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INTRODUCTION 

Ekpilibrium behavior of isbcba&c compartmental models was xeceudy 
reviewed by Whittle [l]. An important characteristic of certain classes cb 
these network models is that distributions of counts of individuals at net-Mark 
nodes (compartments) are insensitive to all moments of residence time 
distributious at these nodes except the first, i.e., the mean residence time. 
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MO-, the joint equilibrium distribution of counts of inditi* at nodes 
has the product farm denoting stat&&A independence of couuts at nodes 
and,in~isa~afPojsson~~when~enetvPorkisopen 
andanivalsfIUXl~thenetworsr~P~distributed 

trausieut j&t distribution of 
aud closed networks in which 

tIau&humntrix P=(p@tlatetidencetime 
W = (w#)), aud stahstic intenral transition 

g&t)= E Pk(X(t)= jlX(O+)=i, hbangesofstatein(O,b)) 
2-O 

whm 4~~ = j; d,, is the Kronecker delta; 
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an Z-fold convolution density, wnvolved with h&t), is muhiplied by the 
PmmatY (pr, l l . ?4& rqt ) that the I-step sequence of changes of state 
(9 ";, 1; l 49&4,9~=j)ticxur5: 

audstate jisassumedtobeaocessablefrom~ei,sothatthereexistsat 
least one ktep sequence with positive probability, for some index I= 
1$&3,... . 

Let C denote a discrete population for which states (i.6, conditions) of 
individuals in C are iu 0nHwme correspondence with states of the protxss 
(X(t)). Let S =(P, W, F) denote a system governing mutually independent 
moments of individuals among states l,$...,n once they enter S. The 
states aIe also identified with nodes l,&...,n of the system S. The amdi- 
tionalprobabilitythatanindivi~isinstate jaMimet(ie.,innode jof 
~esystem),given~itinitially~~Sattimez(O<z<t)innocaei,is 
there&w &j(t - 2). I&t q.(t) (i, f = l,..., n) denote md0m Mviables de- 
scribingcuuntsdin~innode jattimet whichinitiallyenteredSat 
nodeiattimet=O+.Weshall~v~edishibutionsafthe~~af 
individuals Yi&t) for both open and closed systems S. 

cLosEDsYsrEMs 

AssumetbatNindividualsenterSinitiaIlyinnodeiatinstantt=O+ 
and none enter threafk. Sinc& gy the stochasticity of the maths P and F 
anindividualsare aaxmuntd for once they 6zter S, the system is eff&iwly 
closedforallt>O.Assuming:thatthebehaviorofallindividualsioSfonows 
the conditions described above, the joint distribution of counts in nod?! 
1,2,..., 98 at time t > 0 is multinomial with parameters N, A#), . . . , $J t ). 
The ma@nal dishibution of the couut in node j is binomial with parameters 
N and g&t). All N individuals are assumed to iuitiate movement among 
nodes simultand at instant t = 0+ from node i. O&e&se, some type of 
departwe pm of individuals out of node i is indicated, aud the distxibu- 
tion of counts in nodes l,..., n is no louger multiuomial. If N,, N,, . . . , N, 
imlividuals are initially at nodes 1,2,. . . , n, the count of individuals at nc.& j 
attimethasamixed~utionandisbinomialifandonlyiffif(t)==.a 
= j&(t). A Poisson approximation applies in the general case. 
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OPEN SYsrEMS 

Let (A#); t > 0; ui(t) z 0) denote Poisson process of arrivals of individu- 
als at initial de i. The function 42$(t) is a piece* ~&~~WJUS dval 
inbensity, where aA&))= j&&)dz. By apa a simple argument the 

pourehlrresultisobtained: 

nr,(t)=/hi(~)~~(t-z)dz. 
0 

comb at nodes l&...,n is 
thesystemSisan~* 

d mnnbers of individuas at nodes l,g...,n; 
. . . 

dldmb0n0fthecountofindividualsatni3de j 

,...,n)attiInet(f>O)widrmean 

(iii) aPoisondistributionofanmtsofindividuals~arbi~subsets 
of 

mst) + l l l + q,,(t)) = E@,(t)), 

andan~~dishibution~thecountatnodejwinedstatt=oo 
padd m,f(oo) < 00 and t+(t) is appropriately restricted; 



(v) that if independent Poisson proceses of arrivals at nodes 1,2p..,n 
feed the system S, then the distribution of counts of individuals at nodes 
1,2,..., n remains Poisson distributed. 

