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We impose the constraint of the unitarity of the S-matrix on the theory of a closed bosonic 
string propagating in a background of some of its modes. The equations of motion for not only 
the massless but also for some of the massive modes of the string are thus consistently obtained in 
a weak field expansion. To a given order in the weak field expansion, they contain contributions 
to all orders in a'. We also show that conformal invariance guarantees that the S-matrix be 
unitary. 

1. Introduction 

Confo rma l  invariance plays a fundamental  role in the formulat ion of  a consistent 
string theory. For  strings in flat space-time it is necessary to show the decoupling of 

the unphysical  degrees of freedom in a covariant approach.  In the case of strings in 

background  fields, conformal  invariance has been shown [1] to provide the impor-  

tant  connect ion  between a two-dimensional field theory and string dynamics  in 

D-dimensional  space-time. This connect ion is realized by requiring the fl-functions 
of  the non-l inear  sigma model to vanish, thereby giving rise to the classical 

equat ions of  mot ion  for the background.  In most  of these approaches an expansion 

in the a' ,  the inverse string tension is utilized. It would be interesting to see what 

constraints  the background fields must  satisfy by imposing directly the requirement 

of  the unitari ty of  the S-matrix and to investigate the interrelations between 

conformal  symmetry  and unitarity. It is precisely these issues that this paper  

addresses. 

We investigate, in this paper, the theory of a closed bosonic string propagat ing in 
a background  consisting of a condensate of some of  its modes (massless, tachyon 

and  other  massive mode). We formulate a unitarity condition, which is essentially 
the requirement  that physical " in"  states map into physical "ou t "  states after 

interactions.  When  this condit ion is imposed on the theory, we find that the 
background  fields must satisfy certain constraints which are just the equations of 
mot ion  for these modes. For explicit calculations, we do not  use the Polyakov 

path-integral  formulat ion of the string theory and neither do we make an expansion 
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in a'. Rather, we use the string operator formalism and make a weak field expansion 
around flat space-time. The result is that the equations of motion, not only for the 
massless modes of the string but also for the tachyon and other massive mode, can 
be consistently obtained to a given order in a weak field expansion. (In this paper 
we present results up to the second order in weak fields.) These equations of motion 
for the various modes, to a given order in the weak field, contain contributions to all 
orders in a', are consistent with the string tree-amplitude calculations, and are 
compatible with each other. We also show how the unitarity condition is related to 
conformal invariance. Specifically, we show to an arbitrary order in the weak field 
expansion that the closure of the Virasoro algebra for strings in background fields 
guarantees that the S-matrix is unitary. A summary of the results arrived here has 
been published in ref. [2]. 

The paper is organized as follows: In sect. 2 we present the basic formalism used 
in this paper. In subsect. 2.1 we discuss the first quantization of the closed bosonic 
string in the presence of background fields, and introduce the weak field expansion. 
In subsect. 2.2 we formulate the unitarity condition as the requirement that a certain 
matrix element should vanish. Subsect. 2.3 contains a discussion of the relation of 
this constraint with the closure of the Virasoro algebra. In sect. 3 we present the 
explicit calculations of the equations of motion in a weak field expansion, using the 
unitarity constraint. Subsect. 3.1 contains the result for the free equations of motion 
for the massless, tachyon and the first massive modes. In subsect. 3.2 we go to the 
next order in the weak field expansion and obtain the interaction terms in these 
equations of motion. Sect. 4 contains a discussion of our results and technical 
details of sects. 2 and 3 are included in appendices A, B and C. 

2. Formalism 

2.1. WEAK FIELD EXPANSION 

In this section, we will consider the first quantization of a closed bosonic string 
theory propagating in the presence of space-time background fields. Our approach 
is based on hamiltonian formulation and we will use a weak field expansion around 
a fiat space-time. The basic formalism we follow in this paper is explained in detail 
in our previous paper [3], so here we will just review the procedure briefly. 

Let us start with the following action 

1 
S 47ra, fdod'r(~2~'r~Bg.~(X) O~X"O~X'+e~B.~(X)O~X"OBX'). (2.1) 

where g.~(X) and B. . (X)  represent condensates of background massless modes of 
the string theory, i.e., a symmetric tensor field for g..(X) and an antisymmetric 
tensor field for B.~(X). In our approach the dilaton mode is included in a trace part 
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of g,~(X). 7~¢(05) is the two-dimensional metric tensor and e "t~ is a two-dimen- 
sional antisymmetric tensor which satisfies e °t = 1. From now on, we only consider 
the theory at the critical dimension, i.e., D = 26. In ref. [3] starting from the above 
action, we formulated the classical Hamilton system first and quantized it by 
replacing Poisson brackets by canonical commutators. When we pass from the 
classical to the quantum theory, we encounter the operator ordering problems. In 
ref. [3], we introduced a weak field expansion around flat space-time ~7,,, namely 

a~(x)  = ~.~ + h.~(x), 

B,,(X) = b,,(X). (2.2) 

We regard h,~(X) and b,,(X) as weak fields and expand the hamiltonian and the 
Virasoro operators with respect to these weak fields. The zeroth order hamiltonian is 
the free hamiltonian in the conformal gauge because it is in fact the hamiltonian in 
the flat case. Then we can treat the h,,(X), b~(X) parts as perturbations and 
define the normal ordering of operators with respect to this free hamiltonian. Going 
to the interaction representation, the Virasoro operators and the hamiltonian are 
expressed in terms of operators w~(To) and Xtt(in)('ro) which satisfy the free 
equations of motion 

1 
1 t ~ ~1~ in('r+o) x"(in)=x"+7(2a)p,~+12V~d7 - - ( a ~ n e - i n ( ' - ° ) + O t n  e , 

~o n 

1 0X v(in) 
~7~ in)  - -  (2.3) 

2a'~r ~"~ Or 

Here, p~, x ", a~ satisfy the following commutation relations 

[x ", p~] = i ~  ~, 

[~.~, ~.] = n a .+m,O¢ ~, 

["°, ~m] = n a.+m,0~ ~ -  (2.4) 

Expanding L, and Ln according to the number of weak fields 

L° = L~.°)+ L ? ) +  L~2 + . . . .  

~°  = ~o~ + Z ~ ) +  ~ 2 ) +  . . . .  (2.5) 

we obtain expressions for the Virasoro operators. (Hereforth we will omit the 
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superscript " in"  and use units in which a ' =  1). 

1 e2er - ino .  
L~°) = 4-~Jo doe  . P~'(¢o) 2, 

1 e2~ ino 
Z~°)= ~ J o  doe  : /~.(~-o)2;, 

1 f o 2 ~ d o e _ i n o :  L(2 ) = L('P. = G P.~( x )  P"( "~ ) ~ (  ~ ) ' 

L(n2)_ ~(2)  1 f2~ in~j .2  
- = ~-~Jo d o e -  

and for the hamiltonian 

H = H (°) + H (1) + H (2) + . . . .  

where the H (i)'s are given by 

H (o)= L(o o} + L(o o} _ 2, 

H (1) = 2L(ol}, 

H (2) = 2L(o 2}, etc. 

Here, we have used the following 

0 0 

= ~p" + E .~e  "(" °) 
n4:0 

a 0 

1 u 2P + E ~u in('r+o) = OL n e , 
n4-O 

o,.(  x )  - - h , ~ (  x )  + b,.( X ) .  

g , ( x ) -  2~(p~p~.(X) + p,~( x ) p  ~), 
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(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 
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and all the contraction of space-time indices is taken by using the flat metric ~ 
and 7y .  

