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THE SINUSOIDAL CRACK 
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Abstract-The effects of mixed mode and partial crack closure due to curvature are studied by a 
simple sinusoidal crack model. For a slightly curved crack under applied shear, a small mode I 
stress intensity factor is obtained. Combined loads are also considered. 

1. INTRODUCTION 

IF AN INFINITE plane containing a plane crack is subjected to pure shear at its distant boundaries, 
the crack does not tend to open or close. Instead, there is a relative tangential or sliding motion 
between the crack faces and only a mode II stress intensity factor is generated. 

Some experimentalists maintain that mode II crack propagation is impossible and that a crack 
in a shear field will either be arrested or turn into the normal direction of tensile stress. However, 
real cracks are never completely plane and Gross[ l] has argued that the sliding motion in a slightly 
curved crack due to shear loading will cause contact between the crack faces. The resulting 
compressive contact tractions could then cause one or both tips to open, giving a small mode I 
stress intensity factor, which could exert a significant influence in crack propagation. 

In this paper, we examine the possible operation of this mechanism in the idealized case of 
the sinusoidal crack in an infinite plane. 

2. FORMULATION 

Consider a sinusoidal crack of amplitude L in the interval of (-a, a) lying on an infinite elastic 
isotropic plane as shown in Fig. 1. The plane is subjected to a uniform shear stress r at infinity, 
in the direction parallel to the x axis, and the crack remains open throughout its length. In general, 
we anticipate negative values of crack opening displacement in some regions of the crack and these 
results will give an indication of the arrangement of contact and separation zones for a physically 
correct formulation in Section 4 below. 

To solve the problem, we use the classical method of representing the perturbation in the local 
elastic stress field due to the crack by a distribution of dislocation along the crack. The stress 
components at (x, y) due to a discrete edge dislocation at (5, q) are [2] 

~.w = -Cb, Y -j tl +2(x - 02(Y - rt) - 
r* 

6,YY = - Cb, 
x - 5 -tj2(Y -11) - - 

r2 r* 

3(x--5)-2(x-03 
r2 r* 

(1) 

where b,, b,, are the glide and climb components respectively of the Burgers vector, 

r2=(x -02+(y -tj)2 

c= 
2P 

II@ + 1) * 

K = 3 - 4v for conditions of plane strain, and cc, v are the shear modulus and Poisson’s ratio 
respectively for the material. 
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Fig. 1. The sinusoidal crack in shear field. 

Since the shape of the crack is defined by y = -6 sin XX/U, the normal and the shear stress 
components on the crack surface are 

6, = o,, sin* /? + frY.V cos* /3 - 2~7,. sin j? cos jI (4) 

0, = (%X - q,)sin j? cos p - (r,~,.(cos* B - sin* fl) (5) 
where 

d y 
tanP=dx= -~C~COSII.X/Q 

is the local inclination of the crack to the x axis. We define y = C/U and assume that y 6 1, in which 
case the expressions (4,5) for the stress components can be simplified. 

Taking y * x 0, in comparison with y and using y = -6 sin xx/a, ‘1 = --L sin nl/a, we have 

- 
~t=c 

6.r 
(x ++4 

sin KX /a - sin 7ru /a 

We can now generalize this result by placing a distribution of dislocations of components 
&(x), B,(x) along the crack and superposing the undisturbed stress field, crXY = r, in which case 
the normal traction N(x) and the shear traction S(x) on the crack surface can be written down as 

‘“,““” ;‘a - 6 sin rrx[fI$ “5’a)] dt + 2nyr cos nxla; 

-atx<a (8) 

-B,(t) 
x_r + $(5) 

sin kxla - sin nr/a 

(x - 5>* 
d< --r; -a<x<a. 

We first consider the crack problem under the assumption that the crack remains open. In this 
case, both traction components must be zero throughout the crack length, leading to the two 
integral equations 

c B (5) 
* + B,(c) “‘TJ y” - c sin xX:1$ “I”)] dt + 27ryr cos ax/a = 0; 

-a<x<a (10) 
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-B.A<) 
x + $(t> 

sin ax/a - sin nl /a 

(x - 8’ 
dl --t =O; -acx-za. (11) 

In addition, we must require that the total Burger vector of the distributed dislocations 
vanishes, i.e. 

s 
a Bx(r)d< =O; 

s 
’ B,(<)d< =0 (12) 

--(I --o 

to ensure that the displacement is single-valued outside the crack. 
It can be shown that the bounded solution for B,(x) and B,(x) will not satisfy the conditions 

(12). Thus, we anticipate that B,(x) and B,(x) will be singular at both ends of the crack. 

