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Previous theoretical investigations of translating cables have been focused on the sagged 
cable equilibrium referred to here as the minimum cutenary. The minimum catenary is 
stable for finite translation speeds [ 1,2] and asymptotically approaches a buckling instabil- 
ity as the translation speed tends to infinity [2]. Experimental evidence presented in this 
paper validates this conclusion and the cable theory established in reference [2]. A second 
translating cable equilibrium is predicted in which the cable stands in the shape of an 
arch. This equilibrium, referred to as the maximum catenary, collapses for low translation 
speeds but becomes stable for sufficiently high translation speeds. The stability of the high 
speed maximum catenary is confirmed by experiment. 

1. INTRODUCTION 

The translating cable represents a technically important variation of the classical translat- 
ing string originally investigated by Skutch [3] in 1897. The translating string [4], com- 
monly referred to as the moving threadline [5], models the transverse vibration of a taut 
string having uniform translation speed and passing through two eyelets. The translating 
cable [I, 2,6] models the three-dimensional vibration of a sagged cable having uniform 
translation speed and passing through two eyelets which may be at different elevations. 
Unlike the idealized translating string equilibrium which is straight, the translating cable 
equilibrium sags under the influence of gravity and forms an equilibrium plane. The 
three-dimensional cable motion is described by components lying in, and normal to, the 
equilibrium plane. 

In 1972, Simpson [l] analyzed the linear in-plane vibration of translating cables having 
small sag and level eyelets. His analysis reveals that the cable tension increases with 
translation speed, and the translating cable cannot experience a buckling instability like 
the (straight) translating string. In 1985, Triantafyllou [6] extended the translating cable 
problem to include cables having either small or large sag and inclined eyelets. The 
phenomena of frequency crossover and frequency avoidance greatly influence the dynamic 
component of cable tension. Recently, Perkins and Mote [2] analyzed both in-plane and 
out-of-plane linear vibrations of translating cables having arbitrary sag and arbitrary 
eyelet inclination. They noted that for any non-zero equilibrium sag, the cable asymptoti- 
cally approaches a buckling instability in the limit of infinite translation speed. 

The above analyses focus on a single cable equilibrium which is the familiar cafenary 
of elementary statics modified to incorporate cable translation speed. Here, this equili- 
brium is referred to as the minimum cutenary. There exists a second arch-like equilibrium 
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formed by an inverted minimum catenary which is referred to here as the maximum 
cafenary. Without translation speed, the maximum catenary collapses under compressional 
loading. For sufficiently large translation speed, however, the maximum catenary becomes 
tensioned and stable [7]. 

The purpose of this paper is to present experimental evidence in support of the 
translating cable theory [2,7] and to examine the stability of the minimum catenary and 
the maximum catenary equilibria by using both experimental and theoretical methods. 
The cable model of references [2] and [73 is summarized and the experimental apparatus 
detailed in reference [7] is briefly described. 

2. SUMMARY OF CABLE MODEL 
2.1. MODELING ASSUMPTIONS 

Figure 1 depicts an elastic sagged cable translating between two fixed eyelets. The two 
space curves ,yi and $ represent the cable equilibrium and final configurati0ns.t The 
cable equilibrium lies in the vertical X,-X, plane with gravity g aligned with the -e, 
direction. The vector U( S’, T) is the three-dimensional motion of the final configuration, 
and it is distinguished from the motion of a cable particle which includes the particle 
translation velocity c’l{. U( S’, T) = tY,l: + V,l: + U,li is resolved into components aligned 
with the local tangential li, normal 11, and bi-normal 1: directions of the cable equilibrium. 
S’ represents the cable equilibrium arc length co-ordinate and T represents time. 

Figure 1. Definition diagram for cable equilibrium and final configurations. Displacement U is referred to 
Frenet triad (Ii, Ii, Ii). Cable translation velocity relative to xi and x1 is denoted by c’li and c’l{, respectively. 