In the above expressions, we have introduced the normal ordering for the 
oscillator parts as is normally done in the flat-space case. However, in the expres- 
sion like L(, 1), we still have an ordering ambiguity for the zero mode part ( p "  and 
x~). From now on, we assume the following constraints on p~,(X) in order to 
remove this ambiguity. 

o%(x)=o%(x)=o. (2.16) 

Later, we will see that these constraints correspond to the gauge conditions for the 
background fields. The ordering presumption for H (2) is as yet unspecified. This will 
be done in subsect. 3.2 and appendix B by requiring that the Nambu-Mathews 
theorem be valid. 

Up to now, we have only considered its background fields of the massless modes. 
Now we want to take into account the effects of the tachyon and other massive 
tensor field condensates. To do so, we should add to our action terms which 
represent the condensates of each modes, or in the hamiltonian formalism using a 
weak field expression, we can simply add the corresponding terms in the interaction 
hamiltonian. For the massless case, the form of the interaction hamiltonian which 
represents the coupling of background fields is, as is seen in eqs. (2.8) and (2.11), 
determined essentially by the corresponding vertex operator at the first order level. 
The only difference here is that in the interaction hamiltonian, we don't  require the 
mass-shell condition from the first whereas for the vertex operator we usually 
assume it for the polarization tensors. In the same way, we can determine the 
interaction hamiltonian for other modes, for example, for tachyon and for the first 
massive level, the first order interaction hamiltonian take the following forms 

1 
aHt(2  =  fd. : ,(x): ,  (2.17) 

1 
AH( ' - f do :M.. 1st massive 2¢r (2,18) 

where we assume the following "gauge" conditions 

- ( 2 . 1 9 )  n = 0 .  

As we will see later, these operators are sufficient for the order to which we 
discuss in this paper. For the tachyon modes, one can consider eq. (2.17) only even 
for higher order terms in the number of tachyon fields. 
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2.2. UNITARITY CONSTRAINT 

In this section, we will discuss what constraints should be satisfied for back- 
ground fields from the requirement of the unitarity of the S matrix. In general, for 
the first quantized string theory, conformal symmetry seems to be the necessary 
condition for consistency. For string theory in a flat background, the no ghost 
theorem [4] can be proven using the Virasoro algebra with a correct central change 
term, if we specify the physical states in the usual manner [4]. We would like to 
address ourself to the corresponding problem in the curved case. Within perturba- 
tion theory, we can formulate the condition of unitarity as follows. 

First, we assume that the on-shell physical state conditions for the " in"  states are 
the same as those in the flat case, i.e. 

(Z(o°)(gin)  q- L(°) (g in  ) - 2)lphys ) = 0 

( L(o°)(gin) -- /~(00) ( gin )l phys) = O, 

(on-shell condition), 

L(,,°)(gin)lphys ) = 0 

~(o)( gin )l phys) = 0 

( n > 0 ) ,  

(physical state conditions) 

(n>0). (2.20) 

Notice that by using the adiabatic hypothesis, we reduce L, and L,  to the 
corresponding flat space expression L(, °) and ~0) at r + -  m. If the string 
propagates in the presence of background fields, it can interact at intermediate 
times with these fields and these effects are represented by the interaction hamilto- 
nian. Therefore, even though we specify the physical states at r = oc, we have to 
make sure that these physical state conditions are preserved after interactions. This 
requirement can be expressed using the "out"  fields, which are the asymptotic fields 
at r ---, + oo, as follows 

(L(o°)(gout)  + L(o°)(gout) - 2 ) l p h y s )  = O ,  

(L(o°)(gout) - L(o°)(gout)) lphys)  = O, 

L(,,°) (gout)l phys) = 0 

J~(nO) ( gout )l phys) = 0 

( n > 0 ) ,  

(n>0). (2.21) 

Using the relation between the " in"  and "out"  fields 

gout = S + g i n  S ,  (2.22) 



182 R. Akhoury, Y. Okada / Conformal symmetry 

the above condition reduces to the following 

(L(°)(d?in) 4- f gO)(dPin) -- 2)Slphys ) = O, 

( L g ° ) ( ~ i n )  - L(o°)(chi.)) Slphys) = O, 

L~o°)(ep~n)Slphys) = 0 (n < 0) ,  

L(0°)(Oin)Slphys) = 0 (n < 0).  (2.23) 

Here S represents the S matrix generated by the interaction hamiltonian 

s =  

where the total hamiltonian is decomposed as 

H = H (°) + H t (2.25) 

and H I is the interaction hamiltonian which contains contributions from all the 
modes. 

In actual calculations, we require the following statement. Take a physical state 
[B) which satisfies the conditions (2.20) and consider the matrix element 

T = ( A  ]L(~°)S[B), (2.26) 

with (ALL(, °) an on-shell, i.e., (AI (H(° )+  n ) =  0, but not necessarily a physical 
state. Then, unitarity demands that T vanish for any choice of states IA) and IB). 

As we mentioned earlier, the unitarity of S matrix has close connection with the 
closure of the Virasoro algebra in the flat case. In the curved case, if we treat the 
theory classically, we can show the classical Virasoro algebra with Poisson brackets 
is closed without any constraints on background fields [3]. On the other hand, 
quantum-mechanically there occur anomalous terms in Virasoro algebra which 
depend on the background fields and by demanding that these anomalous contribu- 
tions vanish, we can obtain some constraint equations which correspond to equa- 
tions of motion for the background fields [3]. In the next section we will show that if 
the Virasoro algebra is closed, then the above matrix element T vanishes order by 
order in perturbation theory. Therefore, demanding that T vanish is equivalent to 
the requirement of the closure of Virasoro algebra, and we can expect some kind of 
constraint equations for background fields from an explicit computation of the 
matrix element T. This will be done in sect. 3. 
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2.3. EQUIVALENCE BETWEEN THE UNITARITY CONSTRAINT AND THE CLOSURE OF 
THE VIRASORO ALGEBRA 

In this section we will show that the matrix element T vanishes if we assume the 
closure of the Virasoro algebra. Let us assume that the following Virasoro algebra 
holds without any anomalous contributions: 

[ L . ,  Lm] = (n - m)L .+  m + I l D r / ( r / 2  - 1) 8.+m. o , 

[c,,, =0,  

[L. ,  Lm] = ( n -  m)L .+  m + t ~ D n ( n 2 -  1) 8.+m, o. (2.27) 

Taking 

H = L0 + Z0 - 2 (2 .28 )  

as a total hamiltonian, the commutation relation between L.  (n > 0) and H reduces 
to the following form. 

[L. ,  H ]  = nL,,. (2.29) 

We can expand the above equation order by order in the number of weak fields 

[ L~ °', H (°'] = nL} °' , (2.30) 

[ t(°),  . (1, ] q--[t}l), . (0) ] = nL,,'(1) , ( 2 . 3 1 )  

[ C(.°) , .  '2'] + [£(.1),Hm] + [C(.2), ,  '°~] = .L,'(2)., (2.32) 

etc. 
Here the superscript (i) denotes the number of weak fields which in general, on 

the contrary to eq. (2.5), include not only massless but also tachyon and massive 
fields. Let us consider the matrix element T 

V-= (A IL~°)SIB). 

