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ABSTRACT

Stochastic compartmental modeling theory is extended to represent nonhomoge-
neous Poisson immigration of an arbitrary discrete population into an open system
subdivided into compartments in which residence times of individuals in each
compartment are statistically independent, are identically distributed, and follow
arbitrary piecewise continuous distributions. The model is fitted to time series of
chloride concentrations using an L, metric implemented by a linear goal program,
covering lakes Huron, Erie, and Ontario. Advantages of the stochastic model are: (1)
fitting a multivariate model to a multivariate data set using formal methods of
statistical inference, and (2) allowance for multiple sources of random variability
covering input, residence times, and distribution of individuals among compartments.
Feasibility of numerical implementation of the model is demonstrated.

INTRODUCTION

Equilibrium behavior of stochastic compartmental models was recently
reviewed by Whittle [1]. An important characteristic of certain classes of
these network models is that distributions of counts of individuals at network
nodes (compartments) are insensitive to all moments of residence time
distributions at these nodes except the first, i.e., the mean residence time.
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Moreover, the joint equilibriura distribution of counts of individuals at nodes
has the product form denoting statistical independence of counts at nodes
and, in fact, is a product of Poisson distributions when the network is open
and arrivals from outside the network are Poisson distributed.

Our objective here is: (1) to describe the transient joint distribution of
counts of individuals at nodes of both open and closed networks in which
statistically independent movements of individuals among nodes are gov-
emed by continuous time, discrete state semi-Markov processes, and (2) to
illustrate a case example of the theory in the field of water quality modeling.

Let (X(t); t>0) denote a continuous time, finite state semi-Markov
minwhichX(t)isthestatedﬂ:emmatitsmostmcentchangeof

state prior to time ¢. X(t) is described probabilistically by an underlying
Markov chain with stochastic transition matrix P = =(p;;). state residence time
distribution function matrix W= (w”(t)),andsmchasucmtervaltmnsm:m
probability matrix F=(£(t)) (i.j=1...,n). The element f(t) is the
conditional probability that X(¢)=j at time ¢, given that the initial state
X(0+) is i. Assuming time invariance of the process, the conditional proba-
bility that X(¢)= j, given that X(z)=i (0<z<t), is f(t—z). Elenients
ofFalelehhedtoelanaltsdPandeyaMarkovmnewalethond
the Volterra type whose unique, time dependent solution is, by conditioning
on the number of changes of state of the process prior to time ¢,

)= & Pe(X(e) = J1K(0+) =, 1 changes o sato i (0.1))
X Pr(l changes of state in (0,¢)|X(0+) =)

= dijhi(t) +p;; ]: "’i'j(z)hj(t -z)dz
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where g, = j; d,; is the Kronecker delta;
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an Hold convolution density, convolved with h,(t), is multiplied by the

probability (p,,, - * 1, _,,) that the Fstep sequence of changes of state
(:’ 9 -3 G-I = i) occurs:

h(6)=1— ¥ puwalt);
k=1

and state j is assumed to be accessable from state i, so that there exists at
least one lstep sequence with positive probability, for some index I=
1,23,....

Let C denote a discrete population for which states {i.e., conditions) of
individuals in C are in one-to-one correspondence with states of the process
(X(t)). Let S=(P,W, F) denote a system governing mutually independent
movements of individuals among states 1,2,...,n once they enter S. The
states are also identified with nodes 1,2,...,n of the system S. The condi-
tional probability that an individual is in state j at time ¢ (i.e., in node j of
the system), given that it initially entered S at time z (0 < z <t) in node i, is
therefore f,(t — z). Let Y;(t) (i, j=1....,n) denote random variables de-
scribing counts of indivi in node j at time ¢ which initially entered S at
node i at time ¢ =0+. We shall investigate distributions of the counts of
individuals ¥; (t) for both open and closed systems S.