A derivation of the equations of motion can be found in references [2,7] and is based 
on the following assumptions: (1) elastic and gravitational forces act on the cable; 
dissipative forces are not included; (2) the cable is a homogeneous, one-dimensional 
elastic continuum obeying a linear stress-strain relationship; (3) the cable undergoes 
uniform axial extension; the axial strains may be large and are described by the Lagrangian 
strain of the cable centerline; cable bending and torsion are not considered; (4) the cable 
mass flux pA’c’ is constant; p, A’, and ci are the cable mass density, equilibrium 
cross-sectional area, and equilibrium translation speed, respectively; (5) the cable motion 

t Superscripts i and f refer to quantities associated with the cable equilibrium and final configurations, 
respectively. 
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U(S’, T) vanishes at the eyelets. Under these assumptions, the non-linear equations of 
motion are derived by using Hamilton’s principle in references [2,7]. 

2.2. THE TWO CABLE EQUILIBRIA 

The equations of equilibrium presented in references [2,7] are non-linear in the 
unknown equilibrium tension P’(S’) and equilibrium curvature K’(S’). Introducing the 
normally very good assumption t 

P’/EA’cc 1, (1) 

where E is Young’s modulus, results in integrable equations of equilibrium given by 

dP’ pgA’(pgA’S’) -= 
dS’ Pi - PAici2 ’ 

(2,3) 

The constant PO represents the tension at the extremum point S’ = 0 in Figure 1. Integration 
yields 

Pi(Si)=pAici2~pgAi[(M2)2+(Si)2]“2, K’(S’) = M2/[(My+(si)2], (4,5) 

where 

M2 = (P,, - pA’c’*)/pgA’. (6) 

Two cable equilibria are indicated by the f signs in equation (4). Note from equations 
(4) and (6) that M2 > 0 for the plus sign solution and M2 < 0 for the minus sign solution. 
Further manipulation of equation (5) [2,7] yields 

X,(X,) = M’[cosh (X,/M2)], S’(X,) = M’[sinh (X,/M2)], (738) 

where X,(O) is chosen to be M2. 
Equation (7) is the well known cutenary of elementary statics with the catenary 

parameter M2 modified to include the translation speed ci. An alternative derivation of 
equation (6) is given in reference [l] where M2> 0 is assumed. The equilibria M2> 0 
and M2 < 0 are referred to as the minimum and the maximum catenary, respectively. The 
terms minimum and maximum denote the extremum values of the gravitational potential 
energy functional for an inextensible cable of specified length [8]. The functional becomes 
a minimum at the minimum catenary, and a maximum at the maximum catenary. Both 
equilibria are illustrated in Figure 2 for the case IM21 = O-2988 and V/H = l/5, where H 
and V are the horizontal and vertical distances between the eyelets and L’ is the equilibrium 
cable length. 

2.3. LINEAR EQUATIONS OF MOTION AND DISCRETE MODEL 

The equations of motion are linearized about the cable equilibria in references [2,7], 
where the following non-dimensional quantities are introduced: 

s=(si+L*)/Li, (9) 

where L* is the length of the equilibrium cable from the left eyelet to the extremum point; 

t = T(g/ Ly; Uj=Uj/Li j=l,2,3; p = Pi/ PO; k=K’L’. (10-13) 

The three linearized equations of motion governing free response about the cable equilibria 
are, for the tangential component, u, , 

[Cd-- d<u,,s -WI,, - k[b:p - d)b42.s + WI = ul,rr +2du,,s - W,rr (14) 

t This assumption is equivalent to approximating the cable equilibrium by that of an inextensible cable. 



400 N. C. PERKINS AND C. D. MOTE, JR. 

cotenory 

i;r_‘i: V 

X, Mh > 0 Minimum 

L-4 
cotenory 

Xl 

Figure 2. The minimum catenary (M’> 0) and the maximum catenary ( M2 < 0) equilibria for the case 
IM21 = 0.2988 and V/H = l/S. L’ is the equilibrium cable length and ci is the equilibrium translation speed. 
X, = 0 is aligned with the extremum point of the cable equilibrium. 

for the normal component, u2, 

[(& - u:)(uz,s + W1.s + W&- d)b,,s - &)I = ~2,rr +2~,(~2,,+ W,, (15) 

and for the bi-normal component, uj, 

m:P - dhs)l,s = %,rr+f~U,(%,s),r, (16) 
and the boundary conditions are Uj(O, t) = Uj( 1, t) = 0 for j = 1,2,3. 

