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Plane, two-dimensional, polymer extrusion is analyzed by means of the 
Curtiss-Bird integral constitutive equation, streamlined finite-elements and 
Newton iteration. The Reynolds number is zero, the surface tension negligi- 
ble and the melt does not slip at the wall. Starting from the Newtonian 
liquid of zero elasticity, the Newton iteration converged, within three to five 
iterations, up to a maximum Weissenberg number beyond 3500. The predic- 
ted values of the die-swell at low elasticity are in agreement with those 
reported in the literature. At higher elasticities, the die-swell increases 
monotonically and levels off. Two other models examined, the Doi-Ed- 
wards and the Papanastasiou-Striven-Macosko models, diverged at low 
Weissenberg numbers, however, the actual point of divergence was a func- 
tion of the number of relaxation times. It appears that the second term of 
the Curtiss-Bird model, which incorporates the link tension coefficient, c, 
enhances significant numerical stability, in addition to the one due to the 
relaxation spectrum, as its different convergence behavior from the Doi-Ed- 
wards model implies. 

1. Introduction 

Numerical instability 
Weissenberg numbers is 

and divergence of the iterative method at high 
a common experience among investigators of com- 
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plex viscoelastic flow [l]. This was the primary focus of the “Workshop on 
Numerical Methods in non-Newtonian Fluid Mechanics” held at Arrowhead 
Lake, California (June, 1987). At this meeting, it became evident that a 
study of fundamentals was necessary in order to understand the difficulties 
encountered in complex viscoelastic flows. 

The geometrical singularity in a contraction flow has been studied by 
Lipscomb et al. [2] who concluded that the flow is singular even at zero 
Weissenberg number and that the strength of the singularity increases with 
increasing Weissenberg number. Independently, Wesson and Papanastasiou 
[3] investigated the singularity in extrusion and concluded that slip alleviates 
the singularity but improves convergence only slightly (from We = 1 to 
We = 2 with the upper-convected Maxwell model). They attributed this to 
the fact that slip eliminates the stress singularity, but creates a maximum 
stress along a fluid particle’s path, which was shown later to be equally 
catastrophic to the convergence of the Newton iteration. 

To further validate the latter hypothesis, two simple flows with analytic 
solutions [4], a Poiseulle, channel-flow and a sink extensional flow, have 
been analyzed with several integral constitutive equations. The primary 
conclusions of this study were: 
(a) Whenever the curve of the stress versus Weissenberg number of the 

analytic solution exhibited a maximum at a critical Weissenberg number, 
the Newton iteration of the finite-element equations diverged at exactly 
the same critical Weissenberg number. 

(b) The most stable constitutive equation was the Curtiss-Bird model [5] in 
which the maximum stress was delayed to high Weissenberg numbers. 
The numerical solutions with this model existed at practically infinite 
Weissenberg number, increasing with e. 

The generalization, then, to the two-dimensional, extrudate-swell flow was 
undertaken as described below. Modeling with integral constitutive equa- 
tions with results and limitations similar to those with differential models 
began long ago [6-91. An empirical constitutive equation designed by 
Papanastasiou et al. [lo] was used recently by three groups with promising 
results. In [9] predictions have been obtained up to We = 2. DuPont and 
Crochet [ll] predicted vortices in contraction flow at relatively low Weissen- 
berg numbers, that had not been predicted by less realistic models. Very 
recently solutions have been obtained up to high Weissenberg numbers by 
the same model used in extrudate-swell flow by Luo and Tanner [12]. The 
Curtiss-Bird model has been used to analyze flows with corners at moderate 
Weissenberg numbers [S] and to study one-dimensional, fiber-spinning up to 
high Weissenberg numbers [13]. 

The advantages of the Curtiss-Bird model are: 
(a) Molecular origin. 



