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Abstract: In this paper computational results are presented with a very general, yet powerful backtracking 
procedure for solving the duration minimization and net present value maximization problems in a 
precedence and resource-constrained network. These networks are generally of the PERT/CPM variety, 
although it is not required that they be so. Among the advantages cited for our approach are low computer 
memory (storage) requirements and the ability to obtain improved solutions rapidly (heuristic properties). 
Since the resource-constrained project scheduling problem subsumes the job shop, flow shop, assembly line 
balancing, and related scheduling problems, our procedure can be used with little or no modification to 
solve a wide variety of problem types. Computational experience is reported for both mainframe and 
personal computer implementations. 
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I. Introduction 

A very general, yet powerful backtracking procedure for solving non-preemptive, resource-constrained 
project scheduling problems is described. Among the advantages cited for the depth-first search approach 
are: 

(1) Its simplicity. 
(2) Low computer storage requirements. 
(3) The ability to obtain both heuristic and optimal solutions to resource-constrained, project schedul- 

ing problems. 
Quite often, for example, improved solutions to a problem are found quite rapidly with our approach, 

both for the objective of minimizing project duration (makespan) as well as maximizing project net present 
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value. The solution procedures described herein incorporate features of both the resource-constrained 
project scheduling problem and the Decision CPM problem. That is, we solve the resource-constrained 
version of this important scheduling problem for the case in which alternate technologies or modes exist 
for completing the activities of a project, each mode with potentially differing costs, resource requirements, 
and time durations for activity completion. To our knowledge, the procedures described herein are the 
only ones available for solving these types of scheduling problems for the case in which we desire to either 
minimize project duration or else maximize project net present value. 

Types of problems modeled with our approach differ from the traditional Decision CPM problem in 
that while we do consider alternate modes for completing an activity, the precedence relations in the 
network are fixed. Hence, we do not specifically consider alternate precedence relationships for the 
activities of a network as does the Decision CPM model. 

In the next section, we describe in detail the broad types of problems solvable with our approach. 
Section 3 briefly describes the backtracking algorithm used for the case in which we desire to minimize 
project duration, and in Section 4 we describe modifications required to solve the maximization of net 
present value problem. Section 5 reports on computational experience with our approach, and Section 6 
gives several promising extensions to these procedures. 

An earlier version of the procedures described in this paper, but without the computational results 
reported herein was reported in [12]. This paper expands upon these procedures, as well as reports on an 
extensive computational experiment designed to assess the efficacy of our approach. We assume reader 
familiarity with depth-first and breadth-first types of search procedures. Although reader familiarity is also 
assumed with reference [12], of necessity, we present in abbreviated form portions of this paper essential to 
the development of the computational tests described. 

2. The project scheduling problem 

2.1. Problem type investigated 

In Figure 1 we show the multiple activity mode version of the resource-constrained project scheduling 
problem for three activities extracted from a larger project network model. In this example, the first two 
activities may be begun upon project initiation, resources permitting. The first activity can be completed 
using one of two different activity modes, with durations of 5 and 4 time periods and per period usage of 
resources as indicated. A progress payment of 275 is received upon the successful completion of this first 
activity. The cost of completing the first activity is either 150 or 200 depending upon the mode for activity 
completion selected. The second activity can be completed using one of three different activity modes, with 
resource requirements and activity durations indicated. Depending upon the mode selected for completing 
this second activity, a cash outflow of 208, 266, or 216 results. This latter activity (deciding between modes 
2 and 3 for activity completion) illustrates the complex non-monotonic tradeoffs that exist among activity 
duration, activity cost, and resource consumption in the multiple mode, resource-constrained version of 
this problem. These types of relationships make the problem inherently more difficult to solve as much less 
of the structure of the problem can be used in developing bounds and improved fathoming criteria. 

Completion by period 8 for both activities of this partial network implies a bonus of 75; completion in 
period 12 (and beyond) implies a penalty of 100 ( - 100). Per-period resources are available in the amounts 
3, 6, and 7 each period of the schedule duration. The per period cost of these three renewable resources are 
3, 4, and 5, respectively, as indicated in Figure 1. 