The three constant coefficients appearing in equations (14), (15), and (16) are charac- 
teristic wave speeds given by 

V: = PJ(pgA’L’), transverse wave speed; (17) 

u: = EA’/(pgA’L’) longitudinal wave speed, (18) 

u’, = (ci)2/(gLi), cable transition speed. (19) 

The remaining two coefficients are non-constant and represent the equilibrium curvature 
and tension distributions: 

u:p(s)=u~*[(m*)2+(s-I*)2]1’2, k(s)=m2/[(m2)2+(s-1*)2], (20,21) 

where 

m2=M2/Li=u;-u~ and I* = L*/ L’. (22) 
For the minimum catenary, the plus sign is chosen in equation (20) and m2 > 0 in equations 
(21) and (22), and for the maximum catenary, the minus sign is chosen in equation (20) 
and m2<0 in equations (21) and (22). 

Inspection of equations (14), (15) and (16) reveals two important features of linear 
cable motion. First, the linear in-plane motion described by the u, and u2 components 
of equations (14) and (15) decouples from the linear out-of-plane motion described by 
the uj component of equation (16). Second, the coupling of the in-plane components 
derives from the equilibrium curvature k(s). Thus, for a straight translating cable (k = 0), 
all three equations decouple and reduce to the equations of motion of the translating 
string [3-51 and the translating rod. 
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General analytical solutions have not yet been found for the complete linear equations 
of motion which remain coupled and have non-constant coefficients of irrational form. 
Asymptotic closed-form solutions have been derived for special cases of the minimum 
catenary [l, 61. Here, numerical solutions are computed after discretizing, using the 
Galerkin method [2,7]. Consider N-term separable series solution representations for 
the Ui of the form 

4Cs, l)= F 4ijttJejCs)9 i = 1,2,3, (23 I 
,=I 

where 

O,(s) = 2”‘sin (jars). (24) 

The discretization detailed in references [2,7] results in the 4N x 4 N eigenvalue problem 

(25) 

governing in-plane vibration and a 2N x 2N eigenvalue problem 

B& = &x, (26) 

governing out-of-plane vibration. Im(o) and Re(w) represent the cable natural frequencies 
and damping factors for in-plane and out-of-plane modes determined by using equation 
(23) with the eigenvectors 

(27) 

3. EXPERIMENTAL APPARATUS 

The cable natural frequencies and stability are experimentally determined using the 
test stand illustrated in Figure 3. The cable (a), having the indicated material properties, 

Vertical 
station 

L- 0.30 <H< 3.35m-1 Hc++zmM 
smtion 

Figure 3. Schematic diagram of the cable test stand. (a) Cable, 4.8 mm diameter woven nylon rope having 
weight/length pA’g = 69g/m and section stiffness EA’ = 2200 N; (b) pulley, 30.5 cm diameter with 4.8 mm 
semicircccular groove around perimeter; (c) pinch roller, 8.89 cm diameter flanged roller attached to an air piston 
pressurized to 68.9 kPa; (d) DC motor, l/2 hp Emerson TR-50 equipped with speed control and forward/reverse 
switch; (e) translation speed, magnetic pick-up and Beckman 6240 frequency counter. 
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translates between the horizontal and vertical stations separated by the distances H and 
V. The cable wraps around a pulley (b) at each station. Surgical tubing rubber lines a 
groove in the pulley perimeter and increases pulley/cable friction. Pinch rollers (c), drawn 
radially inwards against the cable by pressurized air pistons, guide the cable on and off 
the pulleys. A DC motor (d) drives the pulley on the horizontal station in the clockwise 
direction creating a taut (top) span and a sagged (lower) span. Experiments were focused 
on the sagged span which achieves translation speeds ci up to 20 m/s, as measured by a 
pick-up and frequency counter (e). 