(b) 

(4 

(4 
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Parameters, calculated in principle from the molecular characteristics. 
Most importantly, no extensional data is needed for parameter estima- 
tion. 
A spectrum of relaxation times and a link-tension coefficient that extend 
the monotonicity of the stress with the strain-rate. 
Numerical stability in the one-dimensional flows examined: the channel 
shear-flow, the sink-flow and the fiber spinning flow. 

Its disadvantages are a Newtonian-like behavior in the start-up of flow 
(stress jump) and the complicated kinematic tensors which are not in explicit 
relation to the velocity and the velocity gradient, which are the primary 
variables of flow. The former is not of a major concern in steady flows. The 
latter is resolved as explained in the next section. 

2. Governing equations 

The governing equations for creeping, incompressible flow are 

v *u=o, 

v(--pI+7)=0, 

The third equation is the kinematic condition that forbids mass penetra- 
tion across the line whose elevation from the midplane is h and the unit 
normal is n. Thus, applied along a finite-element side, eqn. (3) makes the 
side a streamline segment. The streamlined finite-element method is detailed 
elsewhere [14]. The key idea in the streamlined finite element method is to 
solve eqn. (3) along the lateral sides of each element simultaneously with 
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Fig. 1. Two-dimensional, plane extrudate-swell flow; geometry and boundary conditions. 
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eqns. (1) and (2) (which are solved within the element). This forces the 
lateral sides to remain on streamline, which are in this way determined by 
their elevation h, in terms of the expansions by eqns. (4) to (6). 

The viscous stress tensor, T, in eqn. (2) is given by the Curtiss-Bird 
equation, in terms of the velocity field, U, as explained in the next section. 
The boundary conditions are shown in Fig. (1). The velocity profile, u(y), at 
the inlet is calculated by a one-dimensional, finite-element analysis of the 
upstream, channel flow with the Curtiss-Bird model. This calculation is 
detailed elsewhere [4]. 

The unknowns are expanded in terms of finite-element basis functions: 
biquadratic for velocity; bi-linear for pressure; and quadratic for the 
streamline elevation from the midplane. The formal expansions are 

9 

u= C ffiGi, 
i=l 

4 

P= CPi+i, 

(4 

(5) 
i=l 

h= $ h_&(q=l). 
j=l 

(6) 

Equations (1) to (3) are weighted integrally over the flow domain by the 
basis functions themselves. The surface integrals, resulting from the applica- 
tion of the divergence theorem, are either replaced by the boundary traction 
value or else the entire finite-element weighted, momentum equation is 
eliminated to impose a velocity or an elevation boundary condition. The 
resulting weighted residuals after the implementation of the boundary 
conditions are: 

R’,= (v -u)# dV=O, 
/ (7) 

R’ Mx= (-p+q.)$ +T$?$] dV=O, 

R’ My= (-~+T,,~)$+T_,,~] dV=O, (9) 

R;= 
/ 

n-u& dS=O. 00) 

The stresses 7ij, are determined explicitly by the integral constitutive equa- 
tions in terms of the velocity values along the streamlines, defined by eqn. 
(lo), as explained below. 
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3. Constitutive equation in terms of velocity 

The Curtiss-Bird equation has the form 

I-= 
/ 

’ m,( t - t’)( &C,-‘( t’) + +,C,( t’)) dt’ 
-CO 

+E 
/ 

’ m,(t - t’)G(C,-‘(t’), D(t)) di’, 
-* 

where the memory functions, ml and m,, are defined as 

exp 
- (2k + 1)2( t - t’) 1 A ’ 

-(2k+1)2(t-t’) 
A 

(11) 

02) 

(13) 

In this form the equation is not usable because the relations of &, G2 and 
G to the kinematics are given through complicated, elliptic integrals. For- 
tunately Currie [15] linearized these functions in terms of the Finger and 
Cauchy tensors, Ct_‘(t’) and C,( t’), and their invariants, I and 11, such 
that 

Gl = 5 
J-l' 