CLOSED SYSTEMS

Assume that N individuals enter $ initially in node i at instant ¢ =0+
and none enter thereafter. Since by the stochasticity of the matrices P and F
all individuals are accounted for once they enter S, the system is effectively
closed for all ¢ > 0. Assuming that the behavior of all individuals in S follows
the conditions described above, the joint distribution of counts in nodes
1,2,...,n at time # >0 is multinomial with parameters N, f\(2)...., £()-
The marginal distribution of the count in node j is binomial with parameters
N and f(t). All N individuals are assumed to initiate movement among
nodes simultaneously at instant ¢ =0+ from node i. Otherwise, some type of
departure process of individuals out of node i is indicated, and the distribu-
tion of counts in nodes 1,...,n is no longer multinomial. If Ny, N;,..., N,
individuals are initially at nodes 1,2,...,n, the count of individuals at node ;
at time ¢ has a mixed distribution and is binomial if and only if f; ()= ---
= f,(t)- A Poisson approximation applies in the general case.



52 RICHARD L. PATTERSON AND ZHENKUI MA

OPEN SY:=TEMS

Poisson Arvivals to S

Let (A(t); t > 0; a(t) > 0) denote Poisson process of arrivals of individu-
als at initial node i. The function a/(t) is a piecewise continuous arrival
intensity, where E(A(t)) = fya,(z)dz. By applying a simple argument the
following powerful result is obtained:

Pr(Yil(t) =Yiaseeos Yin(t) = yin)
= [m'-l(t)]'“ .o [mi,(t)] Vin

yil! b yinl

e~ ___g=miunl® (1)

m(t) = [a2)f(s - 2) .

Equation (1) for the joint distribution of counts at nodes 1,2,...,n is
characteristic of open networks, of which the system S is an example.
Equation (1) further demonstrates:

(i) statistical independence of numbers of individuals at nodes 1,2,...,n;

(ii) a Poisson marginal distribution of the count of individuals at node j
(j=1....,n) at time ¢ (¢ > 0) with mean

E(Yq(t)) = mq(t)’

(iii) a Poisson distribution of counts of individuals across arbitrary subsets
of nodes;
(iv) that the total number of individuals in S at time ¢ is

E(Yy(t)+ --- +Y,,(¢)) = E(A(2)),

and an equilibrium distribution of the count at node j will exist at ¢ =0
provided m, (c0) <o and a(t) is appropriately restricted;
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(v) that if independent Poisson processes of arrivals at nodes 1,2,...,n

feed the system S, then the distribution of counts of individuals at nodes
1,2,...,n remains Poisson distributed.

We next consider some generalizations of Poisson arrival processes of
individuals at an open system S.

Randomized Poisson Arrival Intensity a,

Assume that individuals arriving at initial node i are distributed as a
Poisson process with arrival intensity a(t)=a,, where a, is a random
variable with a Gamma distribution:

Pr{a<a,<a+da)= T )(ha)' “le~hadg  (r,a,h>0).
It follows that the marginal distribution of Y;(¢) is
(Y, () =m)=("* B 1)p1-p)" (m=0,12..), (2)

where

h
h+[o‘ﬁ,.(z)dz'

The mean and variance of Y;(t) are

(1-p)

E(Yu(t) = ij(t))_ E( j(t))

when r is a positive integer. Y;,(t) has the negative binomial distribution
with parameters r and p. In contrast with the Poisson distribution, the
variance of the negative binomial exceeds the mean, due to the additional
source of variation contributed by randomization of the arrival intensity of
individuals to an initial node. Subscripts i and j have been suppressed on the
parameters r and h of the Gamma distribution of the arrival intensity a,.
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Poisson Arrivals of Batches at an Initial Node
Assume a Poisson process of arrivals of random sized batches of individuals
to initial node i:

(B(t); t>0; b(t)>0),

m, = E(B(#)) = [[b(2) d=

is the expected number of batches arriving at initial node i in (0, ¢). Assume
that armiving batches have a common distribution of count with mean m; and
variance o;. The counts of individuals in nodes are now Poisson distributed if
and only if (i) m;=1 and (ii) v,=0. Under certain conditions, however,
counts may have an approximate Poisson distribution, as demonstrated
below. The mean and variance of the marginal distribution of Y;(t) are

E(Y, ) =m [b(2)fi(t-2)ds  (irj=L...n)  (31)

and
V(Ytj(t)) = mij:bi(z)ﬁ;(t - z)[l = f;j(t - z)} dz

+(m?+0) I:b,(z)[f;,(t—z)]zdz (i.j=1,....n). (32)

