
JOURNAL OF ECONOMIC THEORY 47, 39-50 (1989) 

Dynamic Determinacy and the Existence 
of Sunspot Equilibria* 

JOJXN LAITNER 

Department of Economies, Larch Hail, The University of Michigan, 
Ann Arbor, Michigan 48109 

Received May 22, 1986; revised February 10, 1988 

This paper relates the existence of stationary sunspot equilibria in the vicinity of 
a conventional stationary state to the phase diagram surrounding the latter. We 
find that the local condition required for a unique equilibrium path returning to the 
stationary state following any slight disturbance of initial conditions is also suf- 
ficient to exclude stationary sunspot equilibria in the stationary state’s immediate 
vicinity. In that sense, an eigenvalue condition familiar from dynamic analysis can 
tell us something about the possibilities of local sunspot activity as well. Journal of 
Economic Literature Classification Numbers: 022, 023, 111. 0 1989 Academic PI~SS, IIIC. 

If we can think of an economic model as detining a function from agents’ 
preferences, endowments, and technologies to market prices and quantities, 
comparative statics exercises will be straightforward. Recent work reveals 
two potential complications, however: the possibility of large numbers of 
sunspot solutions, even arbitrarily close to more conventional outcomes; 
and indeterminacy. In the former instance, an “extrinsic random vari- 
able”-a variable with realizations not directly affecting the underlying 
characteristics of households or production--can influence eqnilibri~m 
outcomes. Essentially, if all agents think a sunspot variable is important, it 
may become so-see, for example, Shell [ 161, Cass and Shell [ 61, and 
Azariadis [l]. In the case of indeterminacy, a model (generically) may 
exhibit a continuum of equilibria (unrelated to extrinsic randomness) 
consistent with given initial conditions, perfect foresight, and market 
clearing restrictions. In fact, a stationary solution may have a continuer 
of equilibrium paths in its local vicinity converging to it-see, for instance, 
Calve [7], Laitner [13], Woodford [lS], and Kehoe and Levine [12]. I 
either case, we are left unsure about which equilibrium a given model 
should direct us to after a parameter change. 

* I owe thanks for very helpful comments to this journal’s referees and to K. Shell. This 
research was supported by the National Science Foundation, Grant SES-8106555. 
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The purpose of this paper is to show that a condition needed for 
avoiding indeterminacy in the vicinity of a stationary solution, say, x*, also 
rules out stationary sunspot equilibria arbitrarily close to x*. Thus, an 
eigenvalue condition characterizing local (equilibrium) dynamics also 
yields results about sunspots. More precisely, if a model with no historical 
(or “predetermined”) endogenous variables has a stationary solution x* 
which is “determinate” in the sense that every possible given initial 
condition in some open neighborhood of it constitutes the starting point of 
a single equilibrium time path which converges to it, then Theorem 1 below 
establishes that for any (finite) integer M there exists an open neigh- 
borhood of x* not containing (entirely within it) a stationary sunspot 
equilibrium based on any extrinsic random variable having M states. 
Theorem 3 presents identical results for models containing historical as well 
as non-historical arguments. Our framework allows an arbitrary (finite) 
number of state variables. 

Our theorems complement a number of existing articles. For example, 
Azariadis [ 11, Azariadis and Guesnerie [2], Guesnerie [ 111, and Peck 
[ 15, Theorem 2a] examine, in the context of consumption loan 
frameworks with no historical variables, the sufficiency for the existence of 
stationary sunspot equilibria of having one or more eigenvalues of modulus 
less than 1 for a model’s forward dynamics in the vicinity of a conventional 
stationary solution-in fact, a condition leading to indeterminacy (see 
Section 1). Woodford [19] considers a model with infinite lived agents. 
The local dynamics can be analyzed in terms of two state variables-one 
historical and the other nonhistorical. He derives a similar result-showing 
that having two stable eigenvalues, which implies dynamic indeterminacy, 
is sufficient for the existence of a stationary sunspot in each neighborhood 
of a given stationary solution. Grandmont [9, lo] obtains results for both 
existence and non-existence: for a consumption loan model having a single 
non-historical state variable in each period, he proves that an eigenvalue 
condition implying local instability in the backward dynamics (in other 
words, the case with indeterminacy-see Section 1) is necessary and 
sufficient for local sunspot activity. Woodford [18] summarizes a large 
number of examples in the same vein.’ 