We next cousider some generalizations of Poison arrival pmcesses of 
iudividuals at au open system S. 

. 

h 
Pr(a < aj c 0 + &) = ~(ht!+-hodo 

r( ) 
(r,a,h>O). 

It follows that the margjnal dist&uUon of Y&(t) is 

R(r,(t)=m)=(~+~~l)pyl-p)l (m=O,l,2,...), (2) 

where 

h 

T’hemeauandvarianceof 

E(Y,,(t)) = p ‘(l-‘) aud V(Y#)) 

when r is a positive integer. Yij(t) has the negative binomial distribtition 
with parameters r and p. In contrast with the Poisson distribution, the 
variance of the nwtive binomial exceeds the mean, due to the additional 
source of variation contributed by xaudomization of the arival intensity Q? 
individuals to an initial node. Subscripts i and i have been suppressed on the 
parameters r and h of the Gamma distribution of the arrival intensity aj. 
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(B,(O; t ) 0; b,(t) 3 o), 

8884 = E(Bi(t)) = /‘Tb,(z)& 
0 

Ilab i in(O,t). Afisume 
countwith-m,and 

+(~+o,)r(b,(z)[~~(t-2)]*& (4. j=L..,~). (34 
0 



The former is always equal to unity, but 

~~.;,,(,,:_,)y$ 
0 
if = 

Equatiou (42) shows that th evarianceoftheappmxima&grandomvarMe 
Y*&f) iS less thrur the WIi8lME o&(t) if mt > 1. If ?$ < 1 (implying fI&CthS 
obindivichrals),tbevarianceafY,l(t)maybe~orsmallertbanthatoa 
the app=imation, depending upon mq@* of q, q, and &W- - 
apprwhation maybe acsurak if I;&(z)& is SInalL 

Assumeaprocessofa&valsofraudomsized~wh~anivalsoa!ur 
at fixed in!stauts o<t,<tjg< l *- <t,<t.~bdindividualsinarriving 

Weshavea common distribution with mean md and variance q. All 
ar&&areassumedtooccuratiuitiahodei.Themarginaldistributionof 
thecountofi&vidu&atnode jattimefthenhasmeanandva&nce 

(5 1) . 

PI 

k-l 

where [t] is the largest integer not exceeding t (i, j = 1,. . . , n). Comparison 
of Equations (3.2) and (5.2) show that the loss of the source of variation in 
the number of arriving batches in as interval of fixed length reduces the 
variability of the couut of individuals at node j by a factor pqxxtic,nal to 
the~ofthemeansize~anarrivingbatch.Themodelsob~~~ 
random arrivals at an initial node provide%ounds for the variabili~ 
at 8 node, given the constancy of other factors of the system S. 

of counts 
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CASE EXAMPLE 

u&)=Cjl+c& (one). 

