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Abstract-A simple linear stability analysis is presented which demonstrates that the nominally flat surface 
of an elastically stressed body is unstable with respect to the growth of perturbations with wavelengths 
greater than a critical wavelength. For a solid, constrained in one dimension and subject to a uniform 
dilatation, this wavelength scales as y/Z/u’, where y is the surface energy, E is Young’s modulus, and D 
is the nominal stress associated with the constrained dilatation. The maximally unstable mode depends 
on the manner of matter transport (surface diffusion and evaporation/condensation are considered). The 
predicted wavelength of the instability is consistent with observations of thin InGaAs films grown on 
GaAs. 

RCsum&Nous prisentons une analyse simple de stabilite lintaire qui dimontre que la surface par- 
faitement plane d’un corps d&form& tlastiquement est instable vis g vis de la croissance de perturbations 
de longueur d’onde supCrieure a une valeur critique. Pour un solide, contraint dans une dimension et 
soumis B une dilatation lintaire, cette longueur d’onde varie comme yE/u2, oh y est 1’Cnergie superficielle, 
E est le module d’Young et D est la contrainte nominale associte B la dilatation sous contrainte. Le mode 
le plus instable d6pend de la man&e dont s’effectue le transport de matiPre (diffusion superficielle et 
ivaporation/condensation sont prises en compte). La longueur d’onde prkdite pour I’instabilitt coi’ncide 
avec les observations de films minces de InGaAs dtposCs sur GaAs. 

Zusammenfassung-Es wird eine einfache lineare Stabilitltsanalyse vorgelegt, welche zeight, dal3 die 
nominell flache Oberfllche eines elastisch verspannten Festkiirpers insofern instabil ist, als Stiirungen mit 
Wellenllngen oberhalb einer kritischen wachsen. Bei einem FestkBrper, der in einer Dimension ein- 
geschrLnkt ist und einer gleichmil3igen Dilatation unterliegt, skaliert diese Wellenl2nge wie yE/ a2; hierbei 
sind y die Oberflichenenergie, E der Elastizitgtsmodul und (r die mit der eingeschrgnkten Dilatation 
zusammenhlngende Nominalspannung. Die instabilste Mode hgngt von der Art des Materietransportes 
ab (betrachtet werden Oberfllchendiffusion und Verdampfung/Kondensation). Die vorausgesagten Well- 
enlgngen der Instabilitlten sind mit Beobachtungen an diinnen Filmen auds InGaAs, geziichtet auf GaAs, 
vertriiglich. 

1. INTRODUCTION 

It is well known that the development of stresses 
within solids can lead to morphological changes. For 
the case of ellipsoidal inclusions subject to trans- 
formation strains, Eshelby [1] has shown that the 
total strain energy of the system varies with the shape 
of the inclusion. In some cases, needle-like or disk- 
like inclusions are elastically more stable than spher- 
ical ones. However, these less symmetrical shapes 
tend to have a larger surface area than the sphere. In 
all materials, the surface energy is finite and hence 
surface tension may oppose the formation of these 
less symmetrical inclusion shapes. The equilibrium 
inclusion shape is thus obtained by balancing the 
elastic energy against the surface energy. Similar 
considerations are necessary to determine the mor- 
phological stability of the surface of a stressed solid. 

One case, where both strain energy and surface 
energy are important, is in thin films. Different modes 

of the early stages of film growth have been identified 
(see Ref. [2] for a discussion of these): corresponding 
to layer (Frank-van der Merwe) growth, island 
(Volmer-Weber) growth, and layer-then-island 
(Stranski-Krastanov) growth. Research [2-4] sug- 
gests that the various types of growth are dictated by 
the relative importance of interfacial energy and 
strain energy contributions. Consider the case of an 
epitaxially grown film on a substrate with respect to 
which it is misfitting (i.e., the lattice constant of film 
af, and substrate, 4, differ). The strain in the film E 
is given by (a, - a,)/~,, where we have assumed that 
the substrate is much thicker than the film. A small 
difference in lattice constants can lead to very large 
stresses since plastic relaxation in very thin films is 
much more difficult than in bulk materials. For 
example, in the absence of plastic relaxation, a 1% 
lattice constant mismatch between an InGaAs film 
and a GaAs substrate can lead to stresses of order 
2 GPa. When the characteristic dimension of a mate- 
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Fig. 1. A solid with a square wave surface profile. The 
surface profile has wavelength 1 and amplitude c/2. 

rial, r, is very small, the important of surface energy, 
y, can be great. In order to make a rough comparison 
of the magnitudes of the surface and elastic con- 
tributions, we compare the elastic stress with the 
surface tension, y/r. For the InGaAs case described 
above, the elastic stress and the surface tension are 
roughly equal for r of order 10 nm. 