Figure 4 is a schematic diagram of a two-axis optical displacement probe developed 
to measure cable motions at one point along, and perpendicular to, the cable centerline. 
The probe simultaneously measures the out-of-plane motion component, U,, and the 
normal component of the in-plane motion, U,. Along each axis, a fluorescent light (a) 
illuminates the cable (b) which casts a focused (c) shadow on a diode array (d). The 
array contains 256 diodes on 25 Frn centers. A sampling circuit (e) starts a counter and 
simultaneously begins to scan the diode array. When a diode output falls below a 
prescribed threshold value, the counter is read providing the analog voltage signal 
proportional to U, (or U,). Scanning rates up to 3900 Hz easily capture the O-10 Hz cable 
motions which are of primary interest, and a 100 Hz low-pass filter reduces measurement 
noise. Cable motions within a 6.0 cm by 6-O cm sensing area are resolved to within an 
error of 1 mm [7]. 

I ‘I 

I’--------’ Sampled diode signal 

Figure 4. Schematic of two-axis displacement probe. Sensing area is 6 cm by 6 cm. (a) Fluorescent light, 
25 cm, 10 W; (b) dable, see (a) Figure 3; (c) lens, 12.7 mm diameter focusing lens having a 9.5 mm focal length; 
(d) diode array, Reticpn RL256G diode array having 256 diodes on 25 em centers; (e) sampling circuit, Reticon 
RC301 PC board recharge amplifier and a sample-and-hold circuit. 

The in-plane and out-of-plane cable natural frequencies are measured by using an 
HP5423A Structural Dynamics Analyzer. The two-channel analyzer computes the 
autocorrelation functions for free in-plane and out-of-plane (U, and U,) response follow- 
ing initial in-plane and out-of-plane disturbances. Figure 5 shows a sample autocorrelation 
function for the out-of-plane response of the illustrated stationary cable. The highest 
peak marks the location of the fundamental cable frequency, 0.76 Hz. The peaks associated 
with higher cable modes decrease rapidly with mode number and become broader and 
poorly defined. The same pattern holds for the autocorrelation function for the in-plane 
co-ordinate U,. Large internal cable damping derives from the woven construction of 
the nylon rope and quickly limits the contribution of higher cable modes to the response. 
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Figure 5. Sample autocorrelation function for free out-of-plane U, response. The first three out-of-plane 
natural frequencies are indicated by the locations of the peaks. L’ = 244 m, H = 1.99 m and d = 0.61 m. The 
probe is positioned at I2 = 0.64 m from the right eyelet. 

The second and third out-of-plane natural frequencies are barely discernible in Figure 
5, and an expanded scale function is used to locate them properly. An eyelet attached 
to a voice coil was added in an attempt to drive higher cable modes [7], but large internal 
cable damping again prevented the excitation of cable modes beyond the third. 

4. VALIDATION OF CABLE MODEL 

The in-plane and out-of-plane frequency spectra predicted by the discretized cable 
model are compared with experimentally determined values for the translating minimum 
catenary. A 3.47 m length of cable is suspended between the cable stations separated by 
I-f = 2.23 m and V= 0.91 m as illustrated in Figure 6. The in-plane and out-of-plane 
frequencies are measured as a function of translation speed. Figures 6 and 7 show the 
first three in-plane and the first three out-of-plane frequencies measured at 12 translation 

L \i H+4 
V 
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L’ /w 
0 Q 0 Q 

0 o- 0 
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-0 0 0 0 ~-c-o-o..-~~~ 

01 
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I I I 

1 2 3 
Cable speed, ci (m/s) 

Figure 6. Experimental and theoretical in-plane natural frequencies for a low speed translating cable having 
inclined eyelets. L’ = 3.47 m, H = 2.23 m, and V = 0.91 m. N = IO in equation (23). -, Cable model; 000, 
experiment. 
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Figure 7. Experimental and theoretical out-of-plane natural frequencies for a low speed translating cable 
having inclined eyelets. Cable equilibrium is described in Figure 6. Key as Figure 6. 

speeds ranging from 0 to 3.66 m/s. The close and vertically spaced data points in these 
figures represent multiple frequency measurements, and the solid curves represent the 
frequencies calculated from the cable model. Inspection of Figures 6 and 7 reveals 
excellent agreement between measured and computed cable natural frequencies which 
gradually decrease over the indicated speed range. 

