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We formulate a boundary integral approach to the determination of periodic steady-state eutectic growth patterns. The numerical
implementation of this method allows us to compute the band of allowed velocities for a given undercooling. We illustrate how this
works in a simplified symmetric eutectic solidifying exactly at the eutectic composition.

1. Introduction

Constant velocity lamellar eutectic patterns are
observed during free growth sufficiently close to
the eutectic composition [1]. The determinant of
the allowed wavelengths and velocities is im-
portant both for our understanding of the general
problem of pattern formation in non-equilibrium
systems as well as the practical control of alloy
microstructure. Also, a careful study of this prob-
lem is the first step towards formulating a more
complete theory of the full range of possible
eutectic structures.

There have been many previous studies of
lamellar eutectics [1]. Perhaps the best known is
the work of Hunt and Jackson [2] who solved the
equation analytically by employing several ap-
proximations. Later, Dayte and Langer [3] ex-
tended this work to include a discussion of possi-
ble instabilities at off-eutectic compositions. These
works made significant progress towards elucidat-
ing the possible behavior, but had to make use of
hard to justify assumptions to carry through the
analysis.

In this paper, we develop and apply the
boundary integral methodology for this system.

That is, we rewrite the equation of motion as an
integro-differential equation for the interface posi-
tion. This technique has proven to be very powerful
in earlier numerical studies [4,5] of steady-state
patterns in directional solidification. It is signifi-
cantly more efficient than methods which solve
the field equations over the entire region by, say,
finite element decomposition. Here, we use a simi-
lar approach for eutectic growth, and present some
sample calculations on a simplified version of the
full problem.

This paper contains several important results.
First, we demonstrate the ease with which one can
find an explicit solution for the band of allowed
patterns at fixed undercooling. These solutions
correspond to steady-state lamellar structures of
varying velocity and wavelength. Next, we show
that there is indeed a maximum velocity at fixed
undercooling, as indicated in the approximate
analytical calculations of Hunt and Jackson. Fi-
nally, we find a fold in the solution branch, corre-
sponding to a maximum value of p =vA/4D for
velocity v, wavelength A and diffusion constant
D. The velocity at this fold increases as A% for
undercooling A. We compare this to a related
finding in directional solidification.
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The outline of this paper is as follows. In
section 2, we review the derivation of an integro-
differential equation, employing standard Green
function techniques to the diffusion equation. In
section 3, we describe our numerical algorithm for
generating solutions. Section 4 presents our results
for the symmetric eutectic solidifying at the
eutectic composition. Finally, section 5 describes
extensions to this study currently in progress.

2. Integro-differential equation

Let us start with a standard eutectic phase
diagram [1] such as that shown in fig. 1. The
slopes of the solidus and liquidus lines for the
A-rich and B-rich phases are respectively denoted
by m®, m2B. The eutectic composition, denoted
by Cpg, is the point at which the two liquidus lines
meet, at the eutectic temperature 7.

The equations describing eutectic crystalliza-
tion are as follows. First, the concentration in
each phase satisfies the diffusion equation

D,v*C=09C/dt, (1)

where the diffusion constants are phase depen-
dent. At large distances from the front, C — C_.
Next, conservation of matter gives rise to the
Stefan boundary condition.

DA~ vC|,— Dpit- vC | = —(C™ = CM) v,

(22)
D vC| =~ Doh- ¥C | = —(C" = CP),,
(2b)
Ty liquid
T (pure B)

Te .
E . solid
co-existence
region

Fig. 1. Binary eutectic phase diagram.

where v, is the normal velocity and C/™, C*? are
the concentrations at the phase boundaries. The
above two equations are valid at the liquid-solid
A and liquid-solid B lines respectively.

We assume local thermodynamic equilibrium at
a fixed temperature T = Ty — A. Using the
Gibbs—Thomson condition, we derive

m?(C,f“l — CF_) =A%,k =mf‘(CsA — C{;‘),
(3a)
mB(CM — Cp) =4 — Fye =m2(C2—CE), (3b)

where C2® are the solid compositions at the
eutectic temperature, and ¥, are the capillary
lengths o, z7:a"®/L where 0,5 are the surface
energies of the solid A-liquid and solid B-liquid
interfaces, L is the latent heat, and the tempera-
tures 7, refer to the pure phase melting points.

Finally, the triple phase point equilibrium gives
rise to the conditions

0, COs 0, + o cos O = 045,

(4)

g, sin 8, = —a, sin 8y,
if 6 is the angle between the liquid-solid interface
and the (vertical) AB phase boundary, with surface
energy o,5. This set of equations then allows for
the evaluation of the normal velocity, given the
current values of the interface and field variables.