A simple energetic analysis shows the nature of the 
expected instability. Considering the simple square 
wave surface morphology of Fig. 1, where the sample 
is stressed in the x-direction. The change in energy in 
going from the ffat surface to that shown in Fig. 1 is 
roughly 

A& ;+2y, (1) 

where u is the stress in the bulk, y is the surface 
energy, and E is the modulus and where we have 
crudely assumed that the stress in the interior of the 
square pro~usions are zero. Equation (1) shows that 
the formation of this “rough” surface profile lowers 
the energy of the system provided that the wave- 
length, A > 8yE/02. Although the above analysis is 
crude, it demonstrates why the surfaces of stresses 
bodies may be unstable. 

In the present paper, we present a more rigorous 
kinetic stability argument that demonstrates that 
flat surfaces bounding elastically stressed solids are 
unstable with respect to the formation of surface 
undulations of wavelength greater than a critical 
wavelength, &. That wavelength, and the maximally 
unstable wavelength (&), are determined for two 
types of matter transport: namely, surface diffusion 
and evaporation-condensation. While neither 12, nor 
I, depend on the magnitude of the transport 
coefficients, the rate at which perturbations of those 
wavelengths grow does. A comparison between the 
predicted wavelengths and observations on a thin 
semiconductor film is made. 

2. ELASTIC ANALYSIS 

In order to investigate the nature of the surface 
evolution dictated by the competition between sur- 
face and elastic energies (see the following section), 
we first must determine the effect of changes in the 

surface profile on the elastic field within the solid. We 
begin by considering the case of a semi-infinite body 
with an initially flat surface lying along y = 0 (see 
Fig. 2). The body is constrained in the x-direction 
such that cXX = 0. This initially unstressed solid is then 
assumed to undergo a hydrostatic transformation 
strain (i.e. E, = cvu = cc, cXy = 0). Since the surface, 
normal to the y-direction, is traction-free and the 
system is constrained in the x-direction, the following 
stress state results 

B xx = cr = -Ecr/(l -v) (2a) 

aYY = b,Y = 0 (2b) 

where E and v are the Young’s modulus and the 
Poisson ratio of the solid, respectively. Note that this 
stress field is uniform in the solid. Equation (2) will 
only be satisfied in situations where no plastic relax- 
ation occurs. 

If the surface is not flat, as assumed above, the 
stress field in the solid is non-uniform. Consider the 
case of a small amplitude sinusoidal surface profile 

h(x) = A sin(kx) (3) 

such that Ak << 1. For this surface, the stress field 
described by equation (2) leads to non-zero surface 
tractions. In order to obtain the stress field which 
satisfies the zero traction boundary conditions [for 
the surface described in equation (3)], we search for 
a solution in terms of Airy stress functions, 
@(V4@ = 0), of the form 

Qi = ~$2 + C (A, + B,y)e-“ky sin(nkx) (4) 

where the summation is over all modes (1 < n < to). 
However, since we are assuming that Ak<< 1, we 
truncate the series at lowest order 

@ = u:/2 + (A + By)eeky sin&x). (5) 

In terms of equation (S), the stresses are given by 

o,, = @,, = Q - k [ZS - (A + By&%] eeky sin&x) 

bvu = @,, = -k2(A + By) ewky sin(kx) 

d J)’ = -ax, = -k[B - (A + By&] esky cos(kx). (6) 

Fig. 2. A solid with a sinusoidal surface profile. The position 
of the surface h(x, t) is measured with respect to the mean 
surface height, y = 0. The solid is elastically constrained in 

the fx direction and is free in the ty direction. 
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The stresses contributing to the surface tractions (i.e. 
those with a normal component) are 

6,” = uXX sin’ 6 + uYY cos’ 0 + 20,~ sin 6 cos 6 

err = o,, cos2 6 + f_rYY sin2 8 + 2a, sin fl cos e 

~7, = @yy - 6,,) sin e cos e + ~~~(~0s~ e - sin* e) (7) 

where tan 6 = h, and the subscripts n and t indicate 
normal and tangential directions respectively. The 
requirement that Q,, = o,, = 0 along the surface 
defined by equation (3) yields 