5. STABILITY OF THE MINIMUM CATENARY 

A translating string having tension PO and translation speed ci experiences a buckling 
instability when 

v:/v:= 1, (28) 

where the non-dimensionalization of section 2.3 is used [4,5]. For a translating cable of 
constant length, the catenary parameter m 2 = vf - v', of equations (22) is constant [2,7] 
and relates the cable tension v: to the translation speed vz. The above buckling condition 
becomes 

vz/(vf+ m') = 1, (29) 

and is satisfied in the limit vz+ 00. The cable tension must increase in response to an 
increase in translation speed in order to accelerate a cable particle along the constant 
and curved cable equilibrium. This prediction, first made by Simpson [ 11, has been tested 
experimentally, as follows. 

Figure 8 depicts a 1.58 m length of cable suspended between the stations separated by 
H = 1.16 m. The fundamental in-plane and out-of-plane frequencies were measured at 
12 translation speeds ranging from 0 to 13.4 m/s. In this test, exceptionally large cable 
damping prevents measurable excitation of the second and higher cable modes. Large 
aerodynamic damping forces are generated at high translation speeds and supplement 
the already large internal damping. The theoretical predictions (solid curves) are shown 
together with the experimental data. The fundamental frequencies rapidly decrease with 
translation speed and at ci = 13.4 m/s they are less than l/7 of their values at ci = 0. The 
cable approaches a buckling instability as the fundamental frequencies asymptotically 



TRANSLATING CABLE EQUILIBRIA STABILITY 405 

(b) 

, o-e--_o-o-o_ 
5 IO 15 
Cable speed, ci (m/s) 

Figure 8. Experimental and theoretical fundamental frequencies for a high-speed translating minimum 
catenary. (a) In-plane; (b) out-of-plane. L’ = 1.58 m and H = 1.16 m. N = 10 in equation (23). Key as Figure 6. 

approach zero with increasing translation speed. The cable model predicts the same trend 
for higher order frequencies; see Figure 9 of reference [2]. 

The asymptotic behavior of the fundamental frequencies, as just described, is reflected 
by the propagation speeds of disturbances traveling along the cable. An initial transverse 
cable displacement creates two d’Alembert waves: (1) a forward traveling wave propagat- 
ing in the direction of cable translation, and (2) a backward traveling wave propagating 
in the opposite direction. The propagation speeds of the out-of-plane d’Alembert waves 
are readily computed from the characteristics associated with the linear hyperbolic partial 
differential equation of motion (16). The two (real) characteristics in the t-s plane satisfy 

r91 
dt -v,/rn*{(~,/rn)~+[1+(~-~*/m~)~]“~}~’~ 

ds= m[l+(S--I*/m’)2)“2 (30) 

The propagation speeds are given by ds/dt and the * signs in equation (30) designate 
the forward and backward traveling waves, respectively. At v,/m = 0, the propagation 
speeds of the forward and backward traveling waves are equal in magnitude, of opposite 
sign, and vary with s due to the non-uniform tension along the stationary sagged cable. 
Translation speed destroys the symmetry of the stationary cable solution, and for v,/ m > 0 
the forward traveling wave propagates faster than its backward traveling counterpart. A 
dramatic difference in the propagation speeds of the forward and backward traveling 
waves is observed at high translation speed. At ci = 13.4 m/s for the cable of Figure 8, 
an initial mid-span disturbance creates a forward traveling wave which reflects from the 
downstream (left) station almost instantaneously. By contrast, the backward traveling 
wave propagates so slowly that it often never reaches the upstream (right) station, which 
is only 0.79 m away, before being dissipated by damping forces. In the limit v,/m --*cc 
in equation (30), the propagation speed of the backward traveling wave vanishes and 
standing wave resonance leads to the buckling instability discussed above. 
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6. STABILITY OF THE MAXIMUM CATENARY 