We wish to focus on steady-state growth at
some velocity v. Let us define a new dimensionless
concentration variable

C—Cg C,—Cg
u=—= s Uy == (5)
CE_CE CE—CE

Similarly, we define the dimensionless variables

AA‘B——— A
mpB(CP - Cg)
~A.B
A.B vy’ A -1
e el e (C2— C B
2D/m?'B( i E)

We also need various ratios

A,B A, B
A= e , aA,B:Ds B’ B.__L—CE.
m;\'B D, CQ— Cg
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Finally, we rescale all lengths by the diffusion
length v/2D,. Then the above equations take the
form

via+ 2% =0 liquid,

a® By + 29E =0 sold,
dy

u—u as x — oo,

o0

ulP).  (6)

where the values of the field at the interfaces are

A A B
A Vul(,— a™Bh. Vu|s= —2(u,A‘ -

ug =& —v"x,

ul =1+k™(4—-v%),

ub =A% — yBk,
ub=p+k®(a- yBx).
(7)

This derivation shows that the system is de-
termined completely by the growth conditions
AMB 4 . and the material parameters, y*B, k4B
B, a™®.

We can use by now familiar techniques to write
the above system as an integrodifferential equa-
tion. Specifically, we construct the field u;(u,, u,)
which is zero everywhere except in the liquid
(solid A, solid B) region where it equals the actual
field u. Let us label the liquid-solid A interface
by I, the liquid-solid B one by I'y and the
vertical solid-solid line by I,. Then, we can
write down the integral equations

F((r‘z'-V’G)u?—G¢)

Uy =u_+
+ A’. /G B_G ,
fra((n v'G)ul - Go)

U, = fr (7" v'G™ul + G*™)

of (et
FAB
us= | (A" v'G®Yul + G%")

+/ (A" - v'GB)ub,
)N

where ¢, ¢*® correspond to as yet unknown
charge layers, and G, G*® are the steady-state
diffusive Green functions to be discussed in the
next section.

Next, we must impose the Stefan condition (eq.
(6)) on the general solution above; this yields

(¢ —2ul®) —a™ BBy 2y P
= —Z(u?'B— u:"B).

This immediately implies

o =a,0, (alongT,),

¢ =aypy (along I'y).

Note that we are not imposing the Stefan condi-
tion along the [,5 boundary, but instead are
assuming that it always remains a straight vertical
line. This corresponds to assuming that diffusion
in either solid is much slower than in the liquid
phase.

The final equations are then obtained by set-
ting u; =0 on the solid side of the I, and Iy
interfaces, and similarly setting u,;=0 on the
liquid side of I, and Iy respectively. Thus, at
each point along the entire liquid—solid interface
there are two equations to solve. The unknowns
are the actual interface along I'y and I'y as well as
¢. In the next section, we describe a numerical
procedure for obtaining solutions of these coupled
equations.

There is one result that follows immediately
from the above equation. Let us add all the equa-
tions and integrate over one wavelength with mea-
sure dx. Then the only surviving term on the right
hand side is the zeroth Fourier components of G
and 7i- vG. We will soon derive explicit expres-
sion for these objects but for the moment, we note
that

(;I'VG)(O)ZO at y:y”
Goy=a/4p,

where a =1, a®, a® in the three phases respec-
tively. Adding all the equations causes the G¢
piece to cancel, leaving us with the result

B

uw()\a-l—)\b):frdx' u?+/rdx’ ub. (8)
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This just represents conservation of matter on the
global scale. For the simple case kA =kB=0,
B = —1, this reduces to the result

Cao(>\a + >\b) = CSA}\a + CsB}\tw

where A,, A, are the widths of the A and B
phases and the overall wavelength is A=A, +A,.

3. Numerical approach
3.1. Discretization

To solve the previous set of equations, we need
to consider several issues. First, we discuss the
discretization of the interface, allowing us to re-
place the integro-differential equation by a set of
coupled nonlinear algebraic equations. Next, we
explain how to evaluate the Green functions (and
derivatives thereof) appearing in the above expres-
sions. Finally we describe the algorithm used to
solve the resulting finite system.