A=O; B=Eu.A/(l-v)=-CTA (8) 

to lowest order in A. The stresses in the solid are thus 
given by 

where p* is the chemical potential of the flat surface 
bounding the solid with mean stress u, S,,, is the 
compliance matrix, M is the elastic modulus appro- 
priate to the local surface orientation, and repeated 
indices are summed over. The third term on the right 
hand side of equation (11) represents the elastic 
energy of the solid. Since u,, and u,, are zero along 
the surface, the only non-zero surface stress con- 
tribution to the implicit summation in equation (1 la) 
is urr. Since the stresses are generally much less than 
the modulus, the third term in equation (11) is usually 
neglected with respect to the u, term in equation (10) 
when it is present. For the sinusoidal perturbations 
analyzed in the previous section [equation (9)], the 
strain energy term in equation (11 b) is given by 

0 xx =cr{l -Ak(ky -2)e-kysin(kx)} 

bYY = uAk2yemky sin(kx) 

{[u,,(x)]* - u2}Q/(2k4) = (2Rku2/M) sin(kx) (12) 

to lowest order in Ak. 

u xy = uAk2(1 - ky)e-‘ycos(kx). (9) 

Equation (9) shows that the perturbation of the 
uniform stress field due to the sinusoidal surface 
profile decays exponentially into the solid with a 
decay length proportional to the wavelength of the 
surface profile. 

(A) Surface d&ion 

When the surface evolution is controlled by surface 
diffusion, we may employ the Nernst-Einstein re- 
lation to describe the atomic velocity along the 
surface, V 

3. SURFACE KINETICS y= -!Q& (13) 

The evolution of the surface profile is dictated by 
the chemical potential along the surface. The chem- 

where D, is the surface diffusivity, kT is the thermal 

ical potential along an interface, p, is typically written 
energy, and the derivative with respect to s is taken 

as [5]: 
along the surface. This atomic flux leads to a change 
in surface profile [6] 

P(X) = P0 + Gk(X) - o,,(x)Q (10) 

where p,, is the chemical potential of the equilibrium 
flat interface bounding an unstressed solid, y is the 
interfacial tension, fi is an atomic vohtme, and K 

[ = -/I,( 1 + hz))3’2] is the curvature of the interface. 
The second term on the right hand side of equation 
(10) is the surface energy contribution to the chemical 
potential. The third term accounts for the influence of 
a stress, normal to the interface, on the emission or 
absorption of an atom at that interface. This term is, 
however, not present in the context considered here, 
where the interface is a free surface and unn = 0 is an 
elastic boundary condition. 

ah D,R6 a*p -=_- 
at kT as2 (14) 

where 6 is the number of atoms per unit area. 
Inserting equations (11) and (12) into equation (14) 
and assuming h,<c 1 yields 

k, = - Q&xxx - (C/2W{bAh)12 - u2Lx (15) 

where C = D,0*6/(kT). 

If the solid is uniformly stressed, p0 must be 
modified to incorporate the strain energy of the solid. 
This clearly must be the case since the chemical 
potential is defined as the derivative of the free energy 
with respect to the number of atoms and the change 
in energy associated with the addition of an atom to 
a stressed environment depends on the magnitude 
and nature of the stress. In order to incorporate this 
effect directly, the chemical potential described in 
equation (10) is modified as follows 

The linear stability of the flat surface bounding the 
stressed solid may now be analyzed by considering 
perturbations to the surface. Substituting an initial 
trial sinusoidal perturbation, sin(kx), in equation 
(15) we find it to grow or decay for short time 
according to 

P(X) = & + “YQK(x) + (1/2)Sijk,Uij(x)Uk,(x)R (lla) 

=/i*+ynK(X) 

+ #JAx)12 - u2}Q/(2M) (llb) 

exp{[(2Cu2/M)k3 - Cyk4]t}. (16) 

Thus a band of unstable modes exists with wave- 
lengths 1(= 2n/k) > &( = nMy /a’), and with the 
most unstable mode at 1 = 1, = (4/3)& (see Fig. 3). 
These results imply that perturbations of wavelengths 
smaller than I, are smoothed by surface diffusion, 
whereas long wavelength perturbations grow un- 
stably. The maximally unstable mode grows as 
exp{(C/4)(3/y)3[u2/(2M)]4}. It is interesting to note 
that the 1, is within a factor of two of that given by 
the simplistic energy analysis in equation (1). 
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Fig. 3. The ex~n~ntial growth rate for surface per- 
turbations of wavenumber k. The two curves are for surface 
diffusion controlled growth [equation (16)] and to evapo- 
ration condensation controlled growth [equation (18)]. Per- 
turbations with wavenumbers between 0 and k, are unstable. 
The maximum growth rate (i.e. the maximally unstable 
mode) occurs for k = kt for surface diffusion controlled 
growth and for k = k: when growth is controlled by 

evaporation and condensation. 

