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An asymptotic method for analysis of nonlinear systems with wide-band and high 
frequency stochastic perturbation is developed. Correlation free (Ito) limiting equa- 
tions are derived and a generalization of the Wong-Zakai correction for the drift 
term is obtained. A correction for the diffusion term is also shown to exist. Several 
illustrative examples are considered. 0 1989 Academic Press, Inc. 

1. INTRODUCTION 

Dynamical systems with stochastic perturbations are of significant 
importance in a number of applications. Direct analyses of such systems 
are usually prohibitively difficult. A possibility of simplification is offered 
by derivation of a correlation free form for a system under consideration: 
such a form admits, at the least, an elementary analysis of deterministic 
counterpart of the stochastic system. It6 form for a stochastic system given 
in the Stratonovich description is an example of such a simplification. 
However, the It&-Stratonovich connection (i.e., the Wong-Zakai for- 
mula [ 11) is derived only for dynamical systems with wide-band noises. 
Although such noises are indeed of prime importance, other applications 
may involve high frequency perturbation as well. It is the goal of this paper 
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to derive a correlation free form for dynamical systems with both wide- 
band and high frequency perturbations and, in this manner, to generalize 
the Wong-Zakai theory. 

More specifically, we study here systems of the form 

x E R”, x,: R” + IR”, &E R”‘, xi: R” x WI + R”, i = 1,2, 

O<&<l, 

where X,,(x) represents the deterministic unperturbed dynamics while 
(I/&) X,(x, ti(t/s)) and (l/s) X2(x, <Jt/s)) are intended to model wide- 
band and high frequency (state dependent) perturbations, respectively. 
To accomplish the latter, we assume that for each fixed XE [w”, 
(l/&l X,(X? 5,(t/&)) is a vector, stationary, ergodic, wide-band random 
process and (l/s) X2(x, <*(f/s)) is either a vector, stationary, ergodic high 
frequency random process, i.e., a process whose power spectral density 
vanishes, at least quadratically, at 0, or an almost periodic vector function. 
To avoid trivialities, it is also assumed that 

ECX,(x, 5,(r)) I xl = 0, 

ECJf,(x, 52(T)) I xl = 0, 
(1.2) 

where E denotes averaging. Although (1.2) holds for each fixed x, there 
may be nonzero correlation between state x(t) and processes ti(r), i = 1,2, 
in Eq. (1.1). This would imply in particular that even if X,,(x) = Ax, 

dEx 
7 + -Jfo(Ex) 

and therefore, the averaging would not reveal the deterministic counterpart 
of the stochastic system. 

In this paper, we derive asymptotic (with respect to E + 0) correlation 
free forms of (l.l), (1.2), i.e., limiting equations in which the noises and the 
states are uncorrelated. An analogous problem has been addressed in 
[2, 33 for situations in which X2(x, t2) = 0, and in [4, 51 for situations 
with X,(x, 5,) = 0, and t2 an almost periodic function. Results for the 
general case are derived below. 

Specifically, we show that the interaction of 5, and t2 brings about not 
only a generalization of the Wong-Zakai formula for the drift coefficient in 
the limiting It6 equation but also a correction in the diffusion term. The 
latter implies that the limiting equation may contain more independent 
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white noises than wide-band noises of the original system (1.1). This 
phenomenon has its origin in the modulation of t;, by t2 which, in the limit 
of E + 0, results in a new, independent white noise. 

The results obtained here may find applications for stability analysis of 
systems with random perturbations and, in particular, for derivation of 
vibrational stabilizability conditions for stochastic systems [S, 63. 

The structure of the paper is as follows: In Section 2 we derive correla- 
tion free forms for Eq. (1.1) and analyze their properties on finite and 
infinite time intervals; in Section 3 several examples are considered ; the 
formal derivations are given in the Appendix. The development is based on 
a combination of two techniques, the first of which has its origin in [4] 
and the second in [ 3 1. 

2. MAIN RESULTS 

In order to reduce Eq. (1.1) to a form suitable for asymptotic analysis, 
introduce the generating equation [4] of the form 

dx 
-& = X2(x, 52(T)), 5 = t/E. (2.1) 

Assume that (2.1) has a unique solution 

47) = NT, x0) 

defined for every initial condition x0 E R” for all r > 0. 
The following proposition was proved in [4]. 