Following the approach suggested by Slowinski and Weglarz [14,15,20,21], we classify resources as 
being renewable, nonrenewable, or doubly constrained. Renewable resources are available and are con- 
sumed on a per period basis. For example, skilled labor would be classified as a renewable resource if it is 
available in limited quantities and renews itself (is available) each period of the schedule duration. 
Nonrenewable resources are available on a total project basis. For example, cash may be considered 
nonrenewable if only a fixed amount is available in total for project completion. Doubly constrained 
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[1 ;1;5;1,3,3;275]  

[1 ;2 ;4 ;3 ,4 ,5 ;275]  

[2 ;1 ;8 ;1 ,2 ,3 ;270]  

[2;2;7;1 ,5 ,31270]  

[2 ;3 ;6 ;2 ,5 ,2 ;270]  

I 
o ,  

( 
[3;1;0;0,0,0;*] 

[ * ;8,75;9,50;10,25;11,-25;12,-100]  

Key : 

[Activity No. ; Mode; Duration; Units of Resource 1 Reqd., Units of Resource 2 Reqd., Units of 
Resource 3 Reqd. ; Performance Payment] 

[*;Period of Completion, Bonus/Penalty Peyment;O*.; Period of Completion, Bonus/Penalty Payment] 

Resource Limit: [3, 6, 7] 
Unit Cost of Resources: [3, 4, 5] 

Figure 1. A parti~ network depictingthemultiplemode version of theresource-constrined pr~ectscheduling problem 

resources are constrained on both a per period as well as on a total basis. Cash can be considered to be a 
doubly constrained resource if both total expenditures on a project are limited, as well as net cash outflows 
per period. 

2.2. Brief literature review 

Resource-duration interactions or the consideration of alternate operation or activity completion 
modes were first considered in the context of the CPM time-cost  tradeoff problem. In this model, it is 
assumed that activity duration can be decreased monotonically (linearly) between the limits of the normal 
and crash activity durations simply by increasing expenditure levels. The allocation of renewable resources 
with resource-duration interactions has been examined by Elmaghraby [6]. The problem of considering 
resource-duration interactions under different operating modes for different combinations of renewable, 
nonrenewable, and doubly constrained resources for the preemptive version of this problem is reported by 
Slowinski [14] and by Weglarz [20,21]. The nonpreemptive version of this problem has been investigated by 
Talbot [18] for the objective of minimizing project duration. 

2.3. Notation 

Table 1 gives notation useful for describing the formulation and procedures developed in this paper. 
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Table 1 
Notation 

Symbol Definition 

Cj~d 

Cjmt> 
c, 
Dlnl 

g ~L,) 

J 
k 

Ms 
P, ~s,) 
P (S)  

R k t  

Fjmk 
T* 
% 

% 
Xlmt 

Due date of activity j 
Cash flow of activity j ,  mode m, in its d-th period in progress (d = 1, 2 . . . . .  Djm); 

if cjm a < 0 there is a cash withdrawal, 
if cj,~a > 0 there is a cash inflow 

Non-negative cash flow v periods after the completion of activity j (v >/1) 
Net cash position in period t. C o is the cash available at the start of the project 
Activity duration associated with mode m of activity j ;  

Oj1 = 0 

Critical path determined earliest (latest) completion time for activity j based upon shortest (longest) completion time 
mode for activities in the network 
Unique ending (dummy) terminal activity 
Index identifying renewable resources (k = 1, 2 . . . . .  K ) 
Number  of modes associated with the completion of activity j (m = 1, 2 . . . . .  Mj) 
The set of immediate predecessor (successor) activities of activity j 
The set of all pairs of immediate predecessor (successor) relationships. (a,  b) e P denotes activity a is an immediate 
predecessor of activity b 
The amount  of renewable resource k available in period t 
Per period amount  of renewable resource k required to perform activity j using mode m 
Due date for project 
Single payment,  present value discount factor for period t at interest rate i, 

Weight assigned to activity j 
A zero-one variable which is equal to 1 if activity j ,  using mode m, is completed in period t; equals O, otherwise 

2.4. Problem formulation 

The zero-one integer program given by (1)-(5) models the project scheduling problem described above 
where the objective is to minimize project duration (completion time or makespan) for the case in which 
alternate modes exist for performing a subset of the activities of the project. 