(Bj Evaporation-condensation 

When the surface evolution is controlled by evag 
oration from or conden~tion to a surface (such that 
there is no net translation of the surface), the 
differential equation for the evolution of the surface 
profile has been given by Mullins [6]. Generalizing 
Mullins’ result to include strain energy and only 
keeping terms to lowest order in h$ we find 

h, = C’ti,, + ~‘/(2~) ([a,,(h)]* - cr* 1 (I 7) 

where C’ = P+R*(2nm)- 1i2(kT)-3R, P* is the vapor 
pressure in equilibrium with the flat surface bounding 
the stressed body, m is the weight of the molecular 
species that is ev~~rating~condensin~, and the 
coefficient of evaporation has been set to unity. 

Substituting an initial trial sinusoidal perturbation, 
sin(kx), into equation (17), we find it to grow or 
decay for short time according to 

exp{[(2C’02/M)k - C’ykzJt). (If-9 

Thus a band of unstable modes exists with wave- 
lengths i. ( = 27r/k) > &( = nMy/aZ), and with the 
most unstable mode at 1. = & = 21, (see Fig. 3). 
These results imply that perturbations of wave- 
lengths smaller that & are smoothed by the 
evaporation/condensation process, whereas long 
wavelength ~rturbations grow unstably. Note, that 
while the smallest unstable wavelength is the same as 
for the surface diffusion case, the wavelength corre- 
sponding to the maximally unstable mode is larger by 
50%. The maximally unstable mode grows as 

expKC”IY)(e2iM)21). 

4. IMScUssION 

The results presented in the previous section dem- 
onstrate that surfaces of stressed solids are unstable 
with respect to perturbations of wavelength greater 
than .& = zrM’~/o’. Unfortunately, we have not yet 
been able to solve the full non-linear surface evo- 
lution problem to determine the equilibrium or 

steady states. Therefore, it is not possible to predict 
the exact nature of the surface morphology resulting 
from this instability. However, these results can be 
applied directly to the problem of a thin film which 
is misfitting with respect to its substrate. Provided 
that the film and substrate are not too different 
elastically (i.e. their moduli are nearly the same) and 
the interface is coherent (e.g. in epitaxially grown 
films), then the above results may be directly applied 
since the maximum amplitude of the surface profile 
is limited to a few times the film thickness and kA <c 1 
is a good approximation. 

Qne such experimental system which has received 
considerable attention of late is the growth of an 
InGaAs film on GaAs by means of molecular beam 
epitaxy. Recent experiments [7j have shown that 
while a GaAs film can be grown on a GaAs substrate 
with an atomically flat surface, when some of the Ga 
is replaced by In the surface becomes rough and an 
island-like growth process is observed. In changing 
from pure GaAs to Iq,Ga,,As the lattice parameter 
increases by 3% resulting in stresses of order 
cr = 5.8 GPa in the InGaAs film. Recent experimental 
observations using RHEED and an equilibrium 
atomistic theory by Berger et al. [73 suggest that the 
spacing between islands is of order 6 nm for this case. 
The atomistic theory is based on a minimi~tion of 
the total energy of the system with respect to island 
size and shape by accounting for broken surface 
bonds and assuming that the first atomic layer of the 
islands is strained and subsequent layers are at the 
ideal (unstrained) lattice constant. Since surface 
diffusion is the likely controlling transport mode in 
molecular beam epitaxy ~nditi~ns, we assume 
2, = (4/3)1,. Inserting y = 0.5 J/m’, XV = 147 GPa, 
and c = 5.8 GPa (which is not readily relaxed due to 
the extremely small film thickness) into the expression 
for 2,, yields 9nm. This determination is within 
approximately 50% of the reported value. Note, 
however, that since the theory presented is a con- 
tinuum theory and the island size is SO small, better 
agreement than this would only IX fortuitous. 

Can these type of instabilities be observed in 
macroscopic solids’? Inserting the moduli and surface 
energy associated with pure Ni, and assuming that 
the stress in the sample is limited to the yield stress, 
the theory predicts a maxi~lly unstable wavelength 
of order 5 mm. This length scale is sufficiently large 
that one would expect observations of such in- 
stabilities to be routine. To our knowledge, such 
observations have not been made. This may be 
att~butable to a number of factors, foremost of 
which we believe is the small amplitude of the steady 
state roughness. Unfortunately, since the above 
theory is simply a stability analysis, it provides 
essentially no information on the nature of the steady 
state film profile. 
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