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There is no experimental evidence that the four vector boson (4W) vertex predicted by the standard model exists. To study the 
effects of this vertex, we introduce the parameter x such that xg 2 is the new 4W coupling constant. We set constraints on x by 
considering unitarity requirements for vector boson scattering amplitudes. We find that the 4W vertex must exist if the vector 
bosons interact weakly up to x / ~  300-350 GeV. 

1. Introduction 

At the t ime,  the S U ( 3 ) X S U ( 2 ) × U (  1 ) s t andard  model  is widely accepted as the best  theory to describe 
e lementary  processes. However ,  the signatures of  some parts  o f  the theory have not  been observed yet (for  
example  the top  quark, the vector  boson self- interact ions and the Higgs boson) .  

In this paper ,  we will focus on the vector  boson interact ions.  The s tandard  model  predicts  that  vector  bosons 
can interact  via  4-point  vertices,  but  there  is no evidence that  such vertices are needed to bui ld  a uni tary  low 
energy theory. In this context,  we de te rmine  at what  energies vector  boson 4-point  vertices have to be in t roduced 
in such a theory. 

The techniques used are essentially the same as in ref. [ 1 ]. We consider  the tree ampl i tudes  for vec tor -boson-  
vector-boson scattering. The energy at  which the J =  0 par t ia l  waves formed from these ampl i tudes  saturate 
uni tar i ty ,  sets a const ra in t  on the form of  the 4W vert ices in the theory. It is found that  4W vertices are necessary 
i f  the theory is to interact  weakly up to x / ~  300-350 GeV. 

The outl ine o f  the paper  is as follows. In sect ion 2, we define our  model.  In section 3, we show how to put  
constraints  on the 4-point  vertex, and  do a s imple evaluat ion  in the l imi t  m 2 >> s >> M 2. Section 4 describes how 
the exact calculat ion for all energy ranges is done. Section 5 gives the results o f  this calculat ion and section 6 is 
a discussion o f  these results. 

2. The model 

We want  to de te rmine  what  the cont r ibu t ion  of  the 4W vertex t o  the vec tor -boson-vec tor -boson  scattering 
ampl i tude  is. To achieve this, we bu i ld  the following model .  We take the s tandard  model  lagrangian [ 2 ] and  
mul t ip ly  the terms conta ining four vector  bosons  (but  no photons)  by a factor x, keeping all o ther  terms the 
same. F r o m  this lagrangian, we then form the Feynma n  rules in the usual way. 

Obviously,  taking x different  f rom 1 breaks the S U ( 2 )  [not  the U (  1 ) ] gauge invariance.  Therefore,  we no 
longer have the f reedom to choose the gauge. The theory must  be unitary,  so we have to work in the uni tary  
gauge. The theory is still non-renormal izable ,  but  this does not  affect our  tree level analysis. The relevant  pa ram-  
eters o f  the theory are g, the weak coupling constant;  so, co, the sine and cosine o f  the weak mixing angle; M, the 
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mass of  the charged vector bosons W +, W - ;  m, the mass of  the Higgs boson H. The mass of the neutral vector 
boson W ° is M/co (at tree level). The values used for these parameters are g2= 0.40, s g = 0.23, M =  81 GeV. 

3. Constraints on the J - - 0  partial waves 

Consider the tree amplitudes T for the various vector-boson-vector-boson scattering processes. These ampli- 
tudes can be decomposed in partial waves: 

T(s,  t) = 16n ~ (2j+ 1 ) at(s ) Pj(cos 0 ) ,  ( 1 ) 
j = 0  

where s and t are the usual Mandelstam variables, 0 is the scattering angle. It can be shown from unitarity 
considerations that [ 3 ] 

I~l{aj(s)} I ~ ½. (2) 

These constraints set limits on x for a given energy. We find that the longitudinal J =  0 partial wave amplitude 
sets the tightest constraint. Therefore, we only use 

191{aL(s)}I ~< ½. (3) 

There are three types of  tree diagrams, as shown in fig. 1. (Crossed diagrams must be included. ) In general, 
their contributions to the J =  0 partial wave amplitude are 

( 1 ) 4-point vertex diagram 

As2 + Bs , (4) 

(2) vector boson exchange diagram 

Cs2 + Ds + E , (5) 

(3) Higgs exchange diagram 

F s + G .  (6) 

Here A, B, C, D, and F are constants, not containing kinematical variables. E and G play a significant role only 
when the Higgs is extremely heavy (m >> 2 TeV) [ 1,4], or when the energy v/s is close to the Higgs mass. 

Apart from these effects, i.e. for m 2 >> s >> M 2, the s 2 and s terms are absent in the partial wave if 

A + C = 0 ,  B + D + F = O .  (7) 

This, however, is satisfied only if x is exactly 1. I f  x is different from 1, then unitarity is violated above a certain 
energy, regardless of the Higgs mass. 