L I 

minimize Y'~ tX gl, (1) 
t =  f I 

subject to 
M t L t 

Y[ Y~ Xjm,=l  f o r j = l , 2  . . . . .  J ,  (2) 
m = l  t = E  z 

M .  L,, M h L h 

- E Y'. tx.,m + E E (t--Dbm)Xbm ,>~0, V(a, b ) ~ P ,  (3) 
m = l  I = E .  m = l  t = E t ,  

j M r t + Dr, n -  1 

E E E rjmkXjmq~Rkt f o r k = l , 2  . . . . .  K, t = l , 2  . . . . .  T* (4) 
j = l  m = l  q = t  

j M i t + Din, - 1 

Ct 1 -{- E E E C j r n ( D m , + t - q ) X j m  q -}- C j*mvXim( t  v ,  = Ct for t = 1, 2 . . . . .  T*.  ( 5 )  
j = l  m = l  q ~ t  
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The objective of minimizing project duration (1) is achieved by scheduling the unique terminal activity 
as early as possible. Constraint set (2) insures that each activity will be completed during one time period 
only and using only one activity mode. Precedence relationships are maintained by (3) and renewable 
resource restrictions are imposed by (4). Constraints (5) are identities for the nonrenewable resource cash. 
These constraints insure that an activity mode is selected only if sufficient cash is available during each 
period of its duration. For the non-capital constrained version of this problem, constraint set (5) can be 
omitted. Alternatively, the beginning cash available C o can be made arbitrarily large. 

Minimizing project duration often carries with it a simultaneous increase in project net present value, as 
the early completion of individual activities (as well as the project) implies the early advancement of cash 
payments, generally resulting in increased net present value amounts. The cash inflows, CTm ~, in (5), arise 
from the completion of key activities and add to the funds available for project completion. Where the 
advancement of such individual cash flow amounts does not imply net present value maximization, we 
instead solve the NPV maximization problem directly. This objective, which has been considered in a 
capital-only constrained version by Doersch and Patterson [7] can be easily accommodated in our 
approach by substituting (6) for (1): 

T 

maximize • ( c , - c t _ l ) w t + c  o. (6) 
t = l  

Some caution is necessary when employing the formulation given by (2)-(6). Where only cash outflows 
exist for an activity, it is possible that the associated activity will be delayed indefinitely in an attempt to 
maximize project net present value. In such instances, the model can include a constraint such as given by 
(7) insuring the completion of the project by a specified due date, T*: 

E tXjlt ~ T * .  
l=E, 

(7) 

Performance measures other than minimizing project duration or maximizing project net present value 
can be accommodated with our approach. For example, using (8) we can minimize the mean weighted 
activity delay: 

1 s M~ Lj 
minimize 7 E o~j E E ( t -a~)Xjm,"  (8) 

j = l  m=l  t=a~+l 

In (9), the total number of tardy activities is minimized: 

minimize Y~ E E X jm, " (9) 
j = l  m=l  t=a~+l  

Finally in (10), we minimize the weighted flow time of activities: 

1 s M, L~ 
minimize j E ~oj E ~] (tXjm ' - -a j ) .  (10) 

j=l  m=a t=~+l 

Similarly, restricting attention to strictly serial activities with corresponding restrictions placed on the 
usage of identifiable resource classes allows us to easily model the job shop and the flow shop scheduling 
problems with our approach. Other extensions are possible and require few (if any) modifications to our 
procedure. 
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3. The backtracking algorithm for minimizing project duration 

Since specific details are given in [12], we give here a more general outline of the solution procedure. 
For all types of problems considered with our approach, a depth-first search based branch and bound 
implicit enumeration procedure is used. 

The solution methodology consists of two phases, a problem initialization phase, and an enumeration 
phase. In the initialization phase (described more fully in Section 5), activities are renumbered according to 
priority dispatch scheduling rules, activity modes are sorted using similar types of decision rules, and 
activities are assigned critical path based completion times. The relabeling and sorting conventions selected 
guide the search procedure in determining an initial solution, and affect the order in which activities and 
modes are considered for assignment during the enumeration phase as well. The late finish times are 
generated in this phase, and are used as upper bounds on the completion time of each activity. 

The enumeration or second phase consists of a procedure for systematically generating the solution 
space, and for implicitly or explicitly evaluating all partial solutions that could be extended to an optimal 
solution. 