G2 = 
-5(11+ 3.25)-r” 

J-l ’ 

04) 

(15) 

where 

J=I+ 2(11+ 3.25)1’2. (16) 
The components of the function G were approximated by Currie [15] by 

G,j(C;‘(t’), o(t)) = CijkmDkm(t), (17) 

where 

Ci jkm = - u&i; ‘ck.in’ - i& ( I&; %k, - ci; ‘ck, - ck;nlcij) 

+ ~ v( sij~jm + sjk aim) - + ‘4 (&j&k + 8j&, + 8i&j,,, + 

+BijSk, 9 

and 

Bij= (IIUl,- V,)Ci~‘+ (V,-IlU,,)Cij+ ~(IT/, + 211V2)6ij, 

‘imCjk) 

(18) 

(19) 
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with 

U= (5 ln[l+ 2[11+ 3.25]“2 - 1])/7, 

v= (5 - lu, + IIu,)/3, 

and 

(20) 

(21) 

u,, = a2u/ar2, V, = aV/i3I, etc. (22) 

The Finger, the Cauchy and the current or local rate-of-strain, D(t), 
tensors can be expressed in terms of past and present velocities along 
streamlines by utilizing a moving system of coordinates conforming to the 
streamlines [16], or by solving the deformation gradient equation analyti- 
cally in a protean [17] coordinate system [18] and then transforming the 
results to the Cartesian system. The resulting expressions are from [18]: 

(~-‘)ll=(;)2+(~)2(quQ-~)2, 
(c-y12 = ; + ($Pa- $uP+ g, 

and 

(c-‘)22 = (;)‘( $)‘i quvo + g2, 
where 

~=@~~(&2--Dll)+(u2-u2)D12] dt', (26) 

(23) 

(25) 

Q=m, 

q=iiuZ 9 

and 

(27) 

(28) 

c,-‘(t’)c,(t’) = I. (29) 

The integral represented by G? is a measure of the accumulated strain 
between past velocities, U( t ‘) and V( t ‘), and present velocities, u(t) and 
v(t), and is evaluated along streamlines. This conforms nicely to the 
streamlined finite element method which was developed for this purpose 

[141- 
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4. Finite-element analysis 

The streamlined elements are mapped by the isoparametric mapping 

x= i xi+i(t9 77)P (30) 
i=l 

9 

(31) 

A = i hiGi(5, q = 1)~ (32) 
i=l 

into the basic square Q(& q), where - 1 < 71~ 1 and - 1 < ,$ c 1. The 
derivatives and integrals of the weighted residuals in the actual flow domain, 
of coordinates x and y, are transformed and evaluated on the basic square, 
of coordinates 5 and q, by means of the Jacobian of the transformation 

a( > 
3X 

a( > 
ay 

(33) 

The volume integral, dV, is transformed as 

dV=dxdy=IMI dtdq, 

where 1 A4 1 is the determinant of the Jacobian, given by 

M= s I- ax 

aq 

(34) 

(35) 

Similarly, the surface integral, dS, along a streamline, which is made-up by 
segments of finite-element lateral sides, becomes 

(36) 

along the straight line 1) = 0 of the basic square Q( 5, 11). The calculations 
involved in eqns. (33) to (36) are trivial given the isoparametric mapping 
defined by eqns. (30) to (32). 

The domain is discretized into elements as shown in Fig. 2. This tessella- 
tion gives an apparent mesh-independent solution, according to Fig. 4, down 
to 0.1 x 0.2 element at the singularity where the method diverged, as it 
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Fig. 2. Present, adjacent and upstream elements for stress calculation. 

should [3]. Because of the streamlined tessellation, the mesh around the 
singularity becomes finer and finer, down to 0.1 X 0.2, as the Weissenberg 
number increases. This tendency is obvious in Fig. 3. The stress in each 
element is calculated from far upstream, sometimes from outside the flow 
domain depending on the memory of the fluid, along streamlines made-up 
by element lateral sides. The calculations are facilitated further by the fact 
that the streamlines become straight lines on the isoparametric domain (5, 

11). 
The exponential travelling times 

/ 

x da t-t’= - 
X ’ u(a) ’ (37) 

and the accumulated deformation, (eqn. (26)), are additive; therefore, they 
are evaluated and stored immediately after each Newton iteration in an 
appropriate matrix and are retracted appropriately for the evaluation of the 
residuals of the next Newton iteration. 