Under appropriate conditions on m,, v,, and () the random count Y;(t)
of individuals at node j at time ¢ will be approximated by a random variable
Y,,(t) having a Poisson distribution with mean

E(Y,y(¢)) =m, [ bi(2)fy(¢ ~ ) . (4)
To investigate, consider the ratios

E(Yy(1) . V(%))
EQY‘,(t)i EZY,,(t)i )
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The former is always equal to unity, but

V(Y,(t))

E(¥,(t)) —H("‘f"g‘“l fiz)ds (4.2)

™ L‘f;j(z)dz

Equation (4.2) shows that the variance of the approximating random variable
Y,;(t) is less than the variance of Y, (t) if m, > 1. I m; <1 (implying fractions
of individuals), the variance of Y;,(¢) may be greater or smaller than that of
the approximation, depending upon magnitudes of m,, v;, and f;(t). The
approximation may be accurate if [pf;/(z)dz is small

Regular Arrivals of Batches at an Initial Node

Assume a process of arrivals of random sized batches where arrivals occur
at fixed instants 0 <t, <t < --- <¢#; <t. Counts of individuals in arriving
batches have a common distribution with mean m; and variance o,. All
arrivals are assumed to occur at initial node i. The marginal distribution of
the count of individuals at node j at time ¢ then has mean and variance

[¢]
E(Yu(t)) =m; ) f;j(t - 1) (5.1)

k=1

and

[s] [¢]
V(r.,(t))=m.3_:lf;,(t—tk)[l—ﬁ,(t—tk)]+oik);1f‘§(t-tk), (52)

where [t] is the largest integer not exceeding ¢ (i, j =1,...,n). Comparison
of Equations (3.2) and (5.2) show that the loss of the source of variation in
the number of arriving batches in an interval of fixed length reduces the
variability of the count of individuals at node j by a factor proporticnal to
the square of the mean size of an arriving batch. The models of regular and
random arrivals at an initial node provide bounds for the variability of counts
at a node, given the constancy of other factors of the system S.
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CASE EXAMFPLE

Transport of conservative dissolved chlorides through lakes Huron, Erie,
and Ontario was modeled as a four node (compartment) open system in
which the discharge from Lake Ontario fed the fourth node, assumed to be a
sink. An “individual” is a single part per million of the dissolved species in a
standard volume of water (one liter). An individual chloride particle is in state
(node) 1, 2, 3, or 4 if it is in Lake Huron, Lake Erie, Lake Ontario, or the
discharge from Lake Ontario. No other states of the species are permitted.
Movement through the system is unidirectional: Huron to Erie to Ontario to
sink. Individuals may initially enter S at node 1, 2, or 3 only. Movements of
particles are assumed to occur independently of each other after entry into
the system. Two systems of causes are assumed to exist, independently of
each other, which generate discharges of chlorides into each lake from

i) background or natural physiochemical processes active in each water-
shed that produce chloride discharges at a constant intensity, randomly in
time;

(i) artificial processes that produce discharges at a linearly increasing
rate, randomly in time.

Processes of discharges are assumed to be Poisson with intensities
a(t)=cy+c,t  (Huron),

aft)=cy+ecyut  (Ere),

ay(t)=cu+cut  (Ontario).

While Lake Huron receives inputs of chlorides only from its watershed
discharges, Lakes Erie and Ontario receive inputs from the additional source
of discharges from the lake immediately upstream. Consequently, discharges
into a lake will influence concentrations at all lakes downstream.

The matrix P describing movement of individual particles among nodes is

)
COOO =
OO »
SCO=O ©
—_—_o o
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Assuming that individual chloride particles could have been discharged at
any location along shorelines of the lakes and hence that residence times are
randomly distributed, a residence time distribution function matrix of expo-
nentials is assumed:

1 2 3 4

[ wyy(t) wis(t) wy(t) wy(t) ]
wy(t) wes(t) wy(t) wy(t)
wy(t) wy(t) wu(t) wy(t) |

| wy(t) we(t) wu(t) wy(t) |

- W 0

where

wi(t)=1—e™  wy(t)=1-e", wy(t)=1-e""",

all other entries are identically zero; and the parameters u,, u,, and u, are
reciprocals of mean residence times. Interval transition probabilities are
computed following the formula given above:

fu(t)=et,  fiq(t )"'