The search is structured as a precedence tree which results when activities are assigned resource and 
precedence feasible completion times. Once activity j is assigned to a feasible completion time, the list of 
currently precedent feasible, unscheduled activities is updated to include the immediate successors of 
activity j. An attempt is then made to assign the next activity from this updated list of precedence feasible 
activities. If such an assignment is not possible within the upper bound limits for this activity, the 
algorithm backtracks along the same branch from which it extended to the most recently created node. 
Another assignment is then considered, and so on. For the objective of minimizing makespan, when a new 
solution is found, the time based upper bounds are adjusted to be one less than the incumbent solution. 
For cost-based objective functions, only the objective function bound is adjusted. Optimality is guaranteed 
when a solution is found equal to a known bound, or when backtracking proceeds to dummy node zero. 
Fathoming rules include consideration of the continuously updated upper bounds on the completion time 
of each activity, as well as those procedures employed in considering only precedence and resource feasible 
assignments for an activity. 

4. Modifications to the backtracking algorithm for maximizing project net present value 

The maximization of net present value problem is inherently more difficult to solve to optimally due to 
the absence of strong, easily determined bounds on the objective function value, and the corresponding 
weakening of the time-based upper bounds that are available for the minimization of makespan version of 
this problem. Specifically, if the net cash flow for an activity is negative, then the optimal solution may no 
longer have the property that all activities can be assigned to their early finish or left-shifted resource and 
precedence feasible completion times. The algorithm for the net present value maximization problem must 
therefore be modified to examine partial solutions with activity completion times between the early finish 
and late finish critical path based bounds. The enumeration procedure starts with the activities scheduled 
to complete at resource and precedence feasible left-shifted or early finish times, and examines right-shift- 
ing activities to later time periods to permit examination of the resource and objective function tradeoffs 
that occur during such schedule construction. 

In the absence of good cost or time-based bounds, this right-shifting significantly increases computation 
times over those required to solve the project duration minimization problem. To partially circumvent this 
shortcoming, a heuristic was developed that defeats right-shifting until x percent of the computation time 
is expended for problem solution. Then, for the remaining 1 0 0 - x  percent of the time available, 
right-shifting is permitted. The effect of this heuristic is to more quickly identify improved solutions to a 
problem, yet still be able to right-shift the majority of negative cash flow activities that have feasible 
completion times greater than their critical path determined early finish times. Values of x between 70 and 
90 percent were evaluated. For the problems tested, 90 percent appeared to be a good choice for the value 
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of x. It should be indicated that optimality is no longer guaranteed when invoking this solution heuristic, 
although improved heuristic solutions quite often result. We evaluated the solution procedure both with 
and without the solution-time-based heuristic for right-shifting in our computational experiments. 

When sufficient cash is not available in our procedure to continue examining a branch of the branch 
and bound solution tree, fathoming occurs, and the algorithm begins backtracking. This cost based 
fathoming rule is used in addition to those described in the previous section for solving the NPV 
maximization version of this problem. 

5. Computational experience 

5.1. Characteristics of problems solved 

Ninety-one problems were computer generated for purposes of testing the enumeration procedures 
described in Sections 3 and 4. The number of problems attempted (n) for each activity level is indicated in 
Table 2. Problems with the fewer number of activities give us an opportunity to evaluate the enumerative 
properties of our approach in detail, while problems with the larger number of activities give us the 
opportunity to assess the efficacy of our approach for solving problems of the type more frequently found 
in practice. 

In addition to indicating the number of problems attempted for projects with identical numbers of 
activities, other characteristics of the problems solved such as the average or mean number of modes per 
activity, the average per period cash outflow, and so forth are given in Table 2. These problem 
characteristics are similar to those used previously in examining resource-constrained project scheduling 
problems [9,18]. 

5.2. Characteristics of enumeration procedures 

Three FORTRAN-77 programs were written to evaluate the approaches described. Each procedure was 
tested under two operating conditions, providing an opportunity to assess the importance of such factors 
as the order in which activities are considered for resource and time assignment in the enumeration 
procedure. We also evaluated each of the procedures using two different time limits (1 and 10 minutes of 
CPU time on an IBM 4381 computer) for obtaining and verifying the optimal solution to a problem. 