(2.2) 

PROPOSITION 2.1. Assume that X,(x, 12) is differentiable with respect to 
x. In this case substitution 

4~) = hk Y(T)) 

reduces ( 1.1) to the standard form 

4 
z= YdY, t/4+L Yl(Y, t/s 51(tb)), 

A 
(2.4) 

where 

Yi(y, t/E> Si(t/&)) = [$ (t/E, y )] -’ x;(h(t/&, yh Si(t/E)), 

(2.3) 

i=o, 1, f&=0. 

(2.5) 
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Under appropriate assumptions on functions Xi and the noise processes 
ii(z), the asymptotic methods of [2,3] can be utilized to analyze the 
asymptotic behaviour of (2.4) as E + 0. Specifically, assume that Xi, 
i = 0, 1, 2, are smooth functions of x, continuous in 5, and that X0, X1, and 
h satisfy the following conditions. 

There exists a constant C > 0, independent of z and t,(r), such that for 
all x E R” 

0) IXl(xp tl)l < C(1 + Ixl), I&, ~11 G C(1 + I-4). 
(ii) ldx~~/~Xl < C, I(aXi/ax)(X, ti)l <C, I(dh/dX)(X, 7)l GC. 
(iii) Higher order x-derivatives of h and Xi, i = 0, 1, are bounded by 

powers of 1x1 uniformly in o and rI. 

We make the following assumptions about r,(7), and 47, x0): 

(a) t1(7) is independent of t2(7). 

(b) 5,(t) is an ergodic, stationary diffusion process with a transition 
function P(t, 5 1, A) and unique invariant probability measure p(A), such 
that 

uniformly in 5, and A c R”‘. Furthermore, the recurrent potential kernel 

Q(SIJ)=~~~ (p(f, t,,A)-AA))dt 

exists and maps the bounded smooth functions of ll into themselves [3]. 

(c) 47, x0) satisfies the ergodicity condition 

)im +JoT 4 7, xc,) d( = b,), vx, E R”, 

where h: R” -+ R” is a deterministic function. 

Let Yl be the jth component of Yi, i= 0, 1, j= 1, . . . . n. Define 

P&(y) = ?irnm i J,’ E[ Y$( y, 7)] d7 
0 

aJy)= lim A T  
T -m si T 10 

’ ECY:‘(y, 7, t,(7)) Y:(Y, 0, t,(a))1 da d7 
to 
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and 

(2.7) 

The following limit theorem can be proved using the techniques of [3]. 

THEOREM 2.1. Assume that in addition to the aforementioned assump- 
tions we have 

(i) the limits (2.6) exist uniformly in y and are independent oft,; 

(ii) lim T-~(~/T)SOTECY~(Y,Z,~;,)I~Z=~. 
Then y(t), t k 0, defined by (2.4) converges weakly in C( [0, T]; W), T < cxj. 
as E -+ 0 to the time-homogeneous diffusion j(t) generated by L. 

Remark 2.1. The diffusion process j(t) generated by L can also be 
represented as the solution of the It6 equation 

dj= YO(j)dtt Y,(j) dw, (2.8 1 

where w(t) is a standard n-dimensional Brownian motion and 
(y,(y) ry( Y))~= 2aii( y). Equation (2.8) is a correlation free form of 
system (2.4); i.e., the noise dw(t) and the state j(t) are uncorrelated. The 
second term of F,,(j) in (2.6) is the generalized Wong-Zakai correction for 
the drift, and a correction due to the high frequency process t*(t) is present 
in the diffusion term P,(j). 

The following stability theorem can also be proved using the techniques 
of [3]. 

THEOREM 2.2. Assume that in addition to the assumptions of Theorem 2.1 
we have 

Yi = 0 if y=O, i=O, 1, (2.9) 

i.e., 0 is an equilibrium point of (2.4). Assume there exists a smooth positive 
definite function V(j) on [w” such that 

JwY)G -YV.F), Y >o, (2.10) 

for all j belonging to some open neighborhood of 0. Then there exists an 
Ed > 0 such that for all 0 < E < Ed, 0 is a uniformly stochastically exponen- 
tially stable equilibrium point of (2.4); i.e., for all n, , n2 > 0 there exists 6 > 0 
such that if 1 y(O)1 < 6 then 

409/139/2-I3 
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Remark 2.2. Other conditions for convergence on infinite time-intervals 
exist. In particular, if j(t) is ergodic it follows from the results of [7] that 
v(t) converges to j(t) in distribution on (0, co). 