Here ]B) satisfies the on-shell physical state conditions, eq. (2.20) and (A I obeys 

( A ) ( H  (°> + . )  = 0, 

but not necessarily the physical state condition. 
At the first order, T is given by (omitting an overall 2~r8(0) factor) 

T (1) = (A IL(~°)(-iH(1))[B) 

= ( - i ) ( A  ] (H(1)L} °) + ( H  (°) + n)L(n 1> -- L(.1)H(°))IB ) 

= 0  
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where we have used eq. (2.31) and in the final step on the on-shell physical state 
condit ions for IB), and the on-shell condition for IA>. We will next consider the 
second order term in the weak field expansion which we denote T (2). Using ,~ = H (°) 
as the inverse propagator,  we have 

T (2) = (A I L(°) ( - i H  (2))[B> 

+ (AlL(°)( - i H  (1)) ~ - ~  ( - i H  (1))1 B)  

=(-i)(<AIL(.°>H(2>IB>-<AIL(°)H(1)~H(1)IB)). (2.33) 

The first term can be rewritten as follows: 

(A  IL(.°)H(2)IB) = (AI(H(2)L(~ °) + (a  + n ) L  (2) - L (2>A - [L(. ~), H(°>])IB > 

= - (A [ [L(. 1), H(1)]IB ) , (2.34) 

where we have used eq. (2.32) and the on-shell a n d / o r  the physical state condition 
for ]B), (A I as before. 

On the other hand, the second term reduces to the following form 

1 
-- < A IL(n°>H(')~ H(I>IB > 

1 
= - <A I( HO)L(. °) + (,5 + n)L(. 1) - L(. 1) a } -~H(~)IB ) 

1 
= - (A IH(1)L(,,°)~H(XllB) + (A IL(,,I)H(1)[B) 

1 
= - (A ]H(1)~nL(.°)U(1)lS ) + (A IL~)H°)IB) 

1 
= - ( A  H O > - - ( H ° ) L  (°) + (A + n ) L  (1>- L (1> A)]B> 

A + n  x ,, 

+ (A IL2>HO)IB) 

= (A] [L~  1),H(1)]IB>; (2.35) 
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combining (2.30) and (2.35) we get 
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T (2) = 0 .  

In this way, we can prove order by order in the weak field expansion that T 
vanishes if we assume that the Virasoro algebra is satisfied. For completeness we 

will give the inductive proof to an arbitrary order in the weak field expansion in 
appendix A. This establishes the equivalence of our unitarity constraint to the 
requirement of conformal symmetry. 

3. Explicit calculations of the matrix elements 

In the previous section, we have formulated the unitarity condition which states 
that the matrix element T given by 

T= (A IL(f)SIB) (3.1) 

should vanish for any choice of a physical state [B) and a state (A[ such as (A[L} °) 
is an on-shell state but not necessarily a physical state. Here S is the S matrix 
generated by the interaction hamiltonian 

S= Texp(-if?oH~(dPin) d ' r  ) . ( 3 . 2 )  

The interaction hamiltonian contains contributions from the massless modes as well 
as the tachyon and other massive modes of the string. 

We can now expand on the matrix element T order by order in a weak field 
expansion, i.e., 

T = T (1) + T (2) + . . . .  (3.3) 

and demand that it vanish to each order in this weak field expansion. In this section 
we will explicitly show that the vanishing of T (1) gives rise to the free part  of the 
equations of motion for the various modes, whereas the vanishing of T ~2) gives 
the interaction terms in the equations of motion. In order to obtain this, we will use 
the weak-field expansion of the interaction hamiltonian, 

H I = / 4 ( 1 )  + H (2) + AH(tla)h + A M ( l )  + "~ massless massless ~ a~ 1st massless • " • , (3.4) 

where /4(1) H ( 2 )  A M ( l )  and AH (1) are given in eqs. (2.8), (2.11), " ' m a s s l e s s ,  massless,  ~ ' a t a c h  1st massless 

(2,17), (2.18). For the states ]B} and (A [L(f ) we will use the simplest non-trivial 
possibility that is consistent with the constraint N = 37 for the matrix element. The 
state [B} is taken to be a tachyon state, i.e. IB} = 10, p} with p2 = 8 and the state 
(A[ is taken to be (A] = (Op'lSXl. 
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For the state (AIL(f), we will pick n = 1 and then the condition that it be on 
shell, i.e., (A [L(f)H (°), = 0, implies that p,2 = 0. Thus 

(A IL~ °) . . . .  x o p,2 
- p,,(OP l aa, a 1 with = 0. 

In this form, we immediately recognize the state (A ILl °) to be that of a massless 
mode, with an unphysical polarization. Thus, with this choice of the stages, the 
unitarity condition will be seen to be essentially a Ward identity for the spacetime 
"gauge" invariance of the string theory. 

In the next two subsections we will explicitly evaluate the matrix elements T (11 
and T (21 and discuss how the equations of motion for the various string modes can 
be obtained by requiring that these vanish. 

3.1. FIRST ORDER CALCULATIONS 

We will begin with the evaluation of the contribution to T (11 for the massless 
modes (denoted by Tm(la)ssless). The relevant term in the interaction hamiltonian is 

H(1) 
1 r2~r 

. . . .  less= G JO do : p . . ( X ) P " P " .  (3.5) 

Introducing the Fourier transform of p~,~(X), 

we have 

r dDk 
: p . , ( x )  := J ~; -5p~ , , ( k ) : e ' kx : ,  (3.6 1 

H(1) _ r dDk 1 2~r 
mass ie s s -J~-~pp . , , ( k )~ fo  d'r:eikXpcp': (3.7) 

Omitting an overall factor of 2~r 8(0), the expression for Tm(la)sless becomes: 

T 01 = ( - i ) ( A  L(°)H (11 B\ massless 1 massless / 

,. dDk 
= ( - i ) J~-~O~, , (k )p ' , , (O ,  p'l~Xla~-'~--~f2~d :eikXP~fi~: )o 10,p>. (3.8) 

This can be readily evaluated using the standard methods used for calculating the 
string tree amplitudes and the result is; 

( .  dDk } 
T(.d~)sles s=  ( - - i ) / j ~ - ~ ( 2 q T ) D ~ D ( p t  p__ k) lk2p~v(k)  

X,massless \ p ,  pt) ,  (3.9) 
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where, v ~ ,  x i ,, • , . . . .  ~es~tt', P') is a tensor that depends on the external momenta, p and p', 
i ,e .~ 

Y~masslXess(P,p,)=l(p+p,)~ + ~ ) x )  (~vx 1 ( _ ~ ) ~ (  . ( 3 . 1 0 )  

Because of this factorization property of T-(1)massless, we see that if T(1).~ssl~ss is tO 
vanish regardless of the values of p, p' ,  then, 

=0 .  (3.11) 

In x-space, this gives the free part of the equations of motion, OZone(x) = 0. The 
equations of motion for the graviton, the antisymmetric tensor and the dilation can 
be obtained by projecting out the appropriate spin projections of O,,(x). 

As remarked earlier, with n = 1 and the choice of states made above, the unitarity 
condition (3.1) is closely connected with the space-time Ward identity for "gauge" 
invariance. In general, the Ward identity states that for an n-point amplitude, if the 
polarization vector for one of the gravitons is replaced by its corresponding 
momenta,  and all other particles are on shell, then the amplitude should vanish. 
However, in our case we require the vanishing of such an amplitude and get the 
on-shell conditions as a result. 