(e-ugt —_ e-u.t)

“1“3
— U

Hd(t) =1- £,(2) — fis(2) — £is(t),

fua(t) =

( ”zi W ey - o e—u"))’

La(t) =0,  foo(t)=e™,  fio(t)=

(e—u_-,t —e ugt)

)= (- e - - ))

Uy — Uy
fan(2) = fuu(£) =0,  fiq(t) =™

fu(t)=1—e"".
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Define random variables Y (¢) (j = 1,2,3,4) to describe the counts of individ-
ual particles in, ively, Lakes Huron, Erie, Ontario, and the discharge
from Lake Ontario. From the theory and assumptions made above, all counts
are Poisson distributed. Counts are defined as parts per million or numbers of
individual parts of chloride per million parts of water in a typical one liter
volume of water in each of the four compartments. A typical one liter volume
represents a node in the abstract system representation. Then

Yy(t) =Yy(t), Yy(t) =Yye(t) +Ype(t),
Ya(t) =Yya(8) + Yau() + ¥oe(t),  Yy(2) =Yyq(2) + YVoe(2) + Yo (#) + Y (2).

Net balances of individual particles at euch of the four nodes are Poisson
!.l-lllm.m Il-

E(Yy(¢))= cu;:—(l —e ")+ cn;li [(ult 1)+ e—u,:] i

E(Y(2))= l:u[ul'ilu2 ("::(l —e ")~ ”Ll(l - e‘uu))]
[
o] 22 Gl -0 e Flwe-nrer|

+ rl(l et
i P ))

+c,,(;‘§[(uzt-1)+e—«=f]),

E(Y,(¢)) = cpugn(t) + c1og19(t) + Co1821(t) + Caogon(t)

+C383(t) + caogao(t),
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where

(0= e - -

U= U\ U

£uult) = u‘:f‘;[ug_‘_%(uig[(uat—l)+e-"='l

- —:;g[(u,t —1)+e"“"])

1
L

(% [(ugt —1)+e*t] - ;1513 [(ue -1+ 3_"'])]'

i 1
alt) = ot @(l—e-"f)-itl—e-"ﬂ)),

[

1 1
gx(t) = (st =D +e™] = o [(ust ~1)+e'"*‘]);

Ug — U3 \

1
galt) =—(1-e™'),
Uy
1 _{_[ 1 —'ll:lf]
83&(‘)=u§ (ust— )+e >

B() = T ([az)ds - ECUD))).

i=1'"0

Table 1 exhibits a set of chloride measurements (parts per million)
randomly sampled from a larger data set accumulated over the period
1902-1960 (Hydroscience [2]). Using estimates of mean residence times of
conservative particles obtained from a hydrological balance model of the
Great Lakes basin (1/u, =226 yr, 1/us=2.6 yr, 1/u; =179 yr), chioride
discharge intensities a(t), ay(t), and a4(t) were estimated by computing
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TABLE 1
SAMPLED CONCENTRATIONS OF CHLORIDES IN
LOWER GREAT LAKES, 1900-1960
Concentration (ppm)

Date Huron Erie Ontario
1906 25 75,90
1907 90
1909 105
1927 115
1928 115
1929 120
1932 130
1934 45 155
1835 35 155
1938 55
1937 35 160
1938 140
1941 170
1942 170,150
1944 165
1947 70 180,185,190
1948 195,210 175
1949 180 230
1850 60 195
1952 45,55 185 19.0,20.0,21.0
1953 220
1954 21.0,21.5
1855 230
1956 75 265
1957 215,285 20.0,24.0
i958 270,225 24.0,25.0,26.0
1960 70 230,240

optimized =stimates of the coefficients c;; from a linear goal program. The
expectations E(Yi(t))mhnearhmchonsofthempm intensity coefficients,
and when the exponential coefficients of the c,;’s are calculated for the same
years for which chloride measurements are available, a set of linear combina-
tions of the unknowns c;; are obtained. By setting each linear combination
equaltotheappropnatemeasmedchlondedensntyasetofeonstrmnts linear
in che c;;’s, become the constraining equations of the goal program. The
objechveﬁmcuonoftheprogmmlsthemmofabsolutedevmuonsof
computed concentrations from measured concentrations. Applying a simplex
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algorithm, the combination of c,;’s is found which minimizes the sum of
deviations. The following estimates were obtained:

é,(t) =0.158+0.004¢,
4 (t) =0.504+0.048¢,
dy(t)=0

Expected concentrations together with one and two sigma probability limits
of the Poisson distributions were computed and plotted against measured
concentrations, including both those that were used to estimate the c;;’s and
those that were not. Figures 1-3 show the oompansonsofcomputedve!sus
measured concentrations. In the first years of the series measured values
exceeded computed, clearly indicating that, contrary to the model assump-
tion of zero initial concentrations, chlorides were present in the water
columns of the lakes. The computed mean concentration for Lake Erie fell
consistently below the measured concentration even though the estimates of
the input intensity functions had been previously optimized. Had the lakes
not been coupled as a system and discharge intensities been estimated
separately, such an underestimate would not have occurred. Since the lakes
are coupled, however, it would be a modeling error to ignore coupling.
Causes of the systematic underestimate of concentration in Lake Erie may be
due to any one or combination of the following:

(1) errors in measurements of field densities;

(2) nonrepresentativeness of measured densities, leading to an unrealistic
distribution of actual field conditions;

(3) residence time distributions incorrectly specified, particularly with
respect to the means;

(4) unequal representation of concentrations in the lakes due to unequal
numbers of constraints in the optimizing program.

Differences in the numbers of constraints for the lakes will affect estimates
dy(t) and d4(t) if measured concentrations in the two lakes differ by a
substantial amount. Since this difference did not exist, unequal numbers of
constraints in the program are unlikely to have had any effect.

Incorrectly specified residence time distributions will affect computed
concentrations and kence comparisons between computed and measured
concentrations, particularly when means are incorrectly estimated. An error
in the mean 1/u, for Lake Erie will cause errors in computed concentrations
for botk. Lakes Erie and Ontario. A sensitivity analysis by Patterson [3]
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PLOT FOR LAKE HURON: MODEL 3
A:ACTUAL VALUE E:EXPECTED VALUE L:MEAN-1SIGMA U:MEAN+1SIGMA
11:07 WEDNESDAY, NOVEMBER 4, 1987
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Fic. 1. Measured versus computed chloride concentration: Huron. u;!=226 yr. A=
measured value, E = computed mean, U = computed mean + 1 std. dev., L = computed mean —
1 std dev., ccacrL = conc. of chloride (mg/liter).

showed that computed concentrations are much more sensitive to variations
in the mean residence time than in other parameters of the residence time
distribution, a result that supports a theoretical finding that at equilibrium
only the mean of the residence time distribution affects the actual concentra-
tion of individuals. Increases in computed values of mean concentrations in
Lake Erie were achieved by increasing the mean residence time, reoptimizing
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PLOT FOR LAKE ERIE: MODEL 3
A:ACTUAL VALUE E:EXPECTED VALUE L:MEAN-1SIGMA U:MEAN+1SIGMA
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Fic. 2. Measured versus computed chloride concentration: Erie. uj ! =226 yr, uz '=26
yr. A-measured value, E-computed mean, U= computed mean+1 std. dev., L= computed
mean — 1 std. dev., ccMepL = conc. of chloride (mg/liter).

the fit of the discharge intensity to the data, and recomputing mean concen-
trations. An increase in overall fit of the four-compartment model resulted
each time the mean residence time of individuals in Lake Erie was increased.
When the mean residence times exceeded 1.4 times the initial estimated
value of 2.6 yr, the increase in fit was slight. Similarly, a decrease in mean
residence time of chloride particles in Lake Ontario below the initial esti-
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PLOT FOR LAKE ONTARIO: MODEL 3
A:ACTUAL VALUE E:EXPECTED VALUE L:MEAN-1SIGMA U:MEAN+1SIGMA
10:44 WEDNESDAY, NOVEMBER 4. 1987
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Fic. 3. Measured versus computed chloride concentration: Ontario. u; ! =226 yr, ug ! =
26 yr, u;' =79 yr. A=measured value, E= computed mean, U= computed mean+1 std.
dev., L = computed mean — 1 std. dev., ccucer = cone. of chloride (mg/liter).

mated value of 7.9 yr resulted in improved fits. This result is not unexpected,
as an increase in the turnover rate cf water in the lake is offset by an increase
in the estimated discharge intensity of chloride particles directly into Lake
Ontario. Little insight is gained into the dynamics of the system by recogniz-
ing the basic tradeoff between residence time in a compartment and input
rate, unless constraints can be placed on either input rates or residence times
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from data not used in fitting the model, preferably data which directly
measure these rates rather than measurements of net balances in concentra-
tions.