A nine-point Gauss-Legendre quadrature was used to evaluate the stresses 
in each element. The stress in an element was obtained by summing-up the 
individual contributions from the upstream elements. The stress contribu- 
tion from elements far upstream, with respect to the element being assem- 
bled, is small compared to the contributions from its neighboring elements. 
Therefore, the nine-point Gauss-Legendre scheme successfully approxi- 
mated the stress contributions from elements far upstream. The current and 
its adjacent upstream element in the same streamtube were first subdivided 
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into segments, depending on the magnitude of the relaxation time, and then 
the nine-point quadrature was applied to each segment to obtain a more 
accurate stress approximation. 

An alternative integration scheme, less accurate for the current element, 
but more accurate for the evaluation of the memory integrals along stream- 
lines is shown in Fig. 2. It is also cost efficient because the required values of 
the velocity and the streamline elevation at the integration points coincide 
with the nodal values, which are directly available and thus no interpolation 
by means of the nine basis functions is required. Results with this scheme 
are currently being evaluated. 

The streamlined elements facilitate, actually eliminate, particle tracking. 
The particle is forced to be on a streamline whose position, coinciding with 
element lateral sides, is known from the previous Newton iteration. In 
addition, the streamlined finite-element method facilitates bookkeeping and 
makes Newton iteration possible, which brings with it the Jacobian for 
continuation and linear stability analysis [19]. 

In the Newton iteration 

JW [qN+’ -qN] = -R(y (38) 
4 = (V,~ Pl, h,, * * - 9 %I, u*, pk, h,] is the vector of all the unknowns 
including the streamline elevation, hi, R is the residual vector and J the 
Jacobian. The entries of the Jacobian matrix are evaluated analytically 
whenever possible. If the complexity of the residual prohibits a cost effec- 
tive, analytic determination of the derivatives, then the Jacobian entry is 
evaluated numerically. The numerical approximations were computed by 

r'(q'+Aq') -P(q’) 
Aq’ 1 

7 

4*+, 

(39) 

where A represents an infinitesimal variation defined here as 

Aqj = IO-4 qj (40) 

The derivatives of the viscoelastic stress in the momentum equations with 
respect to the nodal positions and velocities were computed in this way. The 
rest derivatives, of the momentum with respect to pressure, of the continuity 
with respect to the current velocities and the current location and of the 
kinematic equation with respect to the current streamline velocities and 
position, were computed analytically. 

Existing frontal subroutines [20] can not be utilized to solve the lower 
triangular structure of the Jacobian which arises from the sensitivity of the 
current or local stress with respect to the upstream nodal velocities and 
displacements. However, this is not a serious drawback because the cost to 
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solve the linear system is very small compared to the cost of filling the 
Jacobian matrix (approximately 1: 10). Roughly seven minutes per Newton 
iteration were required for convergence at the highest Weissenberg numbers 
on the San Diego Cray X-MP/48 supercomputer. Once the backward 
memory of the elements adjacent to the outlet reached the inlet line, no 
significant cost increase was observed. The total cost per run was reduced 
from approximately 30 to 20 minutes by implementing the most elementary 
quasi-Newton iteration. 

