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Several analyses of self-segregation properties of reaction-diffusion systems in low dimen- 
sions have been based on a simplified model in which an initially uniform concentration of 
point particles is depleted by reaction with an immobilized trap. A measure of self- 
segregation in this system is the distance of the trap from the nearest untrapped particle. In 
one dimension the average of this distance has been shown to increase at a rate proportional 
to t ~4. We show that this rate in a two-dimensional system is asymptotically proportional to 
(In t) ~2, and that the concentration profile in the neighborhood of the trap is proportional to 
(In r/ln t). 

There have been a number of recent studies of reaction-diffusion models in 
low dimensions because their kinetic properties can differ markedly from 
classical predictions. This phenomenon was first investigated by Ovchinnikov 
and Zeldovich [1] and later by Toussaint and Wilczek [2]. A number of 
additional references are given in reviews by Kopelman [3], and Kuzovkov and 
Kotomin [4]. In many formulations of these models it is possible to show that 
there may be self-segregation of the components, that is to say, there may be 
regions rich in one or the other of the reactants, with a corresponding 
depletion of the remaining reactants in other regions. A popular model which 
illustrates the general idea is based on the reaction A + B---~ B. This may be 
thought of as the reaction of a molecule (A) with a perfectly efficient trap (B). 

One example for such a reaction is the trapping of excitons. For instance, in 
a napthalene crystal with beta-methyl-napthalene impurities, a triplet exciton 
moves in a plane (ab) until trapped. An excitation pulse creates an initially 
random population of long-lived excitons which may decay primarily by 
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trapping and heterofusion at the trap [3]. Another  example is a catalytic 

surface reaction in which the reaction, e.g.,  isomerization occurs at an active 
surface. 

Following Smoluchowski [5, 6] one idealizes the reaction by assuming a 
single, immobile spherical B surrounded by an initially uniform distribution of 

A particles, each of which is allowed to diffuse, independent  of the others,  
throughout  an unbounded space. The occurrence of A - B  reactions creates a 
zone of depletion around the B particle, which is one form of what is 

sometimes termed self-segregation. A quantitat ive characterization of this 

phenomenon  can be f ramed in terms of one or more  parameters .  One of these 
is the distance of the B particle to the nearest  unreacted A. A second is the 
distance from the B to the point at which the concentrat ion reaches some 
specified fraction of its value in the bulk. If 0 is the fraction we will refer to the 
distance as the 0-distance. 

Statistical propert ies  for the first of these quantities have been studied in ref. 
[7] for the case of an immobile trap in one and three dimensions. IT] the 
one-dimensional  example it has been shown that the mean distance from the B 
to the nearest  unreacted A increases asymptotically with time as ( L )  - - t  ~'4. It 
is trivial to show that the 0-distance increases as t ~'2 for all values of 0. In three 
dimensions both quantities are asymptotically constant in time, which means 

that self-segregation is minimal. In this note we consider the two-dimensional 
case in which the B particle is taken to be a circle with a perfectly absorbing 

circumference. We will show that the distance from the circumference of the B 
to the nearest  unreacted A increases asymptotically like (In t) ~' ~. More interest- 
ingly, we will show that in two dimensions the 0-distance has no universal 
scaling but rather  depends on the value of 0. 

We will assume cylindrical symmetry  in the system in which the concen- 
tration of A's  at a distance r f rom the origin will be denoted by c(r, t). This 
function will be assumed to satisfy an ideal diffusion equation with diffusion 
constant D, which is to be solved subject to the initial condition c(r, 0) = c~ - 
constant,  and the boundary condition c(a, t) = 0, where a is the radius of the 
circle. The solution to this problem is well known and is found, for example~ in 
ref. [8]. It can be expressed in the form c(r, t) - cog(r, t), where 

2 J( e x p ( -  Dtu 2) J°(au) Y°(ru) - J°(ru) Y°(au) d u g(r, t) (1) 
0 

We will be interested in the form of this function in the limit t-->~. The 
principal contribution to the integral then comes from small u. In this limit we 
may replace the numera tor  of the integral in eq. (1) by 

jo(au) Y o ( r u ) -  Jo(ru) Yo(au) ~ 2 i n ( r ) ,  (2) 
q'r 
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which, together with eq. (1), implies that 

g(r, t ) ~  4~51n a 4Dt  _ 2~ z 
In - 2',/ In 

(3) 

provided that r 2 ~  Dt,  where ~/is Euler's constant, equal to 0.577+. Thus we 
see that in the long-time limit g(r, t) factors into a product of two functions, 
one depending only on r and the second only on t, i.e., g(r, t) ~ ln(r /a)  F(t)  
where F(t) represents the bracketed terms in eq. (3). From this we can infer 
that the flux into the circle is 

- J ( t ) = - - D  Oc _ D F(t)  (4) 
a -~r r = a  a 2 

which means that at very long times it is proportional to (In t)-l. 
The relation in eq. (2) allows us to calculate the 0-distance from the 

equation g(ro, t) = 0 with a solution of the form 

In - 2F(t) " (5) 

Retaining only the lowest order term in the expansion of F(t)  we find that 

[ 4Dt]  °/2 
r o ~ a ~ - ~ - }  , (6) 

which means that the exponent in the asymptotic scaling law depends on 0. 
Finally, the asymptotic form of the probability density for the distance from 

the origin to the nearest untrapped A can be found following the analysis in 
ref. [7]. Let Q ( L ,  t) be the probability that the nearest neighbor distance is less 
than or equal to L. The probability density of the nearest neighbor distance, 
f ( L ,  t), is then given by - O Q / O L .  But Q ( L ,  t) is given by 

L 

a 

(7) 

The asymptotic form of this function is found by inserting the approximation in 
eq. (2) into this relation. This sequence of operations leads to the result 

f(L, t)~ 27rc0L [2 ln(L)+l]F(t)exp{-2rrcoF(t ) [L 2 ln(L)- 4 ]}" 
(8) 
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Fig. 1. Plot of (L(t))'- versus log t obtained from the exact enumeration method [9]. The linear 
curve supports the theoretical prediction, eq. (9). 

From this it follows that the asymptotic time dependence of ( L ) ,  the mean 
distance to the nearest untrapped A, has the form 

( L ( t ) )  ~ (In t) ~/2 (9) 

and the variance, o-2(L) -= ( L 2) - ( L )  2, is asymptotically proportional to In t. 
Fig. 1, derived from the method of exact enumerat ion [9], lends numerical 
support to this prediction. 

A much harder problem relates to properties of the nearest neighbor 
distances when both the trap and the particles are allowed to diffuse. In this 
case results for this type of system can only be derived numerically [10], 
although an approximation scheme for the survival probability in such a system 
is given in ref. [11]. 

Note added in proof 

Since obtaining our results we have found that S. Redner  and D. ben- 
Avraham have found similar results using a somewhat different approach in an 
as yet unpublished manuscript. 
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