The free part of the equations of motion for the other string modes may also be 
obtained in an analogous manner, by using the appropriate part of the interaction 
hamiltonian. For example, the expressions for Tt(z]c) h and T-(la)ssive are: 

Tt O) = ( - i ) ( A I  I ( ° ) a u O )  ' ~ \  ach ~1 "J L' tach I L" / (3.12) 

T (~) • ( - i (o) (1) - mass,ve = )(AJL~ / ~ g l s t m a s s i v e l B  ) (3.13) 

with AuO)  and AH O) given in (2.17) and (2.18). ~" tach 1st massive 
For the first massive excitation M, , , ,~(X)  we will assume the gauge conditions 

(2.19). We may introduce the Fourier transforms 

,. dDk 
=-= ( 3 . 1 4 )  

dDk 
: M,~, ~¢ ( X )  := J ~ M,~, ~B (k )  :e '* x:, (3.15) 

t z ~ r )  
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and then the matrix elements are readily evaluated. The results are (omitting and 
over 2~r 8(0)): 

and 

with 

f dDk } 
tach - -  Ytach T(1) _~_(__i) j~_~_g(2~r)DSD(p, p k ) ( ~ k 2 1 ) e o ( k )  x ,  

X ~ 1 r 
Vtach 5 ( p  _ p ) X ,  

T(ml~)sive = (-i)( "dDkj ~-~  (2~) °8(p'-p-k)(~k2+ 1) M~..a(k)} 

X Ym~assive, 

(3.16) 

(3.17) 

The amplitudes T, (1) , T_ ( 1 ) .  have the same factionized form as T (1) • and the tach massive massive 

tensor structures, . mas~less, Ytach, -mass ive  are independent, hence by requiring these to 
vanish, we get the free part of the equation of motion for the different modes. For 
the tachyon, in x-space this is 

( 0 2 +  8 ) ~ ( x )  = 0, (3.19) 

and for the first massive excitation, the equation of motion in the gauge, 0 "M,~,9 = 
O'~M~,~,~t~ = O~MI,,~.~ = O~M.o.~= O; ~?"~M~.,~/~ = vl~ZMj,,~t~ = O, is 

( 0 2 - 8)  n . o . ~  = o .  ( 3 . 2 0 )  

We will next consider the second order term in the weak field expansion of T. 
When combined with the above first order results, we will see that we obtain the 
interaction terms in the equations of motion for the various modes. 
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3.2. SECOND ORDER CALCULATIONS 

We will now consider the second order term in the weak field expansion of the 
matrix element T. (This will be denoted by T(2)). In general, T (2) has many 
components: there will be terms of second order in &.(x) (denoted by TJ22)), terms 
of second order in O(x) (denoted by T (2)'~ cross-terms which are first order in q~2 J, 
p~.(x) and q~(x) (denoted by Tp~)), terms which are second order in M.. .~(x),  and 
so on, i.e., 

T (2) = TJ2 2) + T~ 2) + To~)+ . . . .  (3.21) 

In this paper, we will only consider the contributions Tp~ 2), T~ 2) and T,~'. We will 
first write down the explicit forms of these and then discuss how the interaction 
parts of the equations of motion may be extracted. The techniques used for the 
evaluation of these matrix elements are similar to those for calculating the standard 
string tree amplitudes [5]. To illustrate the method we will first discuss the 
evaluation of the matrix element Tp~ ) in some detail. 

The matrix element Tp~ ) is given by 

Tp~)= (_ i )3{(  A .(0)14(,) ~n~ 1 ~1 "'masslessk ~'] A AH(tl~h(O)l B) 

1 
+ (A [L]°) A H(alc)h(0) ~-H~a)~sle~ (0)l B) } 

° [ do1 " dDkl k 

1 ~ do2 - dDk 

+@.p,  laXx~,f f do2 . d°k. . ( - ~ ) ) ~ - f i q ~ ( k . )  :e'k" x(°'): 
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where, as before, we have introduced the Fourier transform of O,~(x) and q~(x) and 
used the representation 

= f ya .  (3.24) 

W e  may now use the shift operations for any operator O(o, r ) ,  i . e .  

0 ( o ,  T) = emo'O(o,O)e i-o,, 

0(o, "r) = e-i(L°-L°)"O(O, "r)e '(L° Lo)O, (3.25) 

to rewrite (3.23) as a function only of o 2 - al, and ~" = ilny. Then, 

P' t " f dokl c dDk2 do 
To(~ ) = ( _ i ) 3 (  2 ] J (2tr) D 2Tr J (~)vO.~(kl)~,(ka) f 

{ffdy × --~- (0, p ' l  ~x o 

× :eik~x(o,o)p.(o,o)~(O,O): :e,k2x(o .:it.v): l0 ' p )  

+/1-~_: (0, P'l~wl~x'~°'°'k~x(.~ . . . .  it, v)._. :eik"(°'°)Pu(O)P~(O): O, p}) .  (3.26) 
J o y  

We next let Z = y  e '°, and 

1 1 . + . _ 
X~,(Z, 2 ) = x " + ½ p . ( i l n l Z l ) + ~ i  Y'. n ( a ~ , Z  a . . Z  ) 

nq-O 

=- x~.]Z, Z] + ½p~,( i ln[Z[). 

Then, using 

eik2x(z'2) = eik2x(z'2)l IZ l(p'k2) ¼k2 , 

[Z I -~(p.k~)e~kvx= eik~.XLz [ -~(p.k~) ~(k~.k~), 

(3.27) 

(3.28) 
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w e  c a n  use  the  matr ix  e l e m e n t  as: 

L~) (_ i )3  pt  l O f dDkl dDk2 

- 2v ( 2 ) J (2~r) D f ~ - ~  p~"(k')O(k2) 

d2Z 
f[ ~k~ X [ZI  - ' ( p k ~ } - '  z 

zl),lZl 2 

x {0,  ' "~' ° p [alal :eik'X(X)P"(1)fi"(1)" :e ik~x(z'2)" [0, p )  

d2Z 
+ f IZl-~(P k2) ~k~-X2klk2( O, P'I'~'~': 

Zl(llZI 2 "1 

xeik~X(Z'2): :eik'X(1)P~(l)P"(]): IO, p>}, (3.29) 

we may now perform the contractions using the standard formulae given, for 
example, in ref. [4], to get 

:eik~x(1)P'~(1)P~'(])" :eik2x(Z'7-): ([Z[ > ]) 

= 1 -  1 ~(k"k2) :eiklx(1)+ik2x(Z,~)pp.(1)PU(l) " 

+ 
/J  

k 2 Z 

2 Z - 1  

k~ 2 
2 2 - 1  

:eiklx(1)+ik2x( Z, 2)pv(0): 

+ : eik,x(1) + iklx( Z. 2)p~(1) : 

+ 
k~ k~ IZl 2 
2 2 IZ- 1[ 2 

:eiklx(1)+ikzx(Z'Z): 1 , (3.30) 

X :e'k2x(z'z): :eik'xO)U'(l)fi~(1) • (IZI(I)  

= I1 - Z]~(k"k2){ : eik~x(1)+ik2x(Z'2)P"(l)P"(1)" 

+ 
k~ z 

2 Z - 1  

k~ 2 

2 2 - 1  

: ei&X(1)+ ik2x( Z, 2)fir (1) : 

+ :e i&xd)+ ik2x(Z" 2)P" (1) : 

+ 
k[ k~ [Z[ 2 

2 2 I Z -  1] 2 
" eikl X(1) + ik 2x( Z' Z) : I " (3.31) 
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Upon inserting these into (3.29), we may easily combine the two terms to get an 
integral of Z over the whole Z-plane to get: 

L~_ (-i) ~ 

. dDk2 

c d 2 Z  × j~ lZ l -  ~<p <)-~*~ 1 2 ( k l ' k 2 )  