The macroeconomics literature on linear rational expectations models 
(with intrinsic randomness) provides parallel results. In particular, 
Blanchard and Kahn [4] show that eigenvalue configurations leading to 
dynamic indeterminacy imply the existence of solutions containing extrinsic 
random variables (see also Gourieroux, Laffont, and Monfort [8] and 
Broze, Gourieroux, and Szafarz [S]). 

1 As revisions on this paper proceeded, the author became aware of Woodford [20], which 
independently (and with a somewhat different technology) reaches conclusions analogous to 
ours. 
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The organization of the present paper is as follows. Section 1 sets up our 
framework of analysis. Section 2 introduces sunspots and presents our 
theorems, and Sections 3,4 provide proofs. 

1. LOCAL DYNAMICS 

Until the introduction of extrinsic uncertainty, the model we consider 
consists of the following elements: a time-t vector of state variables x, 
a (time-autonomous) system of excess demand functions Z(xt, x,+ 1) 
and a set of initial conditions. The vector x, may contain prices a 
quantity variables such as capital stock figures. Time is discrete. We restrict 
our atention to equilibrium time paths. 

Our analysis begins at time 0. The sequence of vectors (x0, x1, .l~ > is an 
“equilibrium” if Z(xt, x, + 1) = 0 all t > 0 a n i x0 satisfies initial conditions. d f 
This definition implicitly requires perfect foresight. The vector x* E 
defines a “stationary equilibrium” if Z(x*, x*) = 0. Assume such an X* 
exists. Normalize variables so that x* = 0. 

To consider non-stationary equilibrium paths in the vicinity of x*, 
assume that Z( .,.) is twice continuously differentiable in some open 
neighborhood of (x*, x*). Define 

A, = az(x*, X*)/ax,, A, = aiqx*, x*yaxl, 1 ~ 

Assume 

det(A,) # 0. (Al) 

Using the implicit function theorem and (Al ), .Z(.,. ) uniquely defines a 
difference equation 

*t+ 1= i(x,) all t 2 0 (1) 

with 

Z(xt, ik)) = 0 

all x, in some open neighborhood of x*. Well-known theorems show we 
can study the behavior of (1) locally using the linear system 

x,+~=A.x, with A-. -(AZ)-’ .A,. (21 

For simplicity, we assume below that the eigenvalues of A are distinct and 
that none have modulus 1. 

Consider the makeup of the vector x, = (xii, . . . . xlzL). Some components 
may be “historical” variables: variables with time-t levels fixed by events of 
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prior dates (for example, lags may mean the time-t physical capital stock 
depends only on earlier investment behavior). The remaining elements of X, 
are “non-historical”-their values being determined during period t. 
Without loss of generality let xit, i = 1, . . . . h, be historical, U, E (xlt, . . . . xht), 
and u, = (xh+ l,t, . . . . x,~). Then given initial conditions will consist only of 
values for uo; our analysis must determine u. and X, = (u,, 0,) all t > 0. 

If h* eigenvalues of A have modulus less than 1, consider three cases: (i) 
h* <h; (ii) h* = h; and (iii) h* > h. Stationary equilibria have, of course, 
long been a cornerstone of dynamic analysis. For x* to warrant special 
attention, however, we presumably want to insist on being able to reach it 
(via an equilibrium time path) from any u. in an open neighborhood of 
0 d P-ruling out, in general, case (i). In case (iii), for any u. in a small 
enough open set containing 0 E Rh there will be a continuum of values 
v~ER”-~ such that x,+ i = [(x,) all t 20 implies lx,--x*1 -+ 0 as t -+ co. 
This is the “indeterminate” case. For the possibility of determinacy within 
the class of convergent equilibrium paths, we are left with only case (ii).’ 
Laitner [13], Kehoe and Levine [ 121, and Begg [3, Chap. 31 discuss 
similar issues. 