1 e 3 4 

10 

p=e [ 0 

10 0 

0 1 
30 0 0 

40 0 0 0 I 
1’ 

1 
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Assuming that individual chIoride particles could have been d&charged at 
any location along shorelines of the lakes and hence that msidence times z1lr15 
randomly distributed, a residence time distribution function matrix of expo- 
nentials is assumed: 

1 

where 

w&f ) = 1 - e’+; w&f) = 1 -e-et, wa( f ) = I- e’@@; 

all other enties are ideM& zero; and the parametersq,+mdu,= 
mciprocals of mean reskkmce times Interval tmnsition pxobabtities 4ue 
amputed following the formula givers above: 

fil( t ) = e’“l’, fis(t)+ u1 (e-*t-e’ui’), 
urue 

fi3(f) r uyl%+ ~ lo (e-+ - e-W) - -(_ ’ (e-W-e-W , 

ul-% 4 

f=( t ) = e-Q’, f=(f)= ++u3(e-u~t-e-Qt), 

&( t ) = fa( t ) = 0, 

f%(t) = 1 - e-W 

f=( t ) = e-% 
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where 

g&t)= uP!z 
1 1 

f&,-u, +-us z 1 ( [(u$ -l)+e-*) 

-+[(U&-l)+e-* I) 
1 1 

( 
T[(u3t -l)+e -us’] - +[(ut -l)+ e’ULf , 

%-U3 u3 4 

g&)= u, ( 1 

%a-% z 
[(u,t-l)+emyt] --$(ug-l)+e-*‘I); 

E&) = ‘(I_ e-W), 

u3 

gdr)5; [ (u,t - 1) + a-q, 

E(Ut))= i (~biO&-E(Ut)))* 
i=l 0 

Table 1 exhibits a set of chloride measurements (parts per million) 
randomly sampkd from a larger data set awumulated over the perkxl 
1902-1969 (Hydroscience [2]). Using estimates of mean residence times of 
conservative partkks obtained from a hydrological balance model of the 
Great Lakes basin (l/u1 = 22.6 yr, l/u, = 2.6 yr, l/u, = 7.9 yr), cliioride 
discharge intensities uXt), se(t), and a,(t) were estimated by computing 
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TABLE1 
SAMPxaD~NcEwmAm 0Ns0FcEmRmEslN 

mwEa-~11900-1960 

1906 
1997 
19068 
19fE7 

1m 
l?KB4 
1985 

1944 
1947 
1940 
1949 

1957 
a68 
1960 

9.0 
103 

1P.S 
115 

LB0 

155 

19s$zl.o 
18.0 

la0 

155 

16.0 
140 
P7.0 
17.o,l!%o 
165 
180,18&19.0 
17.5 
a0 
195 
19.0,41)0,2L0 
2&O 
2l.oJu5 
23.0 

!20.0,240 
360,25.0,26.0 

. 
Mmatesoftbe~tscdjfromalineargpalprogram.The 
&Y&t)) am hear functions of the input intensity coefficients, 

andwhenttae~~~~~thec~f'saFecaCulatedforthesame 

yearsfo?rwhich~ measunments are available, a set of linear combina- 
tions of the unknowns cdr are obtained. By setting each hear combination 
equal to the appropriate measwed chloride density a set of constraints, linear 

object%e function ob the & is the sum of absolute deviations of 
in ihe c& l3ecome the c4mtmmg equations of the goal program. The 

computed concentmtions from measured concentrations. Applying a simplex 
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algorithm, the combination of cti’s is found which minimksthesumof 
deviations. The following estimates we= obtained: 

&l(f) = 0.1!58+0.004t, 

a,(t) = 0.504+0.048t, 

s,(t) -0 

lkpeekd concentrations together with one and two sigma probabii Emits 
of the Poisson di&ributions were computed aud plotted a@nst measmed 
concentrations, induding both those that were Wed to e&imate the c**‘s and 
those that were not. Figures 1-3 show the comparkms of computed vexsus 
measured concentrations. In the first years of the series measured values 
exceededcompu~dearlyindicatingthatq-mtrarytothe~asump- 
tionofzeroini~cona3n~~~were~tinthewater 
columnsofthe~The~p~~wn~~onforLaEeEriefen 