I I 

- lat% :ei<X°)÷ik~x(z'z)P"(1)P~(1) • 

k; Z :e ik~x(1)÷ik~x(z" 2~p~(1): 
+ 2 2 ~  

k~k~'Zl2 ] ) 
+ 2 2 ] Z - 1 1 2  :eikxX(1)+ik2X(Z'2): 10"P) " (3.32) 

The matrix element inside ( } can be readily evaluated after moving the oscilla- 
tors ~x and a~' to the extreme right using the commutation relations and we get 
after some algebra: 

. 6 %  

× IZI-~P*=)-~*~ ~<*~)11 - Zl½(kl"k2)(2~)D~D(p ' -  k~ - k 2 - - p )  

× ~kt  + ~'-2 -~ 1~,~-~ + 5 ' -2~  )SP ~P 

2 k l  q- 2 '~2  ~ 1} 2U + ( 2 k 1 ° +  2K2L )1 ~1 + 2 2 ~ 1  ( '  X 

~ < + ~ z  -~ n°~+~ z ( ~ < + ~ z  ~p 
2 Z - 1  

+ ~x~ ~,,~+ 2 Z - 1  ~ ~ ~ ~ -1 

1 X--  1 1 o l b o  7 1 + ( { k (  + ~k :Z  ) k2 2 k~ k2 IZI 2 
2 ~ - - 1  rfl~+ 2 2 IZ---1-I 2 ( ~ k ~ + ~ ' ' 2 =  

(3.33) 
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The Z integrations can be performed using the integral formulae of appendix C. 
The final result after contraction with (~-')°5/, is given by: 

Tp(~ ) -  ( _ i ) 3  . dDkl f dOk2 ; 2 J~)-dJ~-) -d&Akl)eP(k2)(2~r)°3D(p'-kt-k2-p) 

x ~ + l T - ~ + 1  T - 1  T 

k2 k2 1 ) ~ - )  
- ( 8 + 1 ) ( 8 8 - -  ( 8  + 1 ) ( ~  ) 

× - ~ -  ~ + 1  - 2 \8  +1 

- ~ + l y  2 8 +1 + +1 2 8 8  ~1~'" 

o ) F F 1 /" - w - l -  18(kZ+k22-8) 
× (3.34) 

( 8 )  ( 8 )  (8 l(k2+k22-8)+2) F +2  F +2  F +~ 

Here, s, t, u are the kinematic invariants defined by 

~= - (p+k2)  2, 

u =  - (p+k2)  2, 

t =  - (p' _p)2= - (k ,  + k2) 2, 

f '= t+kZ+k  2. (3.35) 

In writing down the expression, we have used k[o,,(kl)= 0 and the on-shell 
conditions for the external states, i.e., p,Z = 0, p2 = 8. 

The matrix elements T~ 2) and To~ 2~ can be similarly evaluated. Consider T~ 2) next: 

1 
T~22) (_i )3(A ] (o) (1) ~AH[2)ch(O)IB} = L 1 A Htach(0)  • (3.36) 

Since this can be evaluated in a similar manner as the Tp~ ) term, we will just quote 
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the final result: 
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T~ 2) (__i)3 . dDkl dDk2 
4 J~-~f-(~-~ ~'(k')~'(k2)(2~)°a~(p'-k~-k2-p) 

) )U+l)l(u+i)} 
× r  - g - 1  F - g - 1  r 8 1 r g + 2  r g + 2  F ~ - + 2  . 

(3.37) 

Finally, we consider the term T (2)02 , which is second order in p,~(x). This has two 
contributions, and is given by 

1 ;~3f/aLr(o)t4(1) __i t /O)  I / (0)14(2) B\ \  TJ~ )-- ( - , ]  ~ \ . l l ~  1 **massless A **masslessl B )  --  ( A  ~1  *'massless / j "  ( 3 . 3 8 )  

Consider the second term on the right hand side of (3.38). This term is analyzed in 
appendix B to which the reader is referred to for details. The main point here is that 
in theories with derivative interactions, one should carefully distinguish between the 
T and T* products. Contractions using the T product and the T* product are not 
the same. In the hamiltonian formulation, one has to use the T product and the 
difference between this and the T* product is cancelled by the second term in (3.38) 
in accordance with the Nambu-Mathews theorem. The standard string operator 
formalism, which we are using here, corresponds to the T* product and therefore we 
drop this term henceforth from our consideration. Thus, with the provision that we 
use the T* product, 

1 
( - i ) 3 ( A  L(°)H O) - -H (1) B \ 1 massless A massless / " (3.39) 
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In the above expression we have used the gauge conditions kfp,,(kl) = k~p,,B(k2) 
= 0 and the on-shell conditions, p,2 = 0, p2 = 8 for the external states. 

We will now discuss how the PP, P'~ and q,~ parts of the equations of motion for 
the different modes may be obtained. 

First, we note that the expressions (3.34), (3.37) and (3.40) for To(~) ' ",~:r(2) and To~ ) 
vanish when we use the first order result. For example, T~  ) vanishes upon using 
kZo~,(k2) = O, (k~ - 8)if(k2) = 0; T~ 2) vanishes upon using (k]  - 8)if(k1) = 0 and 
(k 2 - 8)q,(k2) = 0 and To~2) vanishes if we use k~p,~(k) = kZp~,(k2) = 0. This is a 
consequence of the gauge invariance of the massless modes, and corresponds to the 
space-time Ward identity of the 4-point function alluded to earlier. However, 
non-trivial contributions arise when we set t equal to one of the on-mass shell 
values, i.e., whenever, 

t (p ,  _ p ) 2  
S - 8 - - 1 , 0 , 1 , 2  . . . . .  (3.43) 

Then, the corresponding gamma-functions, in the t variable in To~>, in T222) and in 
To~) develop a t-channel pole and the above expression becomes of the indetermi- 
nate 0 / 0  form. These contributions can be extracted by using a proper infrared 
regularization and as we shall see, they correspond to the interaction terms in the 
equations of motion. For t - 0 and t - 8 we will get contributions to the massless 
and tachyon equations. The infrared regularization we adopt here corresponds to 
shifting the mass-shell condition for &,(k(~), qS(k2), o r  p,,(k2) by the same amount, 
i.e., we let (k21 + m2)&,(kl) = (k~ + m2)p,~(k2) = (k 2 - 8 + m2)ff(k2) = 0 then we 
take t near one of the on-shell values, and at the end, consider the limit m 2 ~ 0. All 
three of the matrix elements To~), T(2),,2 To(22) can be treated thus, and below we list 
our results for these when t is near mass shell for the massless and tachyon modes. 
In all our subsequent discussion we let k = k I + k 2. 