A precise condition for a unique convergent equilibrium path originating 
from each x0 = (uo, uo) with u. in some open neighborhood 4Y of U* (where 
x* E (u*, u*)) and lying entirely within some small given open set V 
containing x* is 

Condition 1. The matrix A has h distinct eigenvalues ei with leil < 1 and 
IZ - h distinct eigenvalues ej with leil > 1. The projection of the stable 
manifold for (2) onto the space containing all historical subvectors u has 
dimension h. 

2. SUNSPOT EQUILIBRIA 

Suppose we have an extrinsic random variable with outcomes a,, . . . . aM. 
As stated, “extrinsic” means the variable’s realizations have no affect on 
agents’ preferences, on production technologies, or on endowments. Let the 
random variable have transition matrix Z7= [rrii]-the probability of 
transiting from state ai at time t to state uj at time t + 1 being rcti. Assume 
all agents in the model can observe the current realization ai and know Z7: 
We now define a stationary sunspot equilibrium and present our theorems. 

Following Guesnerie [ 111, if all agents anticipate time-(t + 1) state 
vector x, + ,(aj) conditional on aj (in that time period), if all maximize 

‘Nonconvergent paths may lead to contradictions of market clearing conditions within 
a finite number of periods-or they may define legitimate equilibria (see, for example, 
Woodford [18]). 
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expected utility, and if we have outcome ai at time t, let time-t excess 
demand be 

2(xt(ai), X,+ l(al), . . . . X,+ l(aM); nl E R”. 

Our definition of a stationary sunspot equilibrium is conventional: 

DEFINITION 1. For any cc >M& 2, the vectors x(a,), . ..) x(aM)ERn, at 
least two of which differ from one another, and the n x n probability trans- 
ition matrix 17 for the extrinsic random variable having realizations 
4, . . . . a,,,, determine a “stationary M-sunspot equilibrium” if for all 
i= 1 1 ‘.., Al5 2(x(ai), x(a,), . . . . x(a,); IZ) = 0. 

Thus, x(a, ), . . . . x(aM) and II characterize a stationary sunspot equi- 
librium if given a time-t realization of the extrinsic variable ai, x, = ~(a,) 
clears all current markets provided agents anticipate x,, i = x(ra,) in the 
event of random realization aj next period. 

Assume z( .) is twice continuously differentiable. n the special instance 
with 

for any x we should have 

2(x, 2, . ..) 27; II) = Z(x, 2). iA21 

Two derivative properties follow from the underlying model’s first-or 
conditions in the same special case: for any I& 

.2,(x, x, . ..) 2; Iz) = Z,(x, X), (A31 

.zj+ 1(x, x, . ..) x; ZI) = 7Tii. Z,(x, X) vj = 1, . ..) M. (AdI 

e treat these as assumptions-see Guesnerie [ll, p. 1081. 
Let /I .I/ be the Euclidean norm. Fix any M < 30. Define the “radius” of 

any M-sunspot equilibrium characterized by 

as 

s = (.-da1 1, . . . . x(a,L n) (3) 

ds)- lf Ilx(aJll. 
j=l 

Our first result is 

THEOREM 1. Suppose h = O-so that a model’s endogenous variables are 
all non-historical. Suppose assumptions (Al)-(A4) and Condition 1 holdfor 
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stationary state x* = 0. Fix any M < co. Then there exists Ed > 0 such that 
no stationary M-sunspot equilibrium has radius less than Ed. 