Experience in solving the single-mode version of these combinatorial problems [9] leads us to believe we 
would be much more likely to obtain and verify the optimal solution on those problems with the fewer 
number of activities, as solvability often decreases rapidly with an increase in the number of activities. We 
further conjecture that the procedures will rapidly obtain improved solutions for each of the problems 
attempted, regardless of problem size or objective function type. Finally, the ability to obtain and verify 
the optimal solution to a problem will likely decrease as we move from the objective of minimizing project 
duration to maximizing project net present value. 

The first FORT~N-77 program, TEP1, solves the duration minimization version of this problem (1). It 
specifically accommodates capital constraints (5), but does not allow for the infusion of additional capital. 

The second enumeration procedure, T~e2, also solves the duration minimization problem. However, in 
this version, capital inflows (as well as outflows) are considered. 

Finally, T~e3 solves the net present value maximization problem directly (6) allowing for both cash 
inflows as well as cash outflows. This latter program implements all of the modifications described in 
Section 4. 

Examining the enumeration procedures in this way gives us the opportunity to assess the efficacy of our 
approach as a function of the increase in complexity of the problem being solved. 

5.3. Importance of the order for considering activities for resource and time assignment in the enumeration 
procedure 

Using the partial network shown in Figure 1, note that upon project initiation, we can either consider 
Activity 1 for resource assignment first, or else can consider Activity 2 first. In general, if there are k 
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Table 2 
Summary problem characteristics a 

75 

(A) (B) (C) (D) (E) (F) (G) (H) (I) (J) 

10-A ctivity problems (n = 25) 

Maximum 2.30 5.88 9.00 6.37 34 
Mean 1.76 4.14 4.86 18 0.2587 1.31 259.67 3 3333.03 
Minimum 1.30 3.26 1.00 3.22 8 

20-A ctivity problems (n = 25) 

Maximum 2.20 5.28 9.00 6.18 55 
Mean 1.88 4.62 5.47 37 0.2832 1.57 276.62 5 4200.0 
Minimum 1.50 3.91 1.00 4.73 22 

30-Acti~ity problems ( n = 25) 

Maximum 2.20 5.53 9.00 6.29 80 
Mean 1.91 4.70 5.49 54 0.2826 1.73 266.85 5 4800.0 
Minimum 1.60 4.05 1.00 4.59 35 

50-Activity problems (n = 10) 

Maximum 2.26 5.68 9.00 6.13 125 
Mean 1.93 4.77 5.59 94 0.2948 1.87 278.07 4 23750.0 
Minimum 1.60 4.40 1.00 4.93 59 

lO0-Activity problems (n = 5) 

Maximum 2.06 5.16 9.00 5.97 195 
Mean 1.96 4.88 5.68 173 0.2889 2.04 272.47 6 14333.0 
Minimum 1.85 4.43 1.00 5.38 137 

500-Activi(~' problems ( n = 1) 

Maximum 1.98 4.90 9.00 5.72 836 
Mean 1.98 4.90 5.72 836 0.2909 2.06 271.90 5 78000.0 
Minimum 1.98 4.90 1.00 5.72 836 

(A) Mean number of activity modes. 
(B) Mean activity duration. 
(C) Minimum and maximum activity duration. 
(D) Standard deviation of activity durations. 
(E) Critical path length (based on minimum activity durations). 
(F) Average fraction of resources used by activity mode. 
(G) Network density (ratio of arcs to nodes). 
(H) Mean per-period cash outflow. 
(1) Number of positive cash payments. 
(J) Mean magnitude of positive cash payments. 

n = Number of problems in each set. 

Note that the majority of the problem characteristics reported are themselves averages or means. For example, the mean number of 
activity modes for the 10-activity networks (1.76) is the average (over the 25 problems solved) of the average number of modes per 
activity in the 10-activity networks. Other problem characteristics are interpreted similarly. 