. 
consMendybelowthemeasuredconcentrationeventhoughthee&matesof 
theinputintensityfunctionshadbeenpxwiouslyoptimkLHad&eUes 
notbeencoupkdasasystemanddis&ugeintensitiesbeenestimaM 
sepanMy,suchanundemstimatewouldnothaveoccurred.Sincethelakes 
are~~hf~r,itwouldbeawdeling~rtoiPnore~ 
cguseSafthesystematc~~ofconcentrationinLake~emaybe 
due to any one or combination of the foIlowing: 

(1) errorsinm casmements of field densi-, 
(2) nonrepresentativenes of measured den&& leading to an mueakic 

&tributionofactualfieIdconditio~ 
(3) residence time distributions incorrectly specified, part&My with 

respecttothe~ 
(4) unequal representation of concentrations in the lakes due to unequal 

numbers of constraints in the optimking program. 

Differeacesinthenlrmbersdco~~forthe~will~~ 
a^e(t) and &(t) if measured concentrations in the two lakes differ by 8 
s&stantial amount. Since this difference did not exist, unequal numbers of 
constmintsintheprogramareunlikelytohavehadanyeffect. 

Incorrectly specified residence time distributions will affect computled 
concentrations and hence comparisons between computed and measured 
concentrations, particularly when means ax! incorrectly estimated. An emr 
in the mean I/% for Lake Erie will cause errors in computed concentrations 
for both I.&es Erie and Ontario. A sensitivity analysis by Patterson [3] 
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PLOT FOR LAKE HURON: MODEL 3 

A:ACTUAL VALUE E:EXPEClED VALUE L:MEAN-ISIGMA U:MEAN+lSIGMA 
11:01 WEDNESDAV. NOVEMBER 4. 1987 

PLOT DF CCMGPL+VEAR SYMBOL IS VALUE OF TVPE 

CCMGPL 

A 

ct; 
E 

u 
BT 

u UlJ 
A 

UJUCBU A E E 
A E EE 

E 
EEE A e L 

AA L he 
LLLL 

1900 1gos 1910 1915 1928 192s 1930 193s 1900 1945 1950 1955 1960 

VEAR 

1 OBS HAD VISSINC VALUES OR YERE OUT OF RANGE 7 OBS HIDDEN 

showed that computed concentrations are mu& more sensitive to variations 
in the mean residence time than in other parameters of the residence time 

distrhtion, a result that supports a theoretical finding that at equilibrium 
only the mean of the residence time distribution affects the actual concentra- 
tion of individuals. In- in computed values of mean concentrations in 
Lake Erie were achieved by increasin g the mean residence time, reoptimizing 
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PLOT FOR LAKE ERIE: MODEL 3 
A:ACTUAL VALUE E:EXPECTED VALUE L:MEAN-ISIGMA U:MEAN*lSIGMA 

11:06 WEDNESDAV. NOVEMBER 4. 19Bf 
PLOT OF CCMGPLOYEAR SYMBOL IS VALUE OF TYPE 

CCMCPL 
I 

I 
30.0 l 

I 
27.5 l 

I 
25.0 + 

I 

A 

U 
U 

A 

A 

AA 

A 
A 

A 
A A 

A 
A 

U 
ulw 

u u 
U 

EE E 
E E 

EE 

E 
E 

L 
L 

LLL L 
LL L 

__~___+~~~~+---~+-~-~~ --_a-+----+- ___+_~~_~_~~~*~~~~+~-~-+~-~-*-------~----- 

1gDD 1905 1910 1915 1920 1925 1930 1935 1940 1945 1950 1955 1960 

YEAR 

NOTE: 12 OBS HIDDEN 

FIG. 2. Me wssus computed chloride conc&ration: Erie. uil = 22B yr, 6’ = a.6 
yr. A-measured vahw, homputed mean, V=computed mean+1 std. dev., L=computed 
mean - 1 std. dev., CCBSCPL = am. of chloride (mg/liter). 