The proofs of Theorems 2.1 and 2.2 are almost identical to the proofs of 
Theorems 4 and 5.1 in [3] and will be omitted here. Instead we outline the 
derivation of (2.6), (2.7) in the Appendix. 

Theorems 2.1 and 2.2 establish the relationship between the process y(t) 
and its limiting process p(t) on finite and infinite time intervals. On the 
other hand, process X(C) defined by (1.1) is related to v(t) through substitu- 
tion (2.3). Define process X(t) by 

i(t) = NT, j(t)), (2.11) 

where j(t) is given by (2.8). Then we have the following proposition. 

PROPOSITION 2.2. Assume that the hypotheses of Theorem 2.1 are true. 
Then 

(i) x(t) defined by (1.1) converges weakly in C([O, T]; W) as c-0 
to X(t) defined by (2.11). 

(ii) If (2.9) and (2.10) hold, then there exists an Q, > 0 such that for all 
O<E<E,, and tl, flz >O there exists a 6>0 such that if x(0) =X(O) and 
Ix(O)1 < 8 then 

P{sup Ix(t)-Z(Z)/ <<*} 2 1 -d,. 
t>0 

Proof See the Appendix. 

Remark 2.3. The differential equation for X(t) defined in (2.11) is 

d% = X0(7, X) dt + 8,(z, x) dw +; X,(X, t*(r)) dc, 

where 

(2.12) 

and g(r, X) is the inverse of h(r, jj) in the y variables, i.e., X = h(r, g(r, 2)). 
It is easy to show that 

zrn, fjo’ X,(X(r, t), r,(r)) d7 = 0. 
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Since, E[F’,(t, X) dw] = 0, Eq. (2.12) can be viewed as a correlation free 
form of ( 1.1) and the difference between X,, and 8, and their counterparts 
in (1.1) can be viewed as generalized Wong-Zakai corrections in x-space. 
However, since X and j have a simple relationship (2.11), Eq. (2.12) does 
not offer additional information or utility in comparison with the correla- 
tion free form (2.8). 

3. EXAMPLES 

Below we present three examples. The first one is the linear harmonic 
oscillator with random spring constant [3, 81. We assume that the random 
process is a sum of independent wide-band and high frequence processes 
and analyze the effect of each process on the stability properties of the 
oscillator. The second example is a simple linear system in which the 
generalized Wong-Zakai correction in the diffusion term is clearly 
illustrated. The last example is the Rayleigh oscillator with wide-band 
parametric oscillations and high frequency forcing. In this example the 
stabilizing effect of the high frequency noise is illustrated. 

EXAMPLE 1. Consider the linear harmonic oscillator with damping 
coefficient y and a random spring constant 

jr+2ya+(d+{(f))x=O, (3.1) 

where 

t(f) =J- flS,(G)) + f l*(G)3 
6 

(r(r) is a one-dimensional Ornstein-Uhlenbeck process 

dc,= -(,dr+dw 

and P: II&! -+ I= (a, b) (a bounded interval) is such that 

Jw-(C;lH =o; 

l*(r) is any integrable, stationary, ergodic, high frequency process whose 
integral q(r) = f (Jr) d z is also stationary and ergodic and bounded. 

The generating equation for (3.1) is 

i,=o 
1 (3.2) 

1, =; 52(G) Xl 
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and the substitution (2.3) becomes x1 = y,, x1 = q(r) y, + y,. The equation 
in the standard form is 

31= Y2 + II(@) Y,  

P2= -m+?(e)) Y2-(w’+~2(f/&)-2Ys(rl&)+~~(~,(f/&))) Yl. (3.3) 

The averaged equation corresponding to (3.3) is 

i,=Y2 

j2 = -2yj2 - (co2 + a2) y, + ajl 3, 
(3.4) 

where ti, is a standard Gaussian white noise, ~1~ is the variance of q(t), 

and 

f 
m = R(s) ds. 
-m 

The differential generator of the averaged diffusion process (3.4) is 

L=Y2i)-(2~~2+(WZ+d12)gl)d+~j;22 
aY, dY2 2 14Y,’ 