Let us parameterize the interface as follows.
We put points at equal arc length spacing ds,
along I', and dsg along I'y. Let i = 0 be the tip of
phase A, i = N the A-B boundary, i = 2N the tip
of phase B. We also define midpoints ;j such that
point j is halfway between i=j—1 and i=j. In
the interior of Iy, j runs from 1 to N and in IF,
from N +1 to 2N. Our dependent variables are
taken to be the values 6, of 6 =cos (A7) at
points s, In terms of 6, the actual interface
positions are given via

x;=x;_,+ds, cos b,

Yi=Yi1—dsa sin 6,
for i=1, N and

X;=x,_,+dsgcos b, y=y_;—dsgsinb,

for i= N+ 1, 2N. Note that x, = 0 by assumption
and y, is also arbitrary and also set to zero. The
total number of interface variables is 2N + 2,
counting ds, and dsg. One relation between ds,
and dsy can be determined by the requirement
that the pattern has periodicity A, that is via
X,n=2A/2; so, we can think of one of the un-
knowns as the wavelength. The other unknowns
are ¢, i=0, N—1and i=N+1, 2N. Note that
¢ is discontinuous at the triple phase point and its

value approaching this point from either side is to
be determined by extrapolation from the neigh-
boring points. The total number of unknowns 1is
4N + 2.

We therefore need to find 4N + 2 equations.
First, we have the integro-differential equations
evaluated at the points i=1, N—1land i= N+ 1,
2N —1, that is everywhere but the interval end-
points and the triple phase point. This gives us
2(2N — 2) equations. Next, the slope at the mid-
phase points i =0 and i = 2N as well as ¢’ at the
same two points must be zero. These give rise to
the approximate conditions

0= %01 - %02 = %02}\/ - %021\/—1»

O0=¢, =40, + 3¢y =y —4dyp | + 39,4 =0.
This brings us to 4N equations. Finally, we impose
the triple phase equilibrium condition. This gives
the two final equations involving,

N %()N - %HN—I’

s = %HNH - %0}\/+2’

which are just those given in eq. (4). This com-
pletes our description of the discretization proce-
dure.

3.2. Green function

Let us now deal with the Green functions G,
G*B. These satisfy

2 0G
2 = Y _ ’ !
VGt gy =8(x=x)8(y =) (9)
with @ =1 in the liquid and a =a™" in the solid
A, B phase. A solution to this equation which
satisfies the periodic boundary condition 9G/09x
=0],- .2 can be written as

AB

, , —(y—y)/a
G= X o riy—yag C

4p 2p

ST

m

XCXP(—%“’ ('m:)'ly—y’|)}
T ey |
x{ a2+ » } , (10)

where p = Av/4D.
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The sum as it stands is not sufficiently conver-
gent to be tractable numerically. We therefore
proceed in one of two ways, depending upon
whether p/a is small or large. For the former, we
can do the sum exactly in the limit a —> oo. This
then allows us to rewrite the above expression as

—(y—y")/a
G= ey rlyyia S " 7 T
4p 4
- ’)
x log|1 + e 2mly=y1/p _ 9 COSH——%)

Xe‘ﬂly“y'l/p}

mm(x—x"))

+sgn(y—y') Y n, cos( > i

X[eﬁcylyfy’l_e*kxlyfy’l] , (12)
with
=TT (@1)2+L

7 P o

These sums need to be made more convergent,
which can be accomplished via the replacement of
these expressions with

e—(,v—y )/ @

+ 21‘)

eXP(—\/%+(—p7—r)2 Iy—y'l)

1 (m7r )2
P + —_—
o’ p

e” Y/ . (m';r(x—x')\
m

X

exp(—mm|y~y'|/p)
- 2 . 11)

The sum is now absolutely convergent and can be
evaluated to any desired accuracy by simple trun-
cation.

A similar method works for A" - v'G. If we
apply the normal gradient to the above expression,
the only new problem arises when the derivative
acts on the terms inside the sum. These pieces
have the form

e (rya , . m’rr(x—x'))
—_— n’ sin| ————~
2p z ( P

k. e kyly=y' ,
X X;];—_ — e kely—yl

y

[ sinf =

2n
T Ay T T

—kyly=y|
k,e ™

k

—e keI 4+ i
) k

X

+sgn(y —y")d_n), cos

")

pe

s |e—kly =yl _ gkely—y'1 (1 n ki)])

with 4 = — |y —y’|/2a® This replacement then
requires us to add to 2" - v'G the additional term

ﬁeﬁ(yﬂ)')/a
27

7
e~ TIy=y'1/p sin(M)

’
X

X|n -1

tan -
1—e 7ly=y'l/p COS(M)

+my" sgn(y —y’) ln(l +e2myI/p

-2 COS(W(%TX/)) e‘ﬂlyw'/p) )

The final sums then are absolutely convergent and
can be handled by truncation.
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In a recent paper, Karma [6] has suggested that
in the small p/a limit, a useful approximation to
G can be obtained by dropping the final sum
altogether. A similarly useful approximation to
7'+ v'G can be obtained by again dropping the
final sum, but including the additional terms just
computed. Once this is done, the error being made
is uniformly of order ( p/a)? and can be safely
neglected in many cases of interest.