the fit of the discharge intensity to the data, and recomputing mean concen- 
trations. An increase in overall fit of the four+ompattment model resulted 
each time the mean residence time of individuals in Lake Erie was increzwd. 
When the mean residence times exceeded 1.4 times the initial estimated 
value of 2.6 yr, the increase in fit was slight. Similarly, a decrease in mean 
residence time of chloride particles in Lake Ontario below the initial esti- 
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CCWfPL 

PLOT FOR LAKE ONTARIO: MODEL 3 

A:ACTUAL VALUE E:EXPECTED VALUE L : MEAN- 1 Sl GMA U:MEAN*lSICMA 
lo:44 UEDNESDAV. NOVEMBER 4. 1987 

PLOT OF CCMGPL+VEAR SYMBOL IS VALUE OF TYPE 

AA 
A 
AA 

u 

E 
e 

U 
U 

UUU 

U 
UU A 

UU EA 
AE A 

U EE A 
L EE AAAAA 

ta AAA 

U EE: 
u EAAA A :: L 

L E AA L L 
A E A Lk 

ti AA AAEA AAA I. 
AAEA A LL 

u AA E OA LL 
U AE A AL 

AEAAAA L 

EAA 
L 

kL 
AAA E L 

L 
L 

L 

------*----~----* ----*----*----* ----*----*c----+ ~~~~+~~~~+----*C----*----- 

ngoo rgos rgro 191s n920 1925 1930 1935 1940 1945 1950 3955 1960 

YEAR 

WTE: 46 OBS WIDDEN 

Ilnatedvaueof7.9yr~inimprovedfits.Thisrefllltisnot~e~~ 
asan~~intheturnaverratecf~t~rinthelakeisaffsetbyanincregse 
in the estimated dkcharge intensity of chloride particles directly into Lake 
Ontario. Little insight is gained into the dynamics of the system by recogiz- 
ing the basic tmdeoff between residence time in a compartment and input 
rate, unless constraints can be placed on either input rates or residence times 



from data not used in fitting the mock& preferably data which directly 
measure these rates rather than measurements Of net balances in concentra- 
tiOnS. 

Figures 4-6 show comparisons between amputed and measu& cxmcen- 
trations when the means g1 and uil were adjusted to 3.6 and 4.7 yr, 
respectively. At these values the model accamts feasonably well for mea- 

PLOT FOR LAM HURDN: WDEL 3 
StSAWLED DATA 

E:EXPECTED VALUE LINEAH-PSIW UzI#EAw+PS~uU 
13113 FRIDAY. JAMlAW 15. 1999 

PLOT OF CtWiPl*VEAR S-L ES VALUE OF TVPE 

CCa9PL 
I 

39.0 4 

I 
27.5 + 

I 
25.0 l 

I 
22.5 4 

1 
20.0 l 

I 
17.5 l 

I 
15.0 + 

I 
12.5 l 

1 
10.0 + 

I 
7.5 + 

I 
5.0 + 

I 
2.5 + 

I . 
0.0 + 

I 
-2.5 l 

I 
-5.0 + 

1 

U 
U 

U 
U 

U 5 
U E 

U e SE 
E 5s 

us E E 
E 

E L 
L I. L 

L I. l. I. 

U 
U 

U 
U 

5 ES E 
E ES 

S 

L L 
L L 

-_-___*____+ ----+---~*----+-~--+ ----+----*~---*---~+ ..--_+----+~---+----- 
1900 1905 1910 1915 1920 1925 1930 1935 1940 1945 1950 t9s5 1960 

VEAR 

NDTE : 2 09s tlIDDEN 

FEG. 4. Md WSSUS e~mplted CT&I&? concentration: HWOIL Ui'= 22.6 yr. S= 
measured value, E - computed mean, U= computed mean+2 std. dev., L = computed mean - 
2 std. dev., CCMGPL = amt. of chloride (mg/liter). 