3. NUMERICAL SOLUTION 

Equations (10) and (11) constitute two coupled Cauchy singular integral equations for the 
unknown functions B,Jx) and B,Jx). Normalizing the interval by the change of variables 

x =au, r =at 

and retaining the same symbols for the functions in the new variables, we obtain 

‘“,““:” -sin;;u~sf~nr)jd~+2~yrcosnu=0 

+ @Y(t) 
sin nu - sin nt 

cu _ t)2 

dt _ t = o 

(13) 

(14) 

(15) 

(16) 

A numerical solution for these equations can then be found, using the method developed by 
Erdogan et a1.[3]. The characteristic function is of the form 

w(x) = (1 -x2)-“*. 

We define bounded functions 4,r, Cp, by the relations 

B,Jx) = C-‘TW(X)~,~(X); B,(x) = C-‘TW(X)&(X) 

in which case the discretized form of eqs (13-l 6) becomes 

:, f 3 + y i$, f 4,y(li) I’“,“_” y”” - r(uk 9 li)] = - 2’74’ COS nuk; 
I k I 

Y ic f $y,(ti)r(Uk, ri) = - 1; k = 1,2, 

k=l,2,...n-1 

. . n-l 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

where 

r(“k, ri) = 

sin nuk - sin ICti 
cuk _ ti)2 
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and the choice of the integration and collocation points 

/2i - 1 \ /k \ 

is prescribed by the fact that we are seeking the unbounded solution[3]. 
Equations (19-22) constitute a system of 2n linear equations which can be solved for the 2n 

unknowns, 4.,(h), 4y(ti). 
The normal displacement between the crack surfaces, i.e. the crack opening displacement 

V,(x) can be determined from the condition 

s 

s 

s 

s 
U,(s) = cos /I B,(<)ds -sin/? B,(5) ds. 

-I -I 
Since y -$ 1, it can be written as 

s 

s 

I 

s 
f-J,(s) = B,(<)ds +71y cos7rs/a h(t) ds. (23) 

-I -I 

The integration interval of (23) is not the same as the previous integrals, and hence we cannot 
use the numerical integration method of Erdogan and Cook[3]. Instead, we calculate the integral 
by Simpson’s method using the values of B,(x) and B,,(x) at the integration points. The results 
show that the relative normal displacement is positive at the crack tips, but negative in the central 
region. For a crack of initially zero thickness, a negative crack opening displacement is physically 
meaningless, but this result leads us to anticipate that a contact region will be developed in a central 
region, the regions near the crack tips remaining open. 

4. THE PARTIALLY CLOSED CRACK 

In view of the results of Section 3, we now reconsider the problem under the assumption that 
a central region of the crack, (x 1 < c, remains closed, as shown in Fig. 2. For generality, we also 
add normal tractions cr at infinity, but we are mostly interested in effect of the shear tractions. 

In this case, the crack opening displacement, U,,(x) = 0 throughout the closed region, leading to 

s 

I 

s 

x 
B,(s) ds + rry cos xx/a B,(s)ds =O; -c <x <c (24) 

-0 -0 

from eq. (23). 

Fig. 2. The sinusoidal crack with central contact zone. 
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Also, the open regions of the crack must be traction free and, in particular, N(x) = 0, giving 

21cy cos xx/a _ t: sin ax/a - sin m/a ds 

x--s lx -S)2 

the 

+ 27Eyz cos m/a + d = 0; c < Ix!< a. (25) 

We assume that the contact is frictionless and hence the shear traction S(x) = 0 throughout 
crack, i.e. 

+ cBy 0) 
sin xx/a - sin m/a 

(x -S)2 1 
ds-r+nycrcosnx/a=O; -a<xca. (26) 

The parameter, c, defining the extent of the contact zone is initially unknown and must be 
found as part of the solution from the unilateral contact inequalities 

B,(s) ds + ny cos xx/a B,(s)&>O; c<lxl<a (27) 

+ kyr cosxx/a +a SO; 1x1 cc (28) 

which states that interpenetration of the crack and tensile contact tractions respectively are 
physi~l~y inadmi~ible. They are formally equivalent to the condition that the contact traction 
should tend to zero rather than be unbounded as x + f c. 

Finally, the closure conditions (12) must also be imposed, implying an unbounded solution 
for B,, B,, as x + It a. 