Without translation speed, the maximum catenary collapses under compressional load- 
ing. With translation speed however, the cable can be in tension as seen by the minus 
sign solution of equation (4). The entire cable is in tension for speeds u,/m > 
[ 1 + ( l/4m4)]“* and is in tension in the interval 1s - l/2] < m*[( vf/m’)‘- l]r” for speeds 
1 < q/m < [ 1 + ( l/4m4)]““, where m denotes IM[m]. This speed tensioning effect allows 
the initially unstable equilibrium to become stable at sufficiently high translation speeds. 
Stable vibration modes are associated with eigenvalues having non-positive real parts, as 
determined from the discrete eigenvalue problems (25) and (26). 

The eigenvalues governing the stability of the first eight out-of-plane modes are shown 
in Figure 9 as functions of translation speed vC/ m. In this example, m* = -0.2988, and 
the maximum catenary has the illustrated shape. The real eigenvalues below v,/m = 1 
become imaginary above u,/m = 1 and indicate stability for the out-of-plane vibration 
modes. Stability occurs as the eigenvalues pass through a singularity at v,/ m = 1; Re [w] + 
co from below and Im [w] + 00 from above. To ensure eigenvalue convergence, an increas- 
ingly larger expansion size in equation N (23) is required as uC/ m + 1. Note that Figure 
9 shows the first eight eigenvalues only in the regions where they have converged for the 
case where N = 70. For this large value of N, the fundamental eigenvalue has converged 
everywhere except in the rather small interval 0.99 G v,/ m s 1.04. An analytical solution 
for the eigenvalues of the continuous problem (16) has recently been developed which 
confirms the singularity approximated in Figure 9. The analytical solution is valid for 
shallow maximum catenaries and is the subject of a subsequent publication. 

0 
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Figure 9. Stability of out-of-plane modes for a translating maximum catenary. Real and imaginary parts of 
eigenvalues are plotted versus translation speed for the case m2 = - 0.2988 and N = 70 in equation (23). Stability 
is determined by Re (o,,) s 0. 

The eigenvalues for the first eight in-plane modes are plotted versus translation speed 
in Figure 10 for the same maximum catenary shown in Figure 9. In contrast to the 
out-of-plane problem, the eigenvalues for the in-plane modes become complex during 
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Figure 10. Stability of in-plane modes for a translating maximum catenary. Real and imaginary parts of 
eigenvalues are plotted versus translation speed for the case mz = -0.2988, u: = 5000 and N = 70 in equation 
(23). Cable equilibrium is shown in Figure 9. 

the transition from real to imaginary values. All the eigenvalues are real at u,/m = 0 and 
remain real until the adjacent pairs of real loci coalesce and a common imaginary locus 
is formed. This transition from real to complex eigenvalues, which occurs simultaneously 
for the nth and (n + 1)st eigenvalues, is marked by the n, n + 1 in the upper portion of 
Figure 10. Following this transition, the complex eigenvalues are described by w, = 
*Re (~,)fi Im (w,), for r = n, n + 1, and indicate instability for the nth and (n + l)th 
in-plane modes. The eigenvalue for the nth in-plane mode becomes imaginary following 
a second transition marked by n in the lower portion of Figure 10, and the nth mode 
remains stable for translation speeds beyond this point. Between the points n, n + 1 and 
n, the nth eigenvalue alternates between complex and pure imaginary values. As an 
example, the behavior of the fourth eigenvalue can be understood by reference to the 
points marked 3,4, a, 2, and 4 in Figure 10. At 3,4 the (real) third and fourth eigenvalues 
coalesce and a common imaginary locus appears. The fourth eigenvalue remains complex 
between points 3,4 and a, becomes imaginary in the short interval between a and 2, is 
again complex between points 2 and 4, and remains imaginary beyond 4. A recently 
developed analytical solution for the in-plane shallow maximum catenary problem 
confirms the transition of the eigenvalues from real to complex to imaginary values 
observed in Figure 10. This analytical solution will also be included in the subsequent 
publication referred to above. 