( r::, ),_ 

(__i)3 dOk2 dDkl 
2 f (27r) n ( ~ )  -D(2Tr)o3o(p'-k'-kz-p)p"'~'(kl)ep(k:) 

( k2 - ( k2 ~4 k l )v ) gm~ass ~ .... (3.44) 

= ( - i ) ' f  d°kl dOk2 (~-~) b (~ )b (2Tr )D3D(p ' - k l - k2 -p )&. ( k l )~ ( k2 )  

× ( _  1 )~_  -2- YtXach, (3.45) 

= - - ( - - i ) 3 ¼ f  dOkl dOk2 
(2~r) D ( ~ )  -D(2~r)D3D(p'-kl-k2-p)  

Xpta,v,( kl)Pa,B,( k2)tKa't~tv'B'V( Ymassless)t~v~k , (3.46) 
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with 

t~'~'~ = ~ , - -~--  ~ ' , '  kl  - k 2 

( T J 2 2 ) )  t - 8 = - (  - l ) "  3 1 ~ f  (--~)-Ddnkl (27r) D dDk2 ( 2 7 r ) ° S D ( P ' - k 1 - k 2 - p )  

×P~'~(kl)P"l~(k2) T/'~' 2 2 ~ 2 2  ( Y t a c h )  X ' (3.47) 

(T(~)),_0=(_i)33, f d~)k~ dDk2 
-~2 (2~r) o (2~r) D (2~r) D 6 0 ( p '  -- k~ - k 2 -p)~(k~)q~(k2) 

×(kt~k2~ + kl,k2~,)( v ~.~,x massless ] (3.48) 

(7.(2)) =-( - i )3¼f d ° k l  dDk2 t- -s (-~ )-z) (-~ ) b (2~ ) D 6°( P' - k2 - k2 -  p )ep( k,)ep( k2) 

X ( Y t a c h )  x . ( 3 . 4 9 )  

Consider  the t - 0 contr ibut ion to the three matr ix  elements. These have the same 
v.~, x that  Tm and in part icular  the tensor structure "massless factor ized fo rm as "mas~l¢~ 

depends  only  on the external states is the same. These therefore contr ibute  to the 
equa t ion  of  mot ion  for the massless modes  and this contr ibut ion can be consistently 
ident if ied using, 

(1) 
Tm~ as~,ess + r;~'),_o + (r~?) ,_o + (ro~'),_o = 0. (3.50) 

Similarly, the tachyon equat ion of mot ion  to this order can be identified from, 

rt' 1, * ( r ;~ , )  +(r~,)  +(ro~') --0 (3.51) ach ~ t -  - 8 t - 8 t - 8 " 
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In x-space, these equations of motion are (in the gauge 0"Or~ = 0) 

{ OX O°(PxoPrv-- PrxPor) 

0 x 0 ° ) 

+~t 2 2 

+ ½ n x° + o~(oroo,ox~ - o,o orpx~) 2 

+¼ @~+ 2 2 " + T T  (ar°~°°~°~'- Orpo~ O~pXy} 

(3.52) 

+ ~(px. Or 0~ 0 x 0% - Orpxo 0~ 0 x 0°q, 

-O.pxo O r 0 x 0% + O r O~pxo 0 x 0%) 

( ° 2 + 8 ) * ( x ) = 2 ' 2 + 2  n°r+ 2 2 n B ~ + T T  (°r~°°~)-P"~(x)°"°~*" 

(3.53) 

These equations of motion are consistent with each other and the various 
couplings, with the string tree amplitude calculations which are performed in the 
same gauge 0"Or, = 0. For example, the 0P term in the equation of motion for the 
massless modes is completely consistent with string tree three-point amplitudes with 
three external massless legs. Similar statements are true for the other couplings in 
these equations. 

The equations of motion for the massive modes can be determined in an 
analogous manner by taking the corresponding t-channel pole in the matrix element 
T (2). For the first massive excitation, the P~, e~  and PP contributions to its 
equations of motion can be determined by picking up the contributions from the 
t -  8 pole in the matrix elements Tp(~ ), T~ (2) and To~) respectively. The finite 
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These again have the same factorized form a s  Tt(1)ssiv e and in particular the tensor 
structure Y-m"~{ which depends only on the external states is the same. Thus, the 
0q', ~ and pp contributions to the equations of motion for the first massive mode 
may be consistently obtained from 

T(12ssive -}-(L~))t_8 q-(T(2)) t_8 q-(L(22)),_8 ~" 0. (3.58) 

The various couplings are again consistent with the string tree point calculations 
for the three-point functions with an external massive mode and two massless 
modes, or two tachyon modes and an external massive mode, a massless mode and a 
tachyon mode. 

Eqs. (3.52), (3.53) and (3.58) are the main results of this section. They give the 
equations of motion for the massless, tachyon and first massive mode of the string 
up to terms of second order in the massless-massless, tachyon-tachyon and 
massless-tachyon couplings. We have emphasized earlier that all of these are 
consistent with the string tree amplitude calculations and, as we discuss in detail 
below, also with each other, in the sense that the relative normalizations of the 
couplings in the massless and tachyon equations of motion are compatible. Further, 
they contain contributions all to orders in a'. 

4. Discussion 

In this paper we have studied the interrelations between conformal invariance and 
the unitarity of the S matrix for strings in background fields. We first formulated 
the unitarity constraint which essentially states that physical states in the remote 
part, map into physical states after interaction. It was shown that this unitarity 
constraint is realized if the Virasoro algebra in the presence of background fields is 
closed. So, in this sense, conformal invariance guarantees the unitarity of the S 
matrix. We next showed that enforcing the unitarity constraint in a string theory in 
the presence of background fields places constraints on these fields which are just 
the equations of motion for the different string modes. In this manner, not only the 
equations of motion for the massless modes, but also those of the tachyon and other 
massive modes, can be consistently obtained. We have explicitly obtained these 
equations of motion in a weak field expansion up to second order in weak fields. 
These are valid on-shell and contain contributions to all orders in a'. The equations 
of motion derived in this paper, however are not gauge covariant but in a particular 
gauge, 0 ~0~ = 0 for the massless modes. This is the same gauge used in string tree 
amplitude calculations. The equations of motion derived in this paper have cou- 
plings which are completely consistent with the appropriate string three-point 
amplitudes. 

The question that naturally arises is whether the equations of motion can be 
obtained from an effective action. For purely the massless modes it is possible if an 
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expansion in a'  is made. This is because the various couplings in the equations of 
motion obtained here are consistent with the string tree amplitude calculations and 
the effective action that reproduces the string three-point amplitude has been 
obtained up to terms of order a'  in ref. [6]. Here we would like to point out that 
since we work in a gauge fixed formalism as in ref. [7], the gauge invariant action 
that reproduces the equations of motion will contain contributions from all the 
massless modes, i.e. the dilaton the graviton and the antisymmetric tensor modes. 
As discussed in refs. [6] and [7], in order to do that, one has to project out the 
appropriate spin components using projection operators. Whether it is possible for 
the equations of motion for the tachyon and the massive excitations to be also 
obtained from a covariant effective action is unclear to us. Even for the massless 
modes, we do not know if a covariant effective action can be written down without 
making an a '  expansion. However, the equations of motion for the massless and the 
tachyon modes given in (3.52) and (3.53) are compatible with each other in the sense 
that the ,#,# contribution to the massless equation and the pq, contribution to the 
tachyon equation can be obtained with the correct coefficients from an effective 
lagrangian. The same is true for the pq, contribution to the massless equation and 
the pp contribution to the tachyon equation of motion. For example, the contribu- 
tion ½ O~q, 0~q, to the massless equation and the contribution - p ~  3 ~ O ~, to the 
tachyon equation can be obtained from an effective action of the form 

AL f D 1 v = d x 7 0~q,O q~p~(x), 

after using the gauge conditions and dropping total derivative terms. This, we feel is 
a very satisfactory feature of our approach and an important consistency check of 
the theory. 

This work was supported in part by the US Department of Energy. 

Appendix A 

In this appendix we will give the proof of the fact that the matrix element T 
vanishes if we assume the closure of the Virasoro algebra. We will use induction 
with respect to the number of weak fields. 

For  the proof, it is convenient to separate out <AILI °) from T and define the 
following state ]VN). 

T¢N) = (A ILI°)I VN>, (A.1) 

where the superscript " N "  represents the number of weak fields. We always omit an 
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overall 27r 6(0) factor from T (u). Explicitly, 

-i 
[ VN) = ( - iH(N) ) IB)  + ( - i H ( N - ' ) ) ~ - - ( - i H O ) ) b B )  

- i  
+(-iHm)~(-iH (N /))[B>+... 