For the case p/a large, the above method is
not convenient. In particular, many terms in the
sum will be necessary to achieve the desired accu-
racy. In this limit, it is more convenient to use the
alternate expression

XKO(%\/(x—x'+ 2pn)* + (y —y')z).
(13)

For p/a large, each successive term with higher
in| will be exponentially suppressed relative to
the n = 0 piece. Derivatives of G can be calculated
by explicitly differentiating each term in the sum
without any loss of convergence.

3.3. The algebraic system

The integrals in the evolution equation can be
evaluated by the trapezoidal rule after explicitly
dealing with any divergent integrands. As we have
seen, there are singularities in both G and 74" - V'G.
After taking into account the 8 function piece of
A’ - v'G by hand,

i-vV'G~ +£38(s—s"),

depending on whether y -y, +¢, we have, at
worst, logarithmically singular terms. These can be
handled by explicit subtraction. For example, we
replace Go(s”) by
G(x, x's y, ¥') o(s”)

= G(x, x5y, ¥") [o(s") = (s)]

1 N2
—Z;ln(s—s) o(s).

This then has a finite limit as s — 5. The last term
can be integrated explicitly since ¢(s) is indepen-
dent of s’. Similar subtractions work for the loga-
rithmic divergences in A”-v'G; as long as the
factor multiplying the logarithm is evaluated at s
(as opposed to s’) the subtraction terms can then
be handled analytically.

Once this is done the trapezoidal rule gives the
integral correct to O(1/N?). Derivatives (such as
needed in the curvature (xk = 06 /9s)) are evaluated
by finite differences. The result of all this is a set
of 4N + 2 algebraic equations for the charge layer
¢ and the interface #, A and ds. We also need to
mention the integral over the AB vertical line.
This integral converges exponentially as y’ — — o
for y fixed along either I', or I'y. In section 4, for
the special case 8= —1, we will see how a slight
shift of definition completely eliminates this term
from the equations and we need not worry about
this contribution at all.

We choose to solve this non-linear system by
Newton’s method. That is, we start with an initial
guess for the solution and iterate towards a final
set of values. The actual computation can be
carried out using commercially available solvers,
such as HYBRD from MINPACK or DZONE
from PORT. Of course, the lack of convergence to
a solution does not automatically mean that none
exists; it is quite possible that a solution will be so
far removed in the space of variables that an
iterative procedure will be unable to find it. Nev-
ertheless, our experience indicates that once one
solution is found, nearby solutions (with small
changes in, say, some of the experimentally tuna-
ble parameters) are quickly converged to; further-
more, if convergence fails it means that a solution
branch has ended. We will see this explicitly in the
example presented in section 4.

Before turning to a simple example of how the
above algorithm works, we would like to comment
on the generality of this approach. We have pre-
sented the formalism for the case of free eutectic
growth, but it is obvious that changing to either
directional solidification or eutectic directional so-
lidification is quite easy. It is more difficult to
extend everything to three dimensions but at least
in the case of periodic structures, this too offers
only some new technical details to be worked out.
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This methodology is much more powerful than the
finite element methods that are currently being
used. The basic reason for this is that all of our
points lie on the interface, providing us with a
detailed picture of the structure of the phase
boundary. At the expense of a more complicated
set of algebraic equation, we have eliminated the
need to find the field throughout space, with a
huge saving in computer time for a given interface
resolution.

4. A model calculation

In this section we present numerical results on
the simplest possible version of the general eutectic
problem. We assume a completely symmetric
eutectic solidifying at exactly the eutectic com-
position. In terms of our parameters

B=-1,
-0, =10y, A= —AB=A, yA=—yB=vy.

u, =0,

Furthermore, we pick g,5 so as to obtain 8, = 7 /4,
o™ =aP =0, and also k* = kB = 0. The last condi-
tions mean that the concentration is constant in-
side the solid phases, equaling 1 inside A and —1
inside B.