(3.5) 

To analyze the stability properties of (3.4) and, therefore, of (3.3) and 
(3.1) for sufficiently small E we solve the equation 

W(j)= -(cly:+c2y:), c; > 0 (3.6) 

with 

V(y)=m,,y:+2m,,~,y,+m,,~:. (3.7) 

A simple calculation shows that the quadratic form (3.7) is positive definite 
for all cj > 0, i = 1, 2, if and only if 

2(02+ a2)y > f. (3.8) 
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Conditions of the form (3.8) have been derived from [3,8]. However, there 
is an interesting difference here. Indeed, rewriting (3.8) as 

4y>L 
OJ2+Ct2 

(3.9) 

we note that strong wide-band noise (large cr*) requires a large damping 
coefficient y, whereas large high frequency noise (large 01~) reduces the 
bound (3.9) on y. Thus, since (3.9) is a necessary condition for stability of 
(3.1) we conclude that the wide-band noise destabilizes (3.1) while the high 
frequency noise is stabilizing. 

EXAMPLE 2. Consider the linear system 

i, = -x, +I F(<l(@)) 
& (3.10) 

i2= -2x,+I(sin[/.s)x,, 
E 

where F(<l(f/s)) is a wide-band process as in Example 1. The generating 
equation for (3.10) is 

i-,-o 

1 
(3.11) 

i-, =; (Sill t/E) X, , 

and the substitution (2.3) is x, = y,, x2 = -(cos 5) y, + y,. The system in 
standard form is 

.?I = -Yl + -!- e52(f/E)) 

d (3.12) 

j* = -2y, + (cos t/E) y1+ --!- F(t2(f/E)) COS t/E 

4 

and the averaged system 

j, = -j, +cnb, 

j2 = -2j* + -5 G,) 
d 

(3.13) 

where G, and G, are independent white noise processes. The noise process 
+I is obtained as the limit E -+ 0 of the modulated wide-band proces 
(l/G) F(c,(t/~)) cos t/E. Obviously, (cr/fi) tit, is the generalized diffusion 
correction. 
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The limiting system (3.13) is a pair of ergodic, independent, 
Ornstein-Uhlenbeck processes. Hence, it has a unique stationary distribu- 
tion and it follows from [7] that y(t) and j(t) are close in distribution for 
small E and all t B 0. Furthermore, it follows that the solution of (3.10) is 
close in distribution to X = [ j, , - (cos( t/s)) j, + J2] for all t >, 0 and small 
E > 0. 

EXAMPLE 3. Consider the Rayleigh equation with parametric oscilla- 
tions and forcing 

a++3/3-ii-)+ 1 +h(&(t/E)) 
( 4 ) 

x=+4 (3.14) 

or equivalently the system 

i,=x, 

ii-,= +x:/3-x,)- 1 +LF(&(t/s)) 
( 

(3.15) 

J ) 
Xl + a Mfl&). 

We assume that F(s,) and t2 satisfy the assumptions of Example 1. The 
change of coordinates for (3.15) is x1 = y,, x2 = y, + q, and the equation in 
standard form 

Y1 = Y2 + v(G) 

P2= -~((y2+~(tl~))3/3-(~2+~(tl~)))- 1 +LF(51(V~)) yl. 
( ) 

(3.16) 

d 

The average equation corresponding to (3.16) is 

31=v2 

;* = -/L( y:/3 + (a2 - 1) j2) - y1+ aj, 6. 
(3.17) 

Systems (3.16) and (3.17) have equilibrium point at (0,O). To investigate 
the stability properties of (3.16) in a neighborhood of zero we linearize 
(3.17) around (0,O). The resulting linear system is 

i, =22 

i,= -~(a2-1)z2-z1+~z,ti. 
(3.18) 

A simple calculation shows that (3.18) is uniformly, stochastically, 
exponentially stable if 

CT2 
or2>1+-. 

