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Abstract: Phenomenological shell-model Coulomb energy equations with coefficients varying as A-“3 

are considered. The highly regular systematics of Coulomb displacement energies is presented and 
discussed. In a global fit with 22 adjustable parameters the equations reproduce 377 displacement 
energies with a standard deviation of 55 keV. The relations to other shell-model equations are 

discussed. The numerical values of the adjusted coefBcients are related to the charge radius and 

deformation parameters of the liquid drop model. The calculation of total Coulomb energies for 

ground states is considered. 

1. Introduction 

The total energy of the nucleus is a sum of nuclear and Coulomb energies. In a 

semi-empirical shell-model treatment the parameters describing them are statistically 

correlated. In order to obtain physically meaningful and statisticaily significant 

coefficients for mass equations one has to consider both ground state masses and 

Coulomb displacement energies (CDE). This was one of the main motivations for 

the present study. 

In the mass equation of ref. ‘) Coulomb energy coefficients were determined by 

using the Carlson-Talmi Coulomb energy equation *,‘) both for the ground state 

and for excited isobaric analog states (IAS), with coefficients varying like A-“‘. 

The adjusted coefficients described “) experimental Coulomb displacement energies 

with a standard deviation of about one third of the deviation obtained for the 

masses. On the other hand, in the above procedure one neglects the dependence of 

the Coulomb energy in a given nucleus on the isospin T. 

In ref. ‘) the T-dependence of Coulomb displacement energies was calculated 

assuming the Carlson-Talmi equation for ground states. A variation of the 

coefficients with nucleon numbers was adopted, which reflects upon the isotope 

shifts of nuclear charge radii. The resulting equations were adjusted to the data 

simultaneously in all shell regions, resulting in a mean deviation smaller than that 

for the Carlson-Talmi equation. 
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In the present work, which continues the studies started in ref. ‘), the complete 

equations of ref. ‘)* are applied to presently available experimental CDE. A simple 

A-‘13 scaling of the coefficients is used to facilitate combining the results with the 

mass equation of ref. ‘). As in ref. 5), charge-dependent nuclear effects and the 

electromagnetic spin-orbit interaction are not considered. 

The work is organized as follows: in sect. 2 we summarize and make some 

comments on the equations, using the notation of ref. ‘). In sect. 3 the very regular 

isodiapheric (constant N - 2) systematics of Coulomb displacement energies is 

presented and discussed. Numerical results of the adjustment process are given and 

discussed in sect. 4. Their relations to geometrical parameters of the liquid drop 

model are discussed phenomenologically in sect. 5. Calculation of total ground-state 

Coulomb energies is considered in sect. 6. The conclusions are summarized in sect. 7. 