Section 1 explains that Condition 1 leads to the saddlepoint configura- 
tion in the neighborhood of x* desired for a unique convergent equilibrium 
time path. Theorem 1 shows that in the context of a model with no 
predetermined variables-such as the popular consumption loan systems 
mentioned in the introduction-for any M, the same saddlepoint implies 
the existence of an open set Y.YM containing x* such that no stationary 
M-sunspot equilibrium exists having all state vectors, x(a,), in %$,. In the 
latter particular sense Condition 1 ensures that x* is “isolated)) from 
sunspot equilibria.3 

Section 3 presents a formal proof of Theorem 1. The idea, however, is as 
follows. We can approximate the equilibrium behavior of our model in the 
local vicinity of x* with a linearized system. When h = 0, determinacy 
requires that all eigenvalues of our model have moduli exceeding l-in 
other words, the linear version explodes from any initial vector x0 #x*. 
In the case of a sunspot equilibrium, we replace x1 with a set of 
vectors-.x,(a,), . . . . x,(a,fiach assigned a probability weight. In the 
linearized microcosm near x*-given (A2)-(A4)--the model associates 
A .x0 (see line (2)) with the mean x1. Similarly, the model associates 
A . x,(a,), for any realization ai, with a mean outcome for x2, etc. An 
explosive A thrusts the mean away from x*-which is not compatible with 
“stationarity” of the sunspot equilibrium. 

The same result holds when the model has historical as well as non- 
historical variables. Before stating the new theorem-Theorem 3-however, 
we need the connecting link of Theorem 2. 

For a model with only historical variables, sunspot equilibria are 
impossible: if all the components of state variable x are historical (x, = u[), 
then all the elements of x, + I are determined by period t; hence, at time t 
agents cannot rationally anticipate several distinct outcomes for x,+ i 
related to intrinsic sunspot realizations occurring at t + 1.4 Similarly, if the 
model has a combination of historical and non-historical variables, agents 
at time t can anticipate sunspot variations only in the elements v,, 1 of 
xr+1. 

Formalizing this observation, 

THEOREM 2. Let (x(a,), .,., x(a,), l7) determine a stationary M-sunspot 
equilibrium. Let I7= [n,]. Suppose x(a,) 3 (u(a,), v(a,)) with u(a,) E Rh being 

3 The theorem does not rule out sunspots with some, but not all, state vectors arbitrarily 
close to x*-see, especially, Grandmont [ 10, p. 231. 

4 So, for models with no non-historical variables, for example, the standard Solow [17] 
model, sunspot equilibria are never an issue. 
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a subvector of historical variables. Then for any i= I, .I.) , there must be 
USE Rh such that for every j= 1 , . . . . M with xii > 0, the subvector u(aj) = ui~ 

Now we can proceed to 

THEOREM 3. Suppose h > 0. Suppose assumptions (Al)-(84) arzd 
Condition 1 hold for stationary state x* = 0. Fix any M < 00. Then there 
exists an E~>O such that no stationary M-sunspot e~ui~ibri~~ s has ~~d~~s 
less than Ed. 

As before, the theorem shows that if we have the phase diagram ne 
for determinacy, for any M we can find an open neighborhood Y& 
such that no stationary M-sunspot equilibrium exists having all state 
vectors in $rM. 

Section 4 presents a proof. The idea is to combine Theorems 1 and 2. 
Suppose we start at x0 #x* and restrict attention to the vicinity of x*~ 
Iin the sunspot case, there will be a set of outcomes for 
xl-~,(a,), . . . . x,(a,)-each with a probability weight. Given a realization 
ai, we apply the model to xl(a,) to derive the set for x2, etc. For the 
sunspot equilibrium to be stationary, roughly speaking, we must avoi 
letting A-see line (2)-make x, explode. That entails having x,(ai) all e 
and i in the stable manifold for A-implying, in turn, a set of n - h linear 
constraints for each x,(ai). Theorem 2 implies h more constraints. 
given xf, the h plus n-h constraints fully (hence, uniquely) dete 
x,+1 -allowing us to write x,+ r = repeated multi~licatio~ 
by A within the stable manifold t e origin; thus, the only 

sunspot very close to x* is the d 
repetitions of x* itself. 

3. PRCXJF OF THEOREM 

The proof of Theorem 1 is straightforward. We begin with a pre~irn~~ar~ 
lemma. 

Fix any M. Suppose each open neighborhood -Y- of x* contains a 
stationary M-sunspot equilibrium. Then for each k = 1,2, . . . we can fin 
a stationary M-sunspot equilibrium, characterized by sk z (xk(a1)9 ~“L) 
daMI, nd, with 

r(sk) d l/k. 