5. Results 

The Weissenberg number here is defined by 

We= &A, (41) 

where Tw is the shear rate at the solid wall away from the exit, and X is the 
maximum relaxation time. Other definitions of X are possible such as (based 
on five relaxation time used): 

(a) average relaxation time for e = 0, defined as 
5 

where uk = 96/X in eqn. (12). 
(b) average relaxation time for c # 0, defined as 

A,= 
x + cx f =A 0.9+c 

l+C i 1 1+e ’ 

(42) 

(43) 

where & is the average relaxation time of the second integral term or eqn. 
(13). The Weissenberg number of the reported results was calculated by 
means of eqn. (42) and is close to those calculated by means of eqns. (41) 
and (43). 

For the results reported, the Newton iteration converged quadratically 
within three to five iterations, to within a maximum error of 10e4 in the 
unknowns, between consecutive iterations. Zero order continuation was 
used, i.e. the converged solution at a Weissenberg number was taken as the 
initial estimation to the Newton iteration at the higher Weissenberg number. 
The tessellation shown in Fig. 3 produced the value of 1.20, widely reported 
in the literature for the extrudate-swell of the Newtonian liquid and tessella- 
tion independent solutions, according to the error criterion used, for We # 0. 
The tessellation does not have to extend further upstream because the 
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Fig. 3. Finite-element tessellations after convergence. (a) Newtonian liquid, (b) Maxwell 
liquid at We = 0.96, (c) Curtis+-Bird liquid at We = 3470 (with z = 0.5). 

excessive memory is accommodated by the one-dimensional, channel flow 
approximation upstream from the inlet. 

The Lodge model [21], which is equivalent to the upper-convected Maxwell 
model, produced results identical to those obtained by other investigators 
[7,22-241 as shown in Fig. 4. 

The Papanastasiou-Striven-Macosko model, with one relaxation time, 
produced results up to a Weissenberg number of 0.98. With three relaxation 
times the critical Weissenberg number was 3.17 (Fig. 5). Thus, the conclu- 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 

WEISSENBERG NUMBER (%j,,,,l 

Fig. 4. Die-swell predictions with the upper-convected Maxwell model and comparison of the 
predictions to those of other investigators [22,23]. 
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Fig. 5. Die-swell predictions with the Papanastasiou-Striven-Macosko model [9,10] with one 
and with three relaxation times. 

sion from these results is that a spectrum of relaxation times enhances 
numerical stability which results in solutions at higher Weissenberg num- 
bers. The recent achievement of solutions at high elasticity by Luo and 
Tanner [12] with the same model and eight relaxation times appears to be in 
agreement w&h these findings. The Doi-Edwards model [25] was almost 
identical to the Papanastasiou-Striven-Macosko model as shown by Fig. 6. 

Figure 7 illustrates the predicted die-swell of a Curtiss-Bird fluid at 
several Weissenberg numbers. With e = 0, the Curtiss-Bird model reduces to 
the Doi-Edwards model and the Newton iteration diverged at We = 3.46. 
For e # 0 the Newton iteration converged up to We = 3470, where we 

1.6 

\ .,.-+p 

WEISSENBERG NUMBER (Ii,,,,, 

Fig. 6. Comparison of the die-swell predictions of the Doi-Edwards and the Papanastasiou- 
Striven-Macosko models. 
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Fig. 7. Die-swell predictions with the Curtiss-Bird model with increasing Weissenberg 
numbers and with several link-tension coefficients. 

discontinued the calculations. The predictions at We < 1 agreed with those 
of the upper-convected Maxwell model as shown by Fig. 4. 

The predicted die-swell begins to level off at approximately 500. It is not 
known wether this trend is real since no experimental data for sheet 
extrusion are available at this elasticity. The curve up to We = 1000 was 
obtained with h = 1 s at several charmel. pressure drops. The curve was 
continued further by increasing the relaxation time at constant pressure 
drop. 

