38| The outer anode has a tnangular shape (8 ¢m edges The iransiman s trom tp-sphititng growth

teedeadnne grenth There s alsa a change i celor that rafects the change wnthe micrascopte structure of the 1wo morphologies Stmmilar

Transtiens belaeen Geo densc-branching marphciogees with daferent branch ders s oo sl bvgr od
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deposition we have observed similar sudden changes
in the interfacial velocity with associated morphol-
ogy transitions [38]. An enample of morphology
transitions in an electrochemical deposiiion experi-
ment is shown in fig. 5. It demonstrates two aspects:
the sharpness of the transition and a change in the
microstructure of the growing deposit (shown as a
color change) corresponding to the morphology
change. These obserations give additional support
to the use of morphology transitions nomenclature.

7. Conclusion

The field of nonequilibrium growth has made
enormous sirides over the pasl several years. How-
ever. many questions remain unanswered. The most
pressing is the lack of a theory which can predict
morphology selection in diffusion-controlled systems
as a function of known control parameters. More
general nonequilibrium principles also remarn 10 be
resolved. with the question of the nature of morphel-
ogy transiti~ as one of the most interesiing.
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