CCQKSPL I 
30.0 * 

1 
27-s + 

I 
23.0 l 

I 
22.8 + 

I 
20.0 + 

I 
1t.s + 

I 
OS.0 l 

i 
12.4 + 

I 
10.0 + 

I 
7-5 * 

I 
S-O + 

I 
2.5 * 

I 0.0 * 
I 

-2-s * 

I -5.0 + I 

PLOT FOR LAKE ERIE: YODEL 3 
S:SAUPLED DATA I:NDT SANPLED DATA 

E:EXPECTED VALUE L:UEAN-2SIUU U:YEAN+ZSIWU 

PLOT OF CUGPL*YEAR 
la:17 FRIDAY. JANUARY IS. 1988 

.SYHDDL IS VALUE OF TYPE 

S u 
I 

S 
U 

1 
1 

U E 

E 

E 

L 
L 

L 

U 

U 

U 

U sc I 

I E 

: 
3 

E 

E 
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L 

L 
L 

U 

U 1 

sss 
U 

U 
a*: 

Ifs 
SK E 

S E 
s s 

E 

E 

L 
L 

L 
L 

NDTE : 2 OBS HIDDEN 



PLOT FOR LAKE OMTARlO: WDEL 3 
S:SAYPLED DATA lt?&DT SAUPLED DATA 

EoLXPECfLD VALUE CrYLAId-2SlUU U:MEAU+2S1WA 
13822 FWDAV. JAMUARV 15. 1DW 

PLOT OF CCWGPL’VEAR SVYMK IS VALUE OF tV# 

CCUWL I 
30.0 4 

I 
27.5 l 

I 
25.0 + 

I 
22.S l 

I 
20.0 + 

I 
17.5 l 

I 
116.0 + 

I 
12.5 + 

I 
10.0 + 

I 
7.5 l 

I 
5.0 l 

I 
2.5 4 

I 
0.0 4 

I 

U 

U a: E 
ssa 

S SIl t 

3f%l 
ESSll 

111 s t s 
u SBJS Sl 1 

E Sll 

U II r:u trr’:: 
SIS t 1 

11 18 St L 
1E1S I 

U JS1111 L 

WE L 
U XII s 

E L 

*: E L 

:: u L 
E 

L 
L 

U E 
L 

E 
L 

L 
L 

-2,s 4 

I -5.0 4 

I 
~~~~~~4~~~~+~~~~+~~~~4 _~~~+~~~~+~~~~4~~~~+~~~~4 -~~-~~~I~+~~~~+~-~~*----- 

aa00 190s 1810 1915 1920 102s 1830 1835 1940 1845 lotDO 1085 l@a 

VEAR . 

NDTE : 3 DDS HAD YISSIMG VALUES DR WERE OUT OF IlAmE 10 03s HaDDEN 

RG. 6. Measured versus computer amrrwrtintiaIb: Ontario. Ui1-22B YP, t& ‘=3.8 Yr, 
t&+=4.7 yr. s=measu?d vahw induded in model fit, I==measur& value exduded from 
model fit, E=comgnted mean, U==compuled mean+2 std. dev., L=axnputed mean- 
2 std. dev., CCMGPL - amt. of dhride (mg/br). 



RICHAHDEPATTERSONAND-MA 

sued concentmtions in the three lakes for the fifty year period 1910-1960. 
E~~theserevised~whichare4operoentaboveandbelowthe 

. 
=t=t=WbYh wate&edbahcemode&~vely,nodirect 

fh3mth8LabeOntariowater&edisrequhdtooffsetthein~ 
OfwpmerinrateOIItariaF~those~obmegn~denCe 

thesintheb&theoptimhdeWnatesofthe~intensitiesof 

a&) = 0.623+0.08& 

a&) = 0. 

af&~t)fortbtwosetsofredencetimesinIakesErieand 
tbatan-inbotbconstantandtime-varyinghput 

accuuntforanincreaseincomputed 
the balanas in Lake Ontario. 

&&UiOiS~bY~ 

Itisdearti, 
casecanbemadefor 

toest%b&hlimits 
variedinthefittingprocess.If 

t0notetbatIehtive ofpammekressmat~ 
of input inten!5ities axresponding to 
Forcomparisonathirdsetofmean 

IMeandOntaxiowereused,whichweresetat95 
percentaboveand their original v&es, respectively. Table 4 summa- 
rizes the ru?suk s_tlY, rekive magnitudes of coefficients changed, 
the constant input inknsity assuming a much greater proportion of the totaL 
A second qualitative difference between this case and the others is the 