Away from the Higgs pole, the leading terms in the J =  0 partial wave scattering amplitude for W + WE 
W + WE are quadratic in s. These terms come from the diagrams given in fig. 2. 

Combined, they result in the partial wave amplitude 

W W W W W W 

Fig. 1. Different types of diagrams contributing to WW scattering. 
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W + W + W + W + 

w_ w_ 
W + W + 

W - ~  W- 

Fig. 2. Leading diagrams for W+W - ~ W + W  - scattering. 

g2s2 
a L ( s )  -- 96riM 4 ( 1 - x ) .  (8) 

It follows from eq. (3) that 

4 8 r i M  4 
I I - x l  ~< g2s---- T -  (9) 

From this, bounds on x can be extracted. The higher the energy ~ at which the theory is weak and unitarity 
is not violated, the closer x is to one. In fig. 3, the allowed values for x are plotted using eq. (9). The highest 
energy at which the 4W vertex is not necessary to maintain unitarity, i.e. x=0 ,  is denoted by sv/~,t: 

. ~  ( 4 8 7 ~  1/4 
v oc~it - \ - ~ - ]  M---360 GeV.  (10) 

It follows, that if ~/J> ~ ,  x is bounded by positive numbers, and a 4W vertex is necessary. 
These bounds can be refined by coupling the channels W~- WE and W°W ° [ 1 ]. This is done by considering 

the following 2 × 2 matrix: 

Jt [ a ~ ( W ~ W g - . W ~ W E )  

= ~,( 1/X/~)aoL(W°W ° ~ W  + WE ) 

The unitarity condition becomes 

19~{largest eigenvalue of~¢} I ~< ½ • 

( 1 /v/2)a~ (W + WC --,W°W°) ] 

½aL(W°W ° ~wOWOL) ] "  
(11) 

(12) 

- 1  

\ 

" . , , ~  coup led  c h a n n e l s  

,i , ,  I . . . .  L , ,  
400 600 800 

~,,,k (c~v) 

I I  

1000 
Fig. 3. Limits on x from the high energy calculation. 
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In the case at hand, the matrix is 

g2s2( 1 --/¢) (X/~ ~ 0  c4 ) 
~ / =  96~zM 4 C~ " 

So, (12) becomes 

(13) 

gasa 1-t-~1 +8c~ 
96riM 4 2 II-xl~½. (14) 

This relation is represented by the dotted lines in fig. 3. The critical energy is 

~ - ~ 3 2 0  GeV.  (15) 

4. The exact calculation 

We want to obtain more precise limits on x by calculating the exact J =  0 partial waves from our model. 
There is a fundamental problem in calculating exact partial wave amplitudes for WW scattering. For a process 

with a t- (u-)channel photon exchange, the amplitude is singular in the backward (forward) direction. This is a 
very common feature. It can be seen in fundamental equations as the classical Rutherford formula for Coulomb 
scattering. 

The correct way to solve this problem, is by noting that the massless photon has an infinite range and that 
therefore the wavefunctions of  the incoming vector bosons are not plane waves but Coulomb waves. But for our 
purpose, a simpler approach will be sufficient. 

If  in the CMS frame, 0 is the angle between the incoming and the outgoing particle, we must integrate the 
amplitude from 0= 0 to 0=  n. In our calculation, the infinity can be regulated by introducing a small cut-off 
angle 0cut and integrate the amplitude from 0cut to n (while taking the amplitude constant in the interval 0 = 0 to 
0= 0cut). Alternatively, the divergence can be removed by giving the photon a small mass 2reg. These manipula- 
tions make the divergent term in the partial wave look like 

2r¾g ) 
log(½0cut) z respectively log s_4~-+22eg" . (16) 

We will use the second regulator and set •reg= 1 keV. In the non-divergent terms of the partial wave, the photon 
mass is of course strictly zero. 

Next, we must determine from which scattering amplitudes we will subtract limits on x. We consider scatter- 
ings between neutral pairs of  particles. Discarding all leptons, the only pairs are (with their proper normaliza- 
tion factors): W~- WE, ( 1 /x /~ )W°W °, W°H, ( 1/v/-2)HH. 

We have verified that including the last two pairs does not tighten the limits on x. The largest eigenvalue of 
the 4 X 4 partial wave matrix containing the channels W~-WE, WLWL,0 0 WOH, HH is virtually the same as the 
largest eigenvalue of the 2 X 2 matrix containing only the W~- WE and W°W ° channels. 