Figures 4-6 show comparisons between computed and measured concen-
trations when the means u;! and u;! were adjusted to 3.6 and 4.7 yr,
respectively. At these values the model acccunts reasonably well for mea-

PLOT FOR LAKE HURON: MODEL 3
S:SAMPLED DATA
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Fic. 4. Measured versus computed chloride concentration: Huron. uy!=226 yr. §=
measured value, E = computed mean, U = computed mean +2 std. dev., L = computed mean —
2 std. dev., cemopL = conc. of chloride (mg/liter).
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PLOT FOR LAKE ERIE: MODEL 3
S:SAMPLED DATA I:NOT SAMPLED DATA
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Fic. 5. Measured versus computed concentration: Erie. uj!=226 yr, u;'=36 yr.
S = measured value included in model fit, I =measured value excluded from model ft, E=
computed mean, U = computed mean+2 std. dev., L = computed mean — 2 std. dev., ccMcpL
= conc. of chloride (mg/liter).
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Fic. 6. Measured versus computer concentration: Ontario. uy! =226 yr, u; ' =34 yr,
u;1=47 yr. S=measured value included in model fit, I =measmed value exchided from
model fit, E=computed mean, U=computed mean+2 std. dev., L =computed mean —
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sured concentrations in the three lakes for the fifty year period 1910-1960.
Even with these revised estimates, which are 40 percent above and below the
estimates provided by the watershed balance model, respectively, no direct
discharge from the Lake Ontario watersked is required to offset the increased
turnover rate of water in Lake Ontario. For those values of mean residence
times in the lakes, the optimized estimates of the discharge intensities of
chlorides are

a,(t)=0.155+0.004¢,

dg(t) =0.623+0.086¢,

dy(t)=0.

Comparison of d(t) for the two sets of residence times in Lakes Erie and
Ontario shows that an increase in both constant and time-varying input
intensity for Lake Erie is sufficient to account for an increase in computed
mean balance in Lake Erie while maintaining the balance in Lake Ontario.
Only when the residence time of chlorides in Lake Ontario is reduced by 95
percent of the initial value is a direct discharge into Lake Ontario required to
maintain a balance that matches measured concentrations. It is clear ihat,
instead of the mod:l being overparametrized (a case can be made for
retaining each parameter), additional data are needed to establish limits
outside of which parameters should not be varied in the fitting process. If
either input intensities or residence times are given, the other parameters can
be more reliably estimated.

It is interesting to note that relative magnitudes of parameter estimates
remained constant in the two estimates of input intensities corresponding to
the two sets of mean residence times. For comparison a third set of mean
residence times for Lakes Erie and Ontario were used, which were set at 95
percent above and below their original values, respectively. Table 4 summa-
rizes the results. Significantly, relative magnitudes of coefficients changed,
the constant input intensity assuming a much greater proportion of the total.
A second qualitative difference between this case and the others is the
substantial discharge directly into Lake Ontario from its watershed needed to
balance concentrations in that lake. It is implausible that the mean residence
time for chlorides in Lake Ontario is as short as 0.4 yr.