- i  - i  
+ ( - iH(1) ) - -~- - ( - iH (1)) . . . - -S - ( - iHO)) IB>.  

N times 

Notice that I VN) can be constructed recursively 

(A.2) 

[ VN ) = ( -- iH( N) )IB ) 

N 1 - i  
+ Y'. ( - - iH(O)-~-IVN_,) .  (A.3) 

l = l  

Now we will show the following fact by induction 

( N-1 -i  } 
L~°) IVN) = (a + n) -iL~N))IB ) + Y'. (- iL~°)--~-I  V._,) . 

/=1 
(A.4) 

From this equation we can get T (N) = 0 since the state <A] satisfies (A ](A + n) = 0. 
It is easy to see that the above equation is true for N = 1 and 2. Then, in the 

following, we will show the validity of eq. (A.4) for the (N + 1)th order, assuming 
that it is correct up to the Nth order. 

Let us apply L~ °) to [VN+I> 

I'/') - L<f)l VN+~) 

U --i 
= L(f)(iH(N+I))[B) + L (°) y" (- iH(O)-~--[ VN_, ) 

/=1 

- [ q q 5  + 1%5- (A.5) 

In general, from the closure of the Virasoro algebra, the mth order equation of the 
commutation return between L.  and H takes the following form: 

i [ L(n k), H(m k)] = ElL(m) ( A . 6 )  

k=0  
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or, 

m - 1 

L~O)H(m)=H(m)L~O)+(a+n)LI,,)__L~m)A__ y' [L~k)H(,, k)]. 
k = l  

(A.7) 

Using the above formula, we get for I~1) 

1~1) = L~°)(-iH(N+I))[B) 

= ( - i  H(N+I)L~ °) + (a + n)L~, N+I~- L~N+I) A -- E [L~ k)H(u+l-k)] I B) 
k ~ l  

N 

=(a+n)(--iL~U+l))lB>--(--i)  E [L~*), H(N+I k)]lB)- 
k = l  

(A.8) 

Here we have used the on-shell physical state condition for IB). For ['/'2) we have 

I'q,2) = L~ °) y" ( - i l l  (0) I VN+I_,) 
/ = 1  

N( ,1 
= ( - i ) 2 E  H(')L~f)+(A+n)L~')- L}, ' ) a -  E [L~ k)H(' k) SIVN+, ) 

l = l  k = l  

N (_,) 
=(za+n) E ( - i L ~  °) y ]VN+I ,) 

l = 1  

U 1 
- E H" G° SI 

/ = 1  

N N t - 1  1 

+ E L~,°I VN+I-/) q- E E [L}, k), H( '-k)] ~1VN÷a z). (A.9) 
l ~ 1  / = 1  k = l  

The second term can be modified as follows: 

U 1 

/ = 1  

U 1 
= -- ~ H ( O - - L  (°) VN+a_l) 

/=X A + n  " 

= -- EH(O{(--i)L(N+a-I)IB)+ E (-iL~ k)) IV,,+l-/-k) - 
/ = 1  k = l  

(A.IO) 
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Here we have used the assumption (A.4) up to the Nth order. Finally, the third term 
of eq. (A.9) becomes, using eq. (A.3), 

N N 

E L~.')I VN+~-,) = (-- i)  E L~OH(N+I-O} B) 
l=1  /=1 

. N ,  ) _(S ~ + y" ~ L~i)(-iH (k) [VN+I_,_k). 
l=1  k = l  

(A.11) 

Combining together 1'/'2) can be rewritten as follows: 

U --i 
IX/t2) = ( A  -{- n )  E ( - i L ( n  ̀ ) ) T [ V N + I - ` )  

l=1 

N 

+(-i )  E [L~J )H(N+t ')]]B) 
/=1 

N N - l  1 

+ ~ ~ H(t)L(,k)~-[ VN+l_l_k) 
/ - 1  k = l  

N N l l 

-~-~ £ L(,')H~k)5]VN+I , k) 
/=1 k = l  

N l l 1 
+ y" ~ [L~k), H (` k)] 5]VN+I ,). (A.12) 

/ - 1  k = l  

It is easy to see, by a simple change of the order of summation, that the last three 
terms in the above expression cancel each other. Then, together with [g'l) in eq. 
(A.8), 

1'I"5 = z(.°)l vN+I)  

= I~'15 + I't'25 

U --i } 
=(A+n) --it(N+i)lB )+ ~ (-iL~'))~-IVN+I ,) . 

/=1  
(A.13) 

This is the eq. (A.4) for the (N + 1)th order. 
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Appendix B 

In this appendix, we will prove the result stated in subsect. 3.2, i.e., the difference 
between the T and T* products, cancels the term involving H(m2~)~less in the interac- 
tion hamiltonian. Thus, if we use the T* product, then such a term may be excluded 
from our considerations, in accordance with the Nambu-Mathews theorem. For a 
discussion of this theorem in field theories, see ref. [8], [9]. 

The hamiltonian formulation, which we are using in this paper, corresponds to 
using the T-product and the S-matrix is given in terms of the interaction hamilto- 
nian by 

t .  1) 

The interaction hamiltonian, H~, may be expanded in the number of weak fields as 

Hx=  Hd)+ H (2)+ . - . .  (B.2) 

Here, we are omitting a subscript "massless" on the right-hand side and also the 
other terms in H I w h i c h  are not of interest for this discussion. H (1) and H (2) a r e  

given in eqs. (2.8), (2.11) and (2.15). To second order in weak fields, we have 

S(2,= ½(_i)2f d'r, f d'r 2 T (H( I ' ( I " I )  H(1)(1"2) ) 

- if d'r I n(2)(  "r 1 ) .  (B.3) 

consider the first term: Introducing ~" = i In r, Z = r e  '°, this becomes 

f dDlc, [dDk2 O,~(kl)P~,B(ka)(-i)2.i2{2 t ]..~6~.2 ) j IZ, 1 2 4  fd2Z, JIZ212fd2Z2 
• I ( 2 ~ ) ~ . I  (2 - -77  

XT{ :e'k,x'z"~p~( z,)~( Z,). 

X :ek2X{Z2)P'~(Z2)P~(Z2):} (B.4) 

The T-product  here,is really an r-product, i.e., for two operators Ol (Z l )  , O2(Z2) 

T ( O I ( Z 1 ) O 2 ( Z 2 )  ) = 0 1 ( Z 1 ) O 2 ( Z 2 )  , IZI[ > ]Z21 

= 0 2 ( Z 2 ) O l ( Z l )  , [Z2l > IZl] .  (B.5) 
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Our approach will be to write the T-product in { } in terms of a T* product and 
some contact terms. For this purpose, consider first 

T(Xtt(Z1)Xv(Z2)) =- O(]Z1] - [Z21)Xu(Z1)Xv(Z2) 

+ 0 ( [ Z 2 I -  [ZI[)X~(Z2)X~(Z1) (B.6) 

The operators, P"(Z) and /5"(Z) are given by, 

( o o )  o 
P " ( Z ) =  Or 0-o X ~ ( Z ) = - 2 i Z ~ - ~ X " ( Z ) ,  

, ~ ( 2 ) = ( ~ +  a] = _ o  ~o } X"( Z) - 2 i Z - ~  X"( Z) . (B.7) 

From this, it is straightforward to see that, 

0 
- 2 iZ2-~2  T (X~'(Z1) X~(Z2)) = T*(X~' (Z, )P~(Z2))  

= T(X~'(ZJP"(Z2)),  (B.8) 

Consider next, 

T(P~(Z1)Xv(Z2)) = 0(IZll -- IZ2I)pt~(Z1)X"(Z2) 

+o(IZ:l- LZ, l)S"(Z:)P~'(z~) (B.9) 

- 2 iZz-~zT(  P"( Z1) X"( Z2) ) = T*( p"( z1) p"( z2) ) 

= T(P~'(Zi)P'(Z2)) 

+ilZ2l 8(IZ~l - IZ:i)[P"(Z1), X~(Z2)] ,  

using, 

[ P ~ ( Z 1 ) '  X /~ (Z2) ]  ]ZII=[~2] = --i~Uv ~(O1 -- ~2)"  

The above becomes: 

(B.IO) 

(B.11) 

T*(pt'(Z1)p~(Z2)) = T(pt'(Z1)p~(Z2)) + # ~ I Z 2 1  = ~2(Z 1 - -  Z2).  (B.12) 
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Similarly. it can be shown that. 