ac t iv i t i e s  a v a i l a b l e  for  r e s o u r c e  a n d  t i m e  a s s i g n m e n t  a t  a g i v e n  t i m e  ( t h a t  is, k ac t i v i t i e s  for  w h i c h  al l  of  

t h e i r  i m m e d i a t e  p r e d e c e s s o r s  a re  c o m p l e t e d  o r  h a v e  b e e n  s c h e d u l e d ) ,  t h e r e  a re  k!  p o s s i b l e  o r d e r s  for  

c o n s i d e r i n g  t he  ac t iv i t i e s  in  t he  e n u m e r a t i o n  p r o c e d u r e .  T a l b o t  [17] h a s  s h o w n  in  t h e  s ing le  m o d e  v e r s i o n  

of  th i s  s c h e d u l i n g  p r o b l e m  t h a t  the  o r d e r  in  w h i c h  ac t i v i t i e s  a re  c o n s i d e r e d  for  t i m e  a n d  r e s o u r c e  

a s s i g n m e n t  c a n  h a v e  a s i g n i f i c a n t  i m p a c t  o n  t he  c o m p u t e r  t i m e  r e q u i r e d  to  o b t a i n  a n d  ve r i fy  a n  o p t i m a l  

s o l u t i o n  to a p r o b l e m .  
T a l b o t ' s  e x p e r i m e n t s  s h o w  t h a t  in  gene ra l ,  fo r  the  s ing le  m o d e ,  m a k e s p a n  m i n i m i z a t i o n  v e r s i o n  of  th i s  

p r o b l e m ,  a n d  w i t h i n  p r e c e d e n c e  r e s t r i c t i ons ,  c o n s i d e r i n g  ac t i v i t i e s  in  t h e  o r d e r  o f  m i n i m u m  ac t i v i t y  t o t a l  
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slack, MINSLK, usually results in the minimum amount of computer time required for problem solution. 
Using this logic, we might consider the activities of Figure 1 in the order Activity 2 first, and then Activity 
1 based upon the critical path based minimum activity total slack. (With the largest activity duration 
considered for Activity 2, Activity 1 possesses positive units of float or total slack. Activity 2 possess 
none.) For the maximization of net present value problem, it may seem more logical to consider the 
activities in the order Activity 1 and then Activity 2, as Activity 1 has a larger cash payment upon 
completion. However, in solving the 91 test problems, we found that solution times were generally less if 
the activities were again considered in the order of least total slack (critical path based, using the minimum 
activity duration for each activity), again with the renumbering or the relabeling of activities taking place 
within the precedence restrictions of a problem. 

The 'within precedence restriction' decision rules for considering activities for resource assignment 
operate as follows. First, for all three implementations, we consider activities in a RAYDOM order. This is 
accomplished by relabeling (renumbering) the activities in a random order, but such that a lower 
numbered activity always precedes a higher numbered one. We then consider the activities for time and 
resource assignment in their sorted (random) order in the enumeration procedure. Alternatively, we can 
sort the activities (again within precedence restrictions) in the order of minimum activity total slack or 
float. (In the multiple mode version of this problem, we use the minimum activity duration in determining 
the critical path based total float for an activity.) 

Other priority dispatch, heuristic sorting or relabeling decision rules are, of course, possible (several in 
addition to sorting on maximum net present value were tested in our experiments). We found that the 
minimum activity slack (MINSLK) decision rule in general yields low computation times in comparison to 
the other decision rules tested. The RANOOM decision rule, on the other hand, considers activities in the 
order of activity number unless there is some reason a priori for numbering the activities of the network 
(other than assigning successors of an activity a higher number than the activity number). The RANDOM 
rule thus operates as if no consideration is given to the order in which to consider activities for resource 
assignment. This ordering scheme is used in many search type algorithms found in the literature for 
solving the single mode version of this resource allocation problem since little (if any) consideration is 
given to the labeling or numbering of the activities other than having a higher numbered activity always 
succeed a lower numbered one. 

For each enumeration procedure tested, problems were solved using both activity enumeration priori- 
ties, MINSLK and RANDOM. Further, with the MINSLK rule, time limits of 1 and 10 minutes per problem are 
used to assess the affects of a greater amount of CPU time on solvability. With the RANDOM rule, all 
problems are solved with a 10 CPU minute limit per problem. 

Paired t-tests are used to compare alternate methods for considering activities for resource assignment, 
as well as alternate solution times with each approach. These results are reported below. 

5.4. Minimize project duration with no prov&ion for additional cash inflows (TEP1) 

The critical path solution (average for these 91 test problems based upon the minimum duration 
completion mode for each activity) is 59.5 time periods. On average, the solution found within 1 minute of 
CPU time per problem using the MINSLK rule for considering the activities in the enumeration procedure 
is 84.92 time periods, with optimal solutions being found and verified on 33% of the problems attempted. 
As might be expected, the preponderance of problems for which optimal solutions were found and were 
verified are in the 10-30 activity range, with verification not being obtainable for any of the 100 activity 
problems or above. 