2P 
(3.19) 
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Therefore, by [9] and Theorem 2.2, (3.17) and thus (3.16) (for small 
enough E) are also asymptotically stable in a neighborhood of zero if (3.19) 
is satisfied. Finally, since xi = yi and x2 = y, + q(t/e), we conclude that if 
(3.19) is satisfied then (3.15) has an asymptotically stable ergodic solution 
(x;(t), x;(t)). Thus, the high frequency oscillations in (3.14) have resulted 
in a transition of the unstable equilibrium point (0,O) of the system 

.2+/+3/3-i)+ 1 +b(t,(r/E)) 
( 4 > 

x=0 (3.20) 

into an asymptotically stable ergodic solution. 

APPENDIX 

First we outline the derivation of (2.6), (2.7). Define for smooth func- 
tions f: IhY -+ [w 

Condition the process y(t), given by (2.4), on a trajectory of h(r, . ), i.e., 
let H, be the a-algebra generated by h(s, . ), 0 < s < z. Then since 5 ,(T) is 
independent of H, the joint process (y(t), <i(z)) conditioned on H, is a dif- 
fusion process on [w” x BP. Its conditional transitional probability density 
function p(t, y, <,I H,) satisfies the backward Kolmogorov equation. We 
assume that p is a function of slow and fast time t and r = t/s and write the 
backward equation in the form 

(A.1) 

where K is the differential generator of the process cl(t). Next we derive an 
averaged equation for y by expanding p( y, t, r, l, 1 H,) in power series in 

J E. Rewriting (A.l) in the obvious operator notation 

Lp=L,p+iL,p+~L,p=O, 
xh 

(A.2) 

and expanding 

P=Po+&P,+&Pz+ " (A.3) 
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gives to order l/s 

L*p$g+Kp,=O. (A.4) 

It follows from the ergodocity of <, that the only bounded solution of (A.4) 
is constant with respect to r and ll. Thus 

At order l/& we obtain 

PO = Pot YY t)* (A.9 

L,p,= -L,p,= -i Y:(y,r,C,)$. 
i=l I 

By assumption (ii) of Theorem 2.1, the right-hand side of (A.6) satisfies the 
solvability condition (Fredholm alternative) for the operator L,; i.e., the 
right-hand side is orthogonal to the solution p* of the adjoint equation 

The solution is given by 

Lz*p* = 0. (A.7) 

= 
f s 

m ds 
0 WI CW,t,,dz)-Adz)1 i Y;(w+w$’ 

i=l I 

= Q,,(Y~ 77 5,). (A.8) 

At order 1 we obtain 

LzPz= -Lop,-LIP,. (A.9) 

Again, the solvability condition for (A.9) is that the right-hand side of 
(A.9) has to be orthogonal to p* given by (A.7). Thus after substituting p, 
from (A.8) into the right-hand side of (A.9) the solvability condition gives 

x i Y',(YY TY 5,) 
aQ,(YT TV 5,) aPo 

JYi 
+ Y;( y, T) ayi 1 dz = 0. (A.lO) 

i= 1 

It can be shown, by some lengthy algebra (that we omit here), that 
Eq. (A.lO) is equivalent to (ape/at) + Epo = 0, where 1 is given by (2.6), 
(2.7). 
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Finally, it follows from the ergodicity of h(r, .) and the averaging with 
respect to z in (A.lO) that pO( y, t) is independent of H, and whence (A.lO) 
is the backward Kolmogorov equation for the diffusion process j(t) defined 
by the It8 equation (2.8). 

Next we prove Proposition 2.2. 

Proof of Proposition 2.2. The proof follows from Theorems 2.1 and 2.2 
and the following observation. 

By assumption X2(x, t2) is a smooth function of x and, thus, so is 
h(z, y). Therefore, 

h(r,Y,)=h(~,Y,)+~(~,YI)(Y*-YI)+~(Y2-YI). 
aY 

(A.ll) 

By assymption lLJh(z, y)/8yl < C and higher order derivatives of h(t, y) are 
uniformly bounded by powers of 1 yl. This gives 

Ih(G Yz)-&, YIN GClY,-Y,l +roy,-Y,l), (A.12) 

where ~(IY~-Y~O~~Y~-Y~~ --+O as Y, -+ y, uniformly in z. Finally, (A.12) 
gives 

and the statements of the proposition follow. 
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