Figure 10 shows that the translation speed required to stabilize in-plane modes increases 
with mode number, and at any translation speed there always exist unstable high-order 
in-plane modes. It is unlikely, however, that such high-order modes will contribute to 
the response of the highly damped cable considered in the experiments. In reference [7], 
linear damping terms are appended to the equations of motion in an attempt to model 
cable dissipation. With damping added, all Re(w,) loci approach the same limiting 
negative value but the stabilization speeds of Figure 10 are virtually unchanged. While 
the simple linear damping model adds stability to all modes, it does not preferentially 
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stabilize high-order modes first. More accurate modeling of the large and complicated 
dissipative forces may alter this result. 

The stability of the maximum catenary has been confirmed by experiment. For a 
maximum catenary having m2 = -0.2988 and L’ = 1.02 m, the test stand can achieve 
translation speeds up to v,/m = 11.6 which is well above the stabilization speeds for 
low-order modes predicted in Figures 9 and 10. An equilibrium having m2= -0.2988 is 
obtained by adjusting H until an arch height to span ratio of O-37 is achieved. The 
photograph in Figure 11 shows the cable being supported at the mid-span point while 
the cable is stationary. Plexiglass guides are positioned above the pinch rollers to guide 
the rope as it enters on and off the pulleys. The rope easily derails from the pulleys at 
high translation speed if left unguided. The cable of Figure 11 is supported while the 
translation speed is increased, and when ci = 13.8 m/s (v,/m = 8), the cable is released 
and stands upright. Figure 12 illustrates the stable translating maximum catenary equili- 
brium. 

Figure 11. Maximum catenary before stabilization. Nylon rope of length L’ = 1.02 m is supported at mid 
span point when ci = 0. Note the Plexiglass guides at the 2 o’clock position on the right pulley and the 10 o’clock 
position on the left pulley. 

Three important qualitative observations are noted presently. First, the translating 
maximum catenary at v,/m = 8.0 remains surprisingly quiescent for the duration of the 
10 minute test. The cable maintains its equilibrium shape despite being subjected to small 
but continuous disturbing forces that arise from drive train noise, pulley eccentricities 
and air currents. Furthermore, the cable recovers its equilibrium shape following initial 
in-plane and out-of-plane displacements as large as 2-3 cm applied near the pulleys and 
at the mid-span point. Second, when the translation speed is reduced to q/m = 6-O 
(10.4 m/s) large and slow oscillations eventually drive the cable out of the equilibrium 
plane at the downstream (left) pulley. The maximum catenary equilibrium could not be 
maintained below v,/ m = 6.0. Third, the transition to instability is gradual. Between 
v,/ m = 8-O and 6.0 the stability of the translating cable is not well defined. In this speed 
range, the cable often recovers from 2-3 cm initial displacements applied ‘at the mid-span 



TRANSLATING CABLE EQUILIBRIA STABILITY 

Figure 12. Maximum catenary Ater stabilization. Photograph captures the stable translating maximum 
catenary equilibrium. Cable circulates counterclockwise. L’ = 1.02, G? = -0.2988 and c’ = 13.8 m/s (0,./m = 8.0). 

point but frequently fails to recover from initial displacements applied near the down- 
stream pulley. 

7. SUMMARY AND CONCLUSIONS 

The equations of cable equilibrium admit two solutions referred to as the minimum 
catenary and the maximum catenary. The cable model predicts that the minimum catenary 
remains stable for finite translation speeds but asymptotically approaches a buckling 
instability as the translation speed tends to infinity. The absence of a finite critical 
translation speed is attributed to the speed-dependent cable tension. The cable stability 
has been demonstrated by measuring the fundamental in-plane and out-of-plane frequen- 
cies at high translation speeds, and the measured frequencies agree with those predicted 
by the cable model. 

The initially unstable maximum catenary can be stabilized by the addition of cable 
translation speed. At high translation speeds, the cable is tensioned and the theoretical 
model predicts cable stability. This result also has been confirmed by experiment and by 
an analytical solution to the shallow maximum catenary problem, detailed in a forthcoming 
publication. 
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