The partial waves of  scatterings involving an external Higgs boson are small, because 
( 1 ) There are no terms, that grow with s. (x does not appear in these amplitudes. ) 
(2) There are no propagators in these amplitudes that can become large for certain energies. Because of ki- 

nematical constraints, for no value of x/~ can the pole of  any propagator be reached. 
So in this paper, we will only work with the 2 X 2 matrix of the W + WE and o o WLWL channels. 
All the amplitudes and partial waves have been computed using the algebraic manipulation program 

SCHOONSCHIP. We now evaluate the partial waves in matrix ( 11 ) and use eq. (12) to set constraints on x. 
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5. Results 

Fig. 4 depicts plots of  x versus ~ for various Higgs masses. In fig. 5 the critical energy ~ is plotted as 
a function of the Higgs mass. 

Fig. 4 shows, that the curves peak around x =  1, which is quite similar to fig. 3. Note that the curves are not 
defined around x / ~  m, because of the Higgs pole. That is why we left out the middle pieces of  the curves in the 
case r e=a00  GeV. The same effect is seen in fig. 5. For m < < ~  and m>> ~ ,  the critical energy ~ is 
almost constant. But if m is close to ~ ,  our calculations do not give reliable results. 

It is obvious what causes the problem. Our tree level expressions for the partial waves are not valid when 
x / ~  m, because there is a Higgs resonance at this energy. The missing part of  a curve will be some interpolation 
between the two broken pans. 

We can get an idea of how this would happen, by modifying the Higgs propagator like 

1 1 (17)  
_ p 2 + m 2  -~ _p2+m2_imF. 

Not trying to be very accurate, we take the new parameter F, the width of the Higgs, as a simple constant. 
We will show the effect of  substitution (17 ) for fig. 5. The dotted curve is found by taking F =  70 GeV. This 

is the smallest value for the width which keeps the resonance from saturating unitarity. We find that the critical 
energy changes very little (about 10%) over the entire range of Higgs masses. The effect of  taking a bigger width 
is that ~ varies even less. So we conclude that if we discard the resonance, the critical energy is virtually 
constant at ~ ~ 320 GeV. 

At this place, it should be checked how different choices for the regulator A,eg affect the results. In fig. 6 the 
critical energy ~ is plotted against log (2,eg [ eV ] ). The Higgs mass is m = 500 GeV. (Taking a different mass 
only causes the curve to move up or down a little.) We find that ~ changes only moderately as a function of 
2r~g. When Ar,~ changes 20 orders of  magnitude, sx/~nt changes about 20%. 

- 1  

, % , , , ,  . . . .  , . . . .  
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_ ~ m  = 400 GeV 
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y • / "  
, . / "  
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Fig. 4. Limits on x for different Higgs masses mHi~=  200, 400, 

800 GeV. 
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Fig. 5. The critical energy as a function of the Higgs mass. Solid 
curve: the Higgs has no width; broken curve: the Higgs has a width 
/ ' =  70 GeV. 
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Fig. 6. The effect Of 2r~ on the critical energy (mHi~= 500 GeV). 

From fig. 6, it must be decided which value for 2reg is reasonable. It should be picked so that the effect of  the 
logarithm ( 16 ) is not extremely large or extremely small. To achieve this, we take '~reg to  be somewhere halfway 
up on the slope. This corresponds to a value Of 2reg around 1 keV. 

6 .  C o n c l u s i o n s  

We modified the vector boson 4-point vertices by adding a factor x. The requirement that at tree level, unitar- 
ity is not violated up to an CMS energy ~ ,  puts limits on x. The smallest energy for which this requirement 
implies that x>  0, is called the critical energy. 

In the "high energy limit" ( 13 ), the critical energy is ~ = 320 GeV ( 15 ). This is very compatible with the 
exact calculation. From fig. 5: ~ ~ 300-350 GeV, slightly dependent on the Higgs mass. We also did the 
calculation using the less strict constraint l aL(s)I  ~< 1. The results (graphs 4, 5) were similar and we found 

~ 400 GeV. 
However, one has to be careful in the case of  a very heavy Higgs. Even with x =  1, there comes a point where 

the tree level amplitude violates unitarity. When m 2 >> s, this happens at x/s = 1.7 TeV [ 1,4 ]. It also turns out 
that including l-loop radiative corrections to the WW scattering process, does not tighten these limits. In fact, 
the value of x/~ where unitarity violation starts gets pushed down [ 5 ]. So it is not clear that adding l-loop 
corrections in our calculations will result in tighter limits on x. 

Finally, we note that we did not give the 4W vertex a completely general form like x ( 2 ~ c ~ , - ~ J ~ o -  
~' ~t,aJ~a ). This would not be very useful, because with only one observable ( ~ ) ,  one cannot put restrictions 
on three parameters. Moreover, the critical energy does not depend on the structure of  the 4W vertex. Indeed, 
it is determined as the energy for which the partial waves of  diagrams with only 3-point vertices saturate unitar- 
ity. From these considerations, it seems satisfactory to set ~= ~' = 1 and carry out the calculation in the presented 
manner. 
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