~o~ali~ng in the interval (-a, + a) and introducing the same characteristic function w(x), 
the problem becomes 

I 

J I 
w(t) h(t) ti-_t + N%(t) 

-I ( 

2n cos KU sin nu - sin 7rf 
U--t (U - ty >I 

dt + 2ny cos rcu + 6 = 0; 

a c: (ul c 1 (29) 

- - +y#y(r)S1n;;I;;;rrr dt - 1 +nyJ cosxu =O; -l<u<l (30) 

I 

J I 
w(t) W) + r&C(t) 

( 

27c cos AU 

-1 
U-_t 

U--t 

fu 

sin au - sin nt - 
(u - t)* 

dt+2rrycosau+6<0; 

-a KU <a (31) 

fu 

J w(t)~#~(t) dt + EC cos KU w(r)&(t)dt=O; -acu<a 
-1 J -I 

s 

” 
wan dt + EC cos zu 

-1 J 

" 
w~r)~~(r~d~ 2 0; a c lu/ c 1 

-I 

(32) 

(33) 

s 
' w(t)&(t) dt = 0 (34) 
-1 

J 
' w(~)~~(~) dt =0 (35) 
-I 

where a = c/a and S = a/r. 
The problem is non-linear in consequence of the inequality conditions (27,28) and hence must 

be solved by an iteritive method. Assume that 
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The discretized form of conditions (29-35) is: 

2x cos ,n+ 

uk - ti 
-r(Uk,ti) = -27tycosRt4,-6; 

k=l,2,..., K; n-K,n-Kfl,...n-1 (36) 

--1-7ryCos7Wk; k=1,2,...n-i (37) 

k=K+l,K+2,...n-K-2,n-K-i (38) 

+~~~1(B,(ri)+B,(fi~,)(li+I-2i)+~x =o; 

r-l 

k=K+l,K+2,...n-K-2,n-K-l (39) 

where 

f;;l+f~~‘(B,(t,)+B,(ri+,)(r,+l-2i)+~s 
I=1 

+nccosnuk f,l+r~~‘(B,(ti)+B,(r,+~)(rj+,-tif+f,n 

1 1 

20; 

r-l 

k=l,2,..., K; n-K,n-Kfl, 

JJ, 4xCfi) = O 

i$, 4ytri) = O 

r(uk, fi) = 

sin 7tuk - sin Ati 

hk - 6)’ 

f,, = -24(4)U + 4); r = x,y 

1-=;{ mw + 
““::;f 1 yJ 

K I 

CUK _ @; r =x,y 

Br(ti) = w(tiMr(til 

and the choice of the integration and collocation points 

. . . n - 1 (40) 

(41) 

(42) 

is prescribed by the fact that we are seeking the unbounded solution[3] in this case as well. 
The results for the open crack are used to obtain an initial guess for c after which iteration 

proceeds by changing the contact status (i.e. K) of collocation points for which the appropriate 
inequality is violated. Notice however that the accuracy of the final value of c is restricted by the 
finite spacing of the collocation points. 

5. RESULTS 

The problem is solved for different values of 6 with n = 100 and y = 0.001. From the 
calculations, we find that the contact status of the crack h varies with 6, i.e. the ratio of normal 
stress to shear stress. There are some special values of 6: 6, = 0.~~065; a2 = -0.00335058; 
83 = - 0.00368505. 
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Fig. 3. Gap profiles for various values of o/r. 

For 6 greater than 6,) the crack will be fully open; while for 6 smaller than &, it will be 
completely closed; for 6 between 6, and 6, there is central contact zone, but for a small range of 
6 between 8r and 6,, there are three contact zones: one at the center and two at the crack tips. 

Extensive study was done for the case of 6 between 6, and 6,. Some of the results are shown 
in Figs 3 and 4, which feature the case of the central contact zone. 

The stress intensity factors K,,,, for the tensile and shear stresses respectively at x = -a are 
defined as 

and can be related to the dislocation distributions by the relations 

K 
1.11 

=2PJnla . 
k + 1 ,‘“, i26 + 1)}-“2[g(s), h(s)] 

where 

g(s) = U”(S), 

s 

s 
h(s) = B,(<)d[ -ny cosrrs 

s 
’ B,(t)& 

-I -I 

are the relative normal and tangential displacements respectively. 

01 

'0 
f 2.0 

0.0 

$ -2.0 

-4.0 

-2.0 I 
-1 

d~~~Q-J 
d-O.5x1O-5 

d-0.0 

d--O.Sx1O-a 

a~z!:EK.~ 

-0:s i 0.b 1 

x/a 

Fig. 4. Contact pressure for various values of a/r 
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Fig 5. Normalized mode I stress intensity factor vs u/r 
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Fig. 6. Extent of contact vs o/r. 

After some mathematical manipulation, K, and K,, are obtained as 

K, = r&+$,~(-- 1) - V&J- 1)) (45) 

K,, = nrJ;;;;{&(- 1) + XY#,(- 1% (46) 

When calculating K, and K,, ,4,( - 1) and #,( - 1) are obtained by linear interpolation of 4, 
and & at the nearest two integration points, 

From Figs 5 and 6, we can see clearly that K, varies approximately linearly with the ratio of 
the normal stress to shear stress and the contact ratio declines, but K,,/&r remains practically 
equal to 1. 

Convergence of the method was spot-checked for K, and K,, using 50, 100 and 200 intermediate 
data points. This check indicated a difference of less than 10m5 and therefore n = 100 was chosen 
for the calculation. 
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