When the time limit is increased to 10 minutes CPU time per problem, the average schedule length 
decreases to 84.02 time periods, a 0.90 period improvement in makespan per problem. The percent of 
optimal solutions obtained also increases from 33% to 36.2% of the problems attempted with an increase in 
the time limit to 10 minutes per problem. 

Our conjectures of problem difficulty increasing rapidly as a function of the number of activities in a 
network and the ability of the procedures to rapidly obtain improved solutions to a problem regardless of 
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network size seems to have held in examining the test problems. With the 1 minute time limit per problem 
imposed, the improvement in schedule length of the final solution obtained over the first solution 
determined is approximately 6 time periods. An additional 9 minutes of CPU time allowed per problem 
improves the solution by only nine-tenths of a time period. 

We also compared the MINSLK activity selection (enumeration) rule with a 1 minute time limit imposed 
per problem to the RAYDOM rule with a 10 minute time limit imposed per problem. The results are quite 
dramatic. The first solution found using the RANOO~ rule averages 103.75 time periods, and improves to 
only 89.50 time periods in the 10 minutes allowed per problem. This best solution obtained is only 0.68 
periods less than the first solution obtained using the MINSLK rule, and is more than 4.50 periods greater 
than the best solution found using the MINSLK rule with only one-tenth of the CPU time. In all instances, 
these differences are significant with a p-value of 0.01 or less (often, p < 0.0001). Hence, incorporating 
properties of the optimal solution such as the completion times of activities with little or no critical path 
based total slack into the logic of the search procedure has a lot more to do with solvability or the quality 
of the final solution obtained than does the brute-force enumerative speed of a very fast digital computer. 
This is a very refreshing, yet not totally unexpected result which demonstrates that the order in which 
activities are considered for time and resource assignment has significance not only for the solution 
procedures reported here, but for existing enumerative procedures as well. 

5.5. Minimize project duration allowing for additional cash inflows (TEa2) 

The results obtained allowing for the infusion of additional capital (e.g., progress payments) are similar 
to those obtained when cash flow payments are not subsequently reinvested back into a project. Using the 
MINSLK enumeration strategy, the percent of problems for which an optimal solution (minimum duration) 
was found and was verified increases from 33% to 35.2% as the solution time increases from 1 to 10 
minutes CPU time per problem. Although statistically significant, the decrease in final schedule lengths 
achieved with the larger time limit is only 0.66 time periods on average (82.58 vs. 83.24 time periods). With 
the RAYDOM search procedure, the average length of the final solution is 4.40 periods longer than with the 
MINSLK procedure when the MINSLK procedure is again allowed only one-tenth of the CPU time as the 
RAYDOM rule. 

Frequently, the objective of minimizing project duration is used in practice even though the reason for 
accepting a project has to do with its profitability or net present value to the firm. There are a variety of 
reasons why this is so (such as the difficulty of properly formulating the problem in an NPV context). We 
thus measured the cash flow associated with each problem in testing this version of the solution procedure, 
even though the objective centered on minimizing project duration. (These results would be similar to the 
results reported in the next section for the first solution obtained if we were to use a discount value of 
zero.) Using the MINSLK enumeration decision rule and a 1 vs. 10 minute time limit for problem solution, 
the average cash flow amount increases from $21962 to $21 978 when the time limit is increased from 1 to 
10 minutes. This is a very small increment, indeed. 

Using the RANDOM enumeration decision rule and a 10 minute time limit per problem, the final cash 
flow (average) is $21 776, or is well below the initial solution found using the MINSLK rule. The difference 
in cash flow results are significant beyond the p = 0.003 level. These results suggest that a wise choice in 
determining the order in which to consider activities in the enumeration procedure has as much impact in 
solving the cash flow version of this problem as it does in solving the project duration minimization 
problem directly. Further, the procedures developed, when given the MINSLK choice in the order in which 
to search for improved solutions, generally provide very good solutions early, with large increases in 
computation time not producing significantly better (in a practical sense) results. 