Figure S(a) shows the centerline velocity distributions along the flow 
direction at several Weissenberg numbers. An isolated view of the centerline 
velocity at the maximum Weissenberg number of 3470 is shown in Fig. g(b). 
The velocity inside the channel remains relatively constant and decreases 
upon exiting the channel. The corresponding pressure distributions for the 
predicted velocities are shown in Fig. 9. The used scales mask some 
tessellation-dependent wiggles in the velocity and the pressure in the viscin- 
ity of the singularity at the exit of the channel of amplitude up to 5% of the 
smoothened values. These wiggles are artificial, stemming from the exit 
singularity, as demonstrated by several investigators. 

A velocity profile inside the channel is shown in Fig. 10 for a Newtonian 
liquid and a Curtiss-Bird liquid at We = 3470 at dimensionless pressure 
drop PD/pV = 2500 and L/D = 3.5. The Curtiss-Bird fluid exhibits the 
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Fig. 8. Centerline velocity distributions. (a) At several Weissenberg numbers, (b) at Weissen- 
berg number of 3470. 
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Fig. 9. Pressure distributions corresponding to Weissenberg numbers and centerline velocity 
values of Fig. 8. EI We = 3470, + We =lOOO, 0 We =lOO, 0 We = 10, n We = 1.0, and 0 
We = 0.1. 
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Fig. 10. Channel-flow, velocity profiles for a Curtiss-Bird fluid of E = 0.5 and for Newtonian 
liquid at common dimensionless pressure drop, PD/pV= 2500, and channel aspect ratio, 
L/D = 3.5. 

characteristic shear-thinning behavior and therefore increased velocity at the 
same pressure drop. 

In two previous papers [3,4] we concluded that avoiding the stress 
maximum by a constitutive equation with a spectrum of relaxation times 
and by some mechanism of slip could be helpful in viscoelastic calculations. 
Analysis of simple flows showed that the Curtiss-Bird model may fulfill 
these demands, being stable up to high elasticities. The extrudate-swell 
analysis appears to confirm these hypotheses. 

It is now evident that convergence can be improved by using a spectrum 
of relaxation times, not just one. This may be true of differential models too, 
since most modeling with these equations had included a single relaxation 
time. This will ultimately be essential in order to predict realistic results for 
liquids exhibiting many relaxation times [26]. In addition it appears that the 
link-tension coefficient, z, initiates an unknown mechanism, not just a 
Newtonian viscosity, which stabilized the solution even at values of e close 
to but not equal to zero; a Newtonian viscosity added to an integral 
equation or incorporated into a differential model as a retardation constant 
improves convergence only slightly [3]. 

Comparisons of the predictions of the Curtiss-Bird model with data on 
monodisperse polymers in plane extrusion is needed. The model predictions 
in shear and elongation are quite good [13,27-291. The present work 
provides a good opportunity to validate the model in mixed deformations as 
well. 

6. Conclusions 

Viscoelastic computations at high Weissenberg number have been achieved 
by a scheme based on: 
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(i) 

(ii) 
(iii) 

the Curtiss-Bird integral constitutive equation for monodisperse melts 
and concentrated solutions, 
streamlined finite-elements that eliminate particle tracking, and 
Newton iteration. 

The predicted die-swell at low elasticity agrees with the findings of other 
investigators. Starting from the Newtonian value of 1.20, the die-swell goes 
through a minimum at We = 0.3, then increases monotonically and levels off 
beyond We = 500. Data at high elasticity are required to further validate the 
predictions. Numerical stability was enhanced by the relaxation spectrum 
and by the link tension coefficient of the Curtiss-Bird model which appears 
to induced an unknown stabilizing mechanism. 

The required computing time per run needs to be improved. Current 
optimization attempts, in addition to vectorization, include a numerical 
integration scheme with points on streamlines, Broyden’s iteration and 
analytical evaluation of more Jacobian entries to replace the high-cost, 
numerical evaluation. The work is currently being extended to axisymmetric 
extrusion and to extrusion under tension as in fiber-spinning. 
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