substantial dkcharge difecdy into Iake Chtario from its watershed needed to 
balance concentrations in that lake. It is implausible that the mean resideux 
timeforcbhi~inIakeontarioisasshortaso.4yr. 

Tables 2-4 bxeak down total d&charges of chlorides into the lakes accord- 
ing to input component and lake, for a typical one liter volume, for the sixty 
year penio& Bounds on total dischges may be computed corresponding to 



Hilron al(t)- 0.158 +om4t 9.48 730 16.68 
Erie as(t)- 0.504 +o.O48t 30.24 86.40 116.64 
Ontario a,(t)- 0 0 0 0 

Total 39.72 93.60 1333% 

Huron al(t)== 0.155 +o.aMt 9.39 7.29 16.50 
Erie 62(t)= 0.6223 +o.o86t 37.38 154s 19218 
fMario ii,(t)== 0 0 , G 0 

TMd 46.68 . 162.09 iUl8.68 

TABLE4 
EsiTIMATED CUMUI.A. -RIDE DISCHABCES, 1900-1960 

ui'~~6~,~'~51~,~1=0.4~ 

Estimated~intenSity 

0 --discharge0 

Lake r const. Lin.Im?r. 0 

(Const.) dt 
r &in. Incr.)dt Total 

0 

Huron al(t) = 0.155 +o.aMt 9.30 6.84 16.14 
Erie &do = 2.179 +o.mt 139.74 68.40 lW.jl4 
Qntario a,(t) = M68 + 0.907t 94.08 1632.60 liGS3 

@Mid 234.12 1707.84 1941.96 
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my & pmbabibty limits by apgilyiq normal approximations to the 
Poissondistrib\ttion. 

In M, the&ov&ted nunreric911 eqerhent showed that the fitting 
&teIiQna!cihwdan~- when the mean residence time of 
cM&desinLakeEriewasMtia~*Wvelyseveringthe 
flcrwlinLbetweenErie8ndOntar@whihimukwowly~the 
~x&Bencetim~fiwIakeOntarioand~thedirectdischarge 

intoOnta&I%atis&wlhkagesbetweenthelakescause 

compkeandinstantaneous 
the Pa&son dhtrhth 

instantanmand 

amcen-toall momentsoftheresidencetime~exceptthe 
bythesen&&yanaly&byPathson. 

CONCLUSIONS 

SWc compartmental models are a numerically feasible method of 
analyhg the distribution and fate of chemical spies in aquatic environ- 
ments, subject to avahbility of data for parameter estimation. A multivariate, 
linear, stohstk compartmental model can easily be fitted to a mukariate 
time series in the dependent variables. Three advantages of the stochastic 
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version of the linear compartmental model over its de&minis& counterpart 

(1) formal methods of statistical inference can be applied when parame- 
ters are estimated hm field data, 

(2) bounds on estimates of dependent variables are obtained, 
and I- 

(3) whereas linear, determhistic comphtmental models hys invoke the 
Markov assumption in their hnulation, the stocktic version as de&bed 
above by the matrices P and W is computationally feasible for general 
residence time distributions. 

Finally, the stochastic compartmental model permits incorporation of a range 
of sauces of uncertainty, inchding (i) types of extemal inpu& (ii) compwt- 
mental residence times, and (iii) disMbution of individuals amoqg compart- 
ments. 