Tables 2—4 break down total discharges of chlorides into the lakes accord-
ing to input component and lake, for a typical one liter volume, for the sixty
year period. Bounds on total discharges may be computed corresponding to
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TABLE 2
ESTIMATED CUMULATIVE CHLORIDE DISCHARCES, 1900--1960
ul=226yr, u; ! =26yr, u;! =79 yr.
Estimated discharge intensity
(ppm/yr) Cumulative discharge (ppm)
Lake Const. Lin. incr. f’ (Coust) dt j:n (Lin. Incr.)dt Total
Huron 4,(t)= 0158 +0.004¢ 948 720 1668
Erie ay(t)= 0504 +0048¢t 30.24 86.40 116.64
Ontario d.(t)= O 0 0 0
Total 39.72 93.60 133.32
TABLE 3
ESTIMATED CUMULATIVE CHLORIDE DISCHARGES, 1900-1960
ul=206yr, u; ' =364yr, u;' =474 yr.
Estimated discharge intensity
(ppm/yr) Cumulative discharge (ppm)
Lake Const. Lin. Incr. Lm (Const.)dt fom (Lin. Incr) gt Total
Huron ay(t)= 0.155 +0.004¢t 9.30 720 16.50
Erie d)(t)= 0623 +0.086¢ 37.38 154.80 192.18
Ontario d,(t)= O 0 , 0 0
Total 46.68 162.00 208.68
TABLE 4
ESTIMATED CUMULATIVE CHLORIDE DISCHARGES, 1900-1960
u'=226yr, u; ' =51yr, u; ' =04yr.
Estimated discharge intensity
(ppm/yr) Cumulative discharge (ppm)
Lake Const. Lin. Incr. fom (Const.)dt fo""am Incr)dt Total
Huron 4,(t)= 0.155 +0.004t 9.30 6.84 16.14
Erie ax(t)= 2179 +0038t 130.74 68.40 199.14
Ontario d,(t)= 1568 +0.907¢t 94.08 1632.60 179885
Tetal 234.12 1707.84 1941.98
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any required probability limits by applying normal approximations to the
Poisson distribution.

lnsummary the above-cited numerical experiment showed that the fitting
criterion achieved an overall minimum when the mean residence time of
chlondesml.akeEmwasmueasedtoa]axgevalue,effechvelysevenngthe
flow link between Erie and Ontario, while simultaneously decreasing the
mean residence tim2 for Lake Ontario and increasing the direct discharge
rate of chlorides into Ontario. That is, flow linkages between the lakes cause
optimized objective function values to be inflated with respect to the case
where lake concentrations are physically independent of each other.

Nonrepresentativeness of sampling stations in the lakes is a potential cause
of large differences between measured and computed concentrations even
after input intensities are fitted to the field data. The condition shown in
Figure 2 can be caused when a disproportionate number of sampling loca-
tions are outside the main volume of lake water (whose mean turnover time is
u;'), being situated in local pockets with low tumover rate where high
concentrations accumulate.

Differences in measured versus computed variability exist in Figures 1-6,
into question in this case are (1) completely randomized timing of discharges
represented by the Poisson distribution, and (2) complete and instantaneous
mixing of chlorides upon entering the lakes. Since the Poisson distribution
approximates a wide variety of distributions of discharges, it is more plausible
that tkc second of the two assumptions is in error. Clearly, instantaneous and
distribution of residence times is inaccurate, particularly when lake volumes
are not subcompartmentalized. Lack of subcompartmentalization is miti-
gated, in part, by the plausible assumption. that chlorides are discharged
randomly throughout shoreline waters cf the lakes. A second point that
provides justification for use of the exponential distribution of residence times
is the thecretical result cited above conceming insensitivity of equilibrium
concentrations to all moments of the residence time distribution except the
first, supported by the sensitivity analysis by Patterson.

CONCLUSIONS

Stochastic compartmental models are a numerically feasible method of
analyzing the distribution and fate of chemical species in aquatic environ-
ments, subject to availability of data for parameter estimation. A multivariate,
linear, stochastic compartmental model can easily be fitted to a multivariate
time series in the dependent variables. Three advantages of the stochastic
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version of the linear compartmental model over its deterministic counterpart
are:

(1) formal methods of statistical inference can be applied when parame-
ters are estimated from field data,

(2) probability bounds on estimates of dependent variables are obtained,
and .

(3) whereas linear, deterministic compartmental models always invoke the
Markov assumption in their formulation, the stochastic version as described
above by the matrices P and W is computationally feasible for general
residence time distributions.

Finally, the stochastic compartmental model permits incorporation of a range
of sources of uncertainty, including (i) types of external inputs, (ii) compart-
mental residence times, and (iii) distribution of individuals among compart-
ments.
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