5 Note that (A2) implies the derivatives of 2(x*, x*, . . . . x*, II*) with respect to the elements 
of II* are aIi 0. 
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(Definition 1 shows we are not dividing by 0.) Then since (X,(a,), . . . . 
X,(a,)) for each k lies in the compact set 

Y - (Xl) . ..) X,) (for all i, Xj~R” and f llXill = 1 c Rn’M, (6) 
j=l 

and since each row of n, lies in the unit simplex in R”, there is a vector 

a probability transition matrix IZ*, and a subsequence 

with 

lim Sk([) = 
I+00 

(x*(u), . ..) X*(u,), IT*). (8) 

We now use a Taylor series approximation. Let 2,( .) be the derivative 
of 2( *) with respect to its ith (vector) argument. Using linear approxima- 
tions and (A2),5 

21(x*, x*, . ..) x*, n*) ‘xk(ai) + f zj+l(x*, x*, . . . . x*, n*) ‘xk(uj) 
j=l 

z Z(xk(ai)v xk(ul), .-.y Xk(U,); flk) = 0 Vi = 1, . . . . M. (9) 

The error is second order. Thus, dividing by cj”= I ~/xk(aj)/~ and taking 
limits as in (8) (using subsequences if necessary), 

2,(x*, x*, . ..) x*, II*). X*(u,) + F .zj+ 1(x*, x*, . ..) x*, n*) 
j=l 

x x*(ffj) = 0 Vi = 1, . . . . M. (10) 

Employing (A3) and (A4) and the notation of line (2), (10) becomes 

A, .X*(u,)+ g 7+4,.X*(uj)=0 Vi = 1, . . . . M, (11) 
j=l 

where I7* z [ret]. Using (Al) and (ll), 

M 

A .X*(q) = c 71; . x*(uj) Vi. (12) 
j=l 

We can use (12) to show that X*(uJ all i= 1, . . . . M must lie in the stable 
manifold for (2). 
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LEMMA 1. Let X*(aJ all i= 1, . . . . h4 be as above. Let (AI)-(A4) hold. 
Then each X*(a,) lies in the stable manifold for (2). 

ProoJ Define (II*)m = [n:(m)] all m = 1, . . . I multiplying (12) through 
bY 4 

M 
A2.X*(ai)= C 7c$.AsX*(aj) 

j=l 

Repeating the process, for any m = 2, 3, . ..) 

A”. X*(a,) = $J x$(m) .X*(q) Vi= 1 
j=l 

Now (n*)” is itself a probability transition matrix. Thus, for any m, 

d f IIX*(a,)ll = 1. 

j=l 

(141 

If X*(a,) is not in the stable manifold for (2), some component of 
the vector on the left-hand side of (13) must diverge for large enough 
m--contradicting (14). 

In words, if X, = X*(a,), the right-hand side of (12) gives the expected 
values (as of time t) for X,, 1. Multiplying through by A, we generate the 
expected value (as of time t) for A’, + 2. Continuing in this way, if we began 
off of the stable manifold for (2), the expected values must explode-an 
impossibility for (X*(a,), . . . . X*(a,)) derived from ‘“stationary” sunspot 
equilibria. This result generalizes Guesnerie [ 11, Theorem 3, part 21, 

The proof of Theorem 1 follows immediately: 

Proof of Theorem 1. Fix 1M. Suppose each open neighborhood Y of x” 
contains a stationary M-sunspot equilibrium. Construct X*(ai) all 
i = 1, . . . . M as above. Since h =O, the stable manifold for (2) is only the 
origin. Thus, Lemma 1 implies X*(a,) =OE I?” all i. But, by const 
(X*(a,), . . . . X*(a,)) E 9, a contradiction since 0 $ Y. 