5.6. Maximizing project net present value (TEP3) 

As was suspected, the ability to obtain and verify an optimal solution decreases rapidly when the 
maximization of net present value criterion is used. In fact, without a constraint specifying some upper 
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limit or due date for a project (7), we were not able to obtain and verify an optimal solution on any of the 
problems using either scheme for considering the order in which to assign activities completion times in the 
enumeration procedure. Without some limit on the date by which a project is due, the procedure has a 
great deal of difficulty determining when activities with a net negative cash flow should be scheduled. In 
fact, the procedure is searching for the latest possible period in which to schedule such activities, and 
without a specified upper limit, the search interval becomes quite large. While these results may on the 
surface appear to be discouraging, it is unusual that some due date would not exist for a project. When due 
date constraints are added (7) to the problem, solvability increases significantly for the problems 
attempted. Further, with right-shifting limited to the final ten percent of the solution time, improved 
solutions are found quite rapidly with our approach. 

Using the MINSLK enumeration rule, the initial NPV solution (on average) is $20 014. This increases to 
$20152 after 1 minute of enumeration time, and to $20170 after 10 minutes of enumeration time with a 
discount factor of 1% per month. Thus, the additional 9 minutes of search time results in little 
improvement in the final results. 

The results achieved using the RANDOM activity selection rule are as expected. The initial solution (on 
average) is $19 518 and this increases to only $19 802 in 10 minutes of CPU search time per problem. Once 
again, a clever strategy for guiding the search has a much more significant impact on the final solution 
obtained than does a less well thought out strategy using brute-force computation. In general, all results we 
achieved are significant beyond the p = 0.01 level, with the exception of the increase in NPV with the 
MINSLK rule and 10 vs 1 minutes for solution. 

While searching for the optimal solution considering first those activities with the higher NPV amounts 
(again, within precedence restrictions) would appear to be a preferable strategy to searching based upon 
MINSLK, solving these 91 test problems in this fashion led to no significant improvement over using the 
MINSLK rule. 

5. 7. Personal computer implementation of the enumeration procedures 

Because the enumeration procedures use a LIFO based search strategy and require relatively small 
amounts of computer memory, they are easily adapted for Personal Computer (PC) implementation. In 
fact, the only changes which had to be made between the mainframe and personal computer versions dealt 
with input and output conventions and resulting file manipulating requirements, plus changing the calls 
for the internal CPU clock. Normally, these same changes would also have to be made in adapting these 
procedures between mainframe versions. Once these changes are known, they can be made in about 20 
minutes time. 

The EXE files on a 386-based, 20 MHz PC with a numeric coprocessor produce results which are on the 
order of 7 times slower than the mainframe versions (using an IBM 4381 as a basis of comparison). Thus, 
to get comparable results on a PC to those quoted above would require making runs with a 7 and a 70 
minute time limit per problem. Recall, however, that the procedures very rapidly find improved solutions 
to a problem, especially when directed to search for solutions considering first those activities with the 
minimum amount of critical path based total slack. We found no significant differences in results obtained 
using all three FORTRAN implementations when allowing 5 minutes CPU time per problem on a PC and 1 
minute CPU time on the mainframe IBM 4381. While very few problems could be solved to optimality 
(including verification) in 5 minutes CPU time on a PC, we regard the results obtained with the search 
procedures used to be extremely encouraging. Our conjecture at this time is that additional computer time 
allowed per problem will result in small improvements in the objective function values and some 
additional verifications of the optimality of the final solutions obtained, although the frequency of 
verification will most likely be very low. 

6. Summary 

We have presented computational results for several optimal seeking algorithms that, with no or with 
only minor modifications, are capable of solving a large class of precedence and resource constrained 
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scheduling problems. Mainframe and personal computer implementations indicate that our approach 
provides extremely good heuristic solutions to realistic size problems, and optimal solutions to small 
problems are obtained quite often. Since this approach has been programmed to be fairly general in 
application, there is much that can be done to decrease the computation time required to solve a specific 
class of problems. Significant decreases in computation times can be achieved, for example, through the 
development of search, fathoming and bounding rules based upon specific problem structures. In order to 
keep our procedures as general as possible, few if any of these refinements for specific problem classes 
were programmed into our search procedures. In particular, there are many more opportunities in addition 
to those described in the paper to develop time and cost based bounds that can significantly decrease the 
computation time required to solve the net present value maximization version of this important 
scheduling problem. 
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