T*( P"(Z1)/3" (Z2)) = T( P"(Z1)/5 v (Z2)) 

+ ~n"q z212 82(z1  - z 2 ) ,  (B.13) 

T*( /5 . (L) /5" (Z2) )  = T(/5"(Z,)/5" (Z2)) 

+ 7r,"'lZ2[ 2 32(Z1 - Z2). (B.14) 

The T-product in (B.4) may now be expanded out 
each term like T(P"(Z1)P'~(Z2)) may be rewritten 
Pa(Z2) ) plus the contact term using (B.12)-(B.14). 
terms and write the T-product in (B.4) in terms of 
pieces. Noticing that the extra pieces arise only from 
we get the result that: 

T{ :e i& x(z,,p.(Z1)/5,, ( Z1): :eik~x(za)P"(Z2) eft( z2): } 

= T*{ :e*,x'zl'e~'(Z1)/5~(Z1): :eikzx'Z2)P"(Z2)PB(Z2):} 

_Tr]Z212 ~2( Z1_ Z2){ (T* :eik'x(z')/5~( Z,):  :eik2X(Z2'::/5,8(~2) :) Tj.a 

+ T*( :e'k'x(z')P~( Z1): :eik~x(z~)P"(Z2) :).  ~' 

+ T*( :eik, x(z~)p.( z l ) :  :eik2X(z2)/sfl( 22):)~] ua 

+ W*( :ei*~x(z,)/5" (Zl):  :eik2X(Z2)pa( Z2): )7 "`8 } 

q- (qTIZ2[ 2~2(Z 1 -- Z2))a(~"a. ufl q-."fl.~'a)T*(:eik'X(Zl): :eik2X(Z2):). (B.15) 

Substituting this into (B.4), the first term in (B.3) may be written as 

i d~ 1 
½(_i)2f dTD d¢2T. (HO)(~.a)H(1)(,)) + 2- f do a f 4w 

X {(:p.v(X)/su(Z.1): :,l:)a/~(X)/5'8(Zl):). "a 

+(:p..(X)P"(Z1): :.,,B( X)P'~(Z1):)~I "B 

-}-( :pIz~( X)PP( Z1): :pal3( X)/sfl( Z l ) : ) .  ua 

+ :oo,(x)e°(z,):). } 

+ ~32(0)(,"~, 'B + , ' e , ~ " ) f  :p . . (X):  :O,,B(X)'d2Z1. (B.16) 

using Wick's theorem and in 
in terms of the T*(P"(Z1), 
We may then recombine all 
a T* product plus the extra 
PP, P/5, or/313 contractions, 
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Consider now the second term in (B.3). In sect. 2, an expression for H (2) was 
given, however, no ordering prescription was specified. We will now choose the 
ordering for H (2) such that the Nambu-Mathews theorem is valid. The expression 
for H (2) given in sect. 2 is: 

1 f2~r g )o d°4J (U.lV) H (2) = 2. 4 ~  

where, Jr = ½(PXPxr(X) + Prx (X)/Sx) so that Jr Jr can be written as: 

~( ( or~( x)~Oo~( x ) ~ ' ° ) ¢  ~ + ( or~( xlP~Oo,( X ) ~ ) ~ r °  

Thus, if we define H (2) by the ordering prescription 

H (2) = 2 • - -  1 f 2 ~  d 

+(:Pr~(X) Pr: :Pot~(X)P~:)~ ~' + (:Pr~(X) Pr: : P,~, P"~. ] ~1~° 

+ } 

1 foZ~do : j r :  . j r : .  (B.18) 
47r 

then the second term in (B.16) exactly cancels the second term in (B.3). There 
remains the third term in (B.16) which is proportional to 32(0). In order for the 
Nambu-Mathews  theorem to be valid, we have to choose a regularization prescrip- 
tion such that 62(0)= 0. That such a condition is necessary for the validity of the 

Nambu-Mathews  theorem was pointed out in ref. [9]. 
In conclusion, if we choose the ordering prescription for H (z) as in (B.18) and use 

a proper  regularization procedure, then we have shown that we may use the T* 
product  to evaluate the term ½ ( - i ) 2 f d ' q  d~-2T*(H(I)(~'I)H(X)(~'2) ) and drop the term 
that depends o n  H (2). 

Appendix C 

In this appendix we list some integral formulae which are useful in the evaluation 
of the matrix elements encountered in sect. 3. All the integrals needed can be 
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obtained from the compact formula given below. 

f d2zlzl,~ll - Zl ~ 

1 

1 

1 - Z  

x Z 

1 - Z  

Z 

(1 - Z )  2 

1 
1 

1 - Z  

1 - Z  

(1 - 2)  2 

® 

Z Z -1  

Z Z -1 

1 - Z  1 - Z  
Z 2 1 

1 - Z  1 - Z  
Z 2 1 

(1 - -  Z) 2 (1 - -  Z)  2 

2 2 - 1  
2 2 -1  

1 - 2  1 - 2  
2 2 1 

1 - Z  1 - 7  
Z ,  2 1 

(1 - 2 2 (1 - 2 )  2 

a + B + 2  

a + 2  

B 
(a + 2 ) ( a + f l +  2) 

~(B-2) 

a + B + 2  

B 
a + 2  

B 
( a +  2)(a+ fl+ 2) 

f i ( f l -  2) 

a + 2  

a + B + 4  
a + 2  

B 
(a + 2 ) ( a+4 )  

fl(a + fl + 4) 
( a +  2 ) ( a+4 )  

f l ( f l -  2) 

a + 2  

a + B + 4  

a + 2  
fi 

( a + 2 ) ( a + 4 )  

/~(~+/~+4) 
( a + 2 ) ( a + 4 )  

f l ( f l -  2) 

a + B + 2  
o~ 

(~+~)(~+/~+ 2) 

a + B + 2  
fi 

(a + fl)(a + B + 2) 
/ /(]3+2) 

a + , 8 + 2  
ff 

(a + fi)(a + fl + 2) 

a + f l + 2  

B 
( a + B ) ( a + B + 2 )  

f i ( f i -  2) 

× I o 
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with, 
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Io=,, 
o t F( 2 2 

# ¢~+ + 

As an example of the use of the above formula, consider 

52 

(a + 2)(e~ + 4) (c~ + 2)(c¢ + 4) 
x I0, #(a+#+4) #(#-2) 

i.e. in order to find the value of a particular integral on the left-hand side one writes 
down the appropriate entries of the matrices on the right-hand side and multiples 

by I 0. 
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