642/47/:-4 
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4. PROOF OF THEOREM 3 

The idea of the proof-of Theorem 3 is given in Section 2. More formally, 
suppose that Condition 1 holds and that we have a stationary M-sunspot 
equilibrium in every open neighborhood V of x*. Construct a convergent 
subsesquence as in Section 3. If Z$ >O and n,$ > 0, the argument of 
Theorem 2 shows that X*(uj) and X*(a,) must have common historical 
components. Lemma 1 shows they must both be in the stable manifold for 
(2). Given the last part of Condition 1, we can then see that X*(aj) = 
X*(a,). Thus, (12) collapses to 

A . X*(a,) =x*(q). 

The same reasoning applies for all i. With each X*( .) on the stable 
manifold for (2), however, such multiplication leads to convergence to 0 for 
all states which are not transitory (under n*). Furthermore, every state 
cannot be transitory. 

We need an additional definition. For m = 1,2, . . . . use the notation 

Then define 

(ny=n.n.... .l7= [7c&n)]. 

p(i, T, Z7) = f nii(m). 
m=l 

If we have a stationary M-sunspot equilibrium s (see line (3)), and if the 
extrinsic random variable’s current realization is ui, p(i, T, I7) gives the 
probability of at least one repeat of ui over the next T periods. If the 
realization a, is visited very infrequently, p(i, T, s) will be near 0 even for 
a large T. If ui is actually a transitory state, 

lim p(i, T, l7) = 0. 
T-too 

We now present our proof. 

Proof of Theorem 3. Fix any A4 < co. Suppose (Al )-(A4) and 
Condition 1 hold. If there exists some open neighborhood of x* = 0 not 
containing any stationary M-sunspot equilibrium, we are done. Otherwise, 
for any k= 1,2, . . . we can find a stationary M-sunspot equilibrium 

Sk = (xk(ulh . . . . Xk(“M), nk) 

with r(sk) < l/k. Define the corresponding Sk as in Section 3, with, for some 
subsequence Sk(l), 

lim Sk([) = s* E (Jr*(&), . ..) X*(u,), IT*). 
fern 
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Consider any i= 1, . . . . M. Let 17, E [rcg] be the transition matrix in sk 
(and S,). Let II* = [nz]. If z$ > 0 and rr$ > 0, by the definition of IP we 
can find L so large that I* > L implies $I*) >O and r~$(‘*~ >O. Let 
xk(am) = (~,(a,), ~,(a,)). Then Theorem 2 implies there exists ui such that 
u/c(I*)(ajl = ui= u/c(l*) (a,) all I* 2 L. Let X*(a,) = (iIF( V*(a,)). 
by construction, U*(aj) = U”(a[). 

Lemma 1 shows X*(a,) is in the stable manifold for (2) each 
m = 1, . ..) M. Hence, the preceding paragraph and the last part of Condi- 
tion 1 imply X*(aj) = X*(al) when rr$ > 0 and rr$ > 0 (see the discussion in 
the text). Hence, for any i, if II: > 0, 

Repeating, if z$ > 0, 

A . X*(a,) = X*(a,j. 

A*. X*(a,) = X*(a,). 

Pick some i. Suppose that p(i, T, II*) > 0 some T. Then nf(m) > 
nz E (1, . . . . T>. Thus, going back to the preceding paragraph, 

A” .X*(a,) = X*(ai). (15) 

Multiply by A” over and over, and using (1.5) for any v = 1, 2, . . . . 

A”‘“.X*(a,)=X”(a,). 

So, using Lemma 1, 

X*(a,) = lim A”‘” .X*(a,) = 0. 
u-00 

Hence, for any i = 1, . . . . AI, 

p(i, T, Z7*)=0 all T, or X*(a,) = 0. (1Tl 

The latter is impossible because X*(a,) E Y by construction, S does 
not include the origin. On the other hand, p(i, T, II*) = 0 all lies i is 
a transitory state. Since not all states i can be transitory, we have a 
contradiction. 

5. CONCLUSION 

Theorems 1 and 2 establish a relationship between determinacy and the 
existence of sunspot equilibria. This enhances the value of learning about 
a given stationary state’s (local) determinacy (see, for exa 
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[14])-although it unfortunately seems to have little bearing on the exist- 
ence of stationary sunspot equilibria with at least some state outcomes 
isolated from x*. 
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