Starting from our basic equations, we can show
that the condition /- Vu, = /- Vu, =0 inside the
solid phases gives rise to ¢ =274 ycA’B. Therefore,
the final equation for the liquid region is

0=f(ﬁ'- V’G)(A—yic)eA'BnLf2Gﬁ;eA’B, (14)

where the factor €% = +1, —1 in region A or B.
By symmetry, we can solve for the interface only
in the region /=0, N since 8., 5= —8,_,. Simi-
larly, choosing the full periodicity A means the
position x, = A /4; this then serves to fix ds,.
The final variables are 6, j=1, N and A (or
equivalently p), for a total of N + 1. The integral
equation is evaluated at N — 1 points, 8, is fixed
and 8(s = 0) is zero. A solution of the equation is
then found by solving these N + 1 algebraic equa-
tions, at fixed y and A. Once we have determined
p for a fixed input value of the parameter vy, we
can work backwards from the defining formula

002 T 1*1“*| 117‘|711

000

> -002
I A B
-004 -
[
U N SR SR
-006
00855 01 02 3
X

Fig. 2. Solution at A = 0.1, p = 0.06.

p=vA/4D together with eq. (5b) to find the
physical wavelength. Notice that the physical
velocity of the solution is determined by y for
fixed material parameters. This is similar to the
situation which occurs in free dendritic growth
where the only measure of surface energy effects is
the (dimensionless) velocity.

We have studied A in the region from 0.05 to
0.25, and solved for the shape and the velocity as
a function at wavelength. A typical solution corre-
sponding to A =0.1, p=0.0609, and dimension-
less velocity 3.65 x 1073 is shown in fig. 2, In fig.
3, we plot the band of allowed velocities at several

004 L N A IR T

o
(o]
N

velocity

001

llll L_LllLlllllll

0.00

o L

_Ooi 1 i L A l 1 1 ) l T E— 1 4;} 1 1 1 1
0.00 0.05 010 015 0.

/e

Fig. 3. Velocity band at 4 = 0.15, 0.20, 0.25.
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Fig. 4. Foldin p: (a) p versus y at A = 0.2; (b) velocity versus A.

different undercoolings. In each case, there is a
maximum allowed velocity. Early theories of pat-
tern selection [7] suggested that this particular
solution would be dynamically selected, but this
assumption is completely ad hoc and is likely to
be incorrect.

In fig. 4a, we show the Peclet number p =
vA/4D along the solution branch corresponding
to A =0.2. We see that there is maximum possible
value of p, which of course, does not coincide
with the maximum velocity since the physical
wavelength varies with velocity as we move through
the band. The maximum corresponds to a fold in
the solution branch when plotted versus p. This
fold is a generic feature of many pattern forming
systems. For example, a similar fold gives rise to a
maximum Peclet number for cellular solutions at
fixed drawing velocity during directional solidifi-
cation [5].

In fig. 4b, we show the velocity corresponding
to the solution at the fold, versus undercooling.
The results seems to follow a A* law. This scaling
is consistent with most experimental studies [1].
One obvious hypothesis is that pattern selection
may be connected to the existence of the fold. We
have given [5] heuristic arguments that this might
be the case for directional solidification; here,
however, the situation is complicated by the cou-
pling between velocity and wavelength selection.

Of course, only a complete dynamical theory can
test whether this conjecture has any validity.

5. Conclusions

This paper has presented a straightforward but
extremely powerful methodology for computing
steady-state lamellar eutectic patterns. In princi-
ple, this method can be applied to any (two-di-
mensional) realistic system given knowledge of all
the relevant thermodynamic parameters. Also, ex-
tension to three dimensions, while technically
challenging, seems feasible.

To illustrate our ideas, we have studied the
simplest possible model system, that of a com-
pletely symmetric eutectic with no diffusion in the
solid and k*=k®=0. This system already ex-
hibits some interesting structure, possibly related
to the dynamical issue of velocity selection.
Specifically, we showed that there is a maximum
wavelength at any fixed undercooling due to a
fold of the solution branch; this structure has
been studied extensively in other systems and can
be quite crucial in understanding steady-state
structure.

There are clearly several areas which need to be
worked on. First, we would like to take a specific
realistic system and repeat the computations. We
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expect to find the same qualitative behavior as
discussed here for a model problem but with a
realistic system, we can compare our predicted
band to actual experimental observations. Next,
we would like to extend the steady-state method-
ology to the problem of linear stability. This would
enable us to study various instabilities, either long
wavelength or short, that have either been seen
experimentally, predicted analytically or both.

Finally, we would like to use this methodology
in an attempt to develop a theory of dynamical
wavelength solution, possibly along the lines of
what is knows to occur in convection or
Taylor-Couette flow. This program of study, if
successful and if extended to three dimensions,
would in principle enable the systematic predict-
ion of solidifcation microstructures during free
eutectic growth, at least sufficiently close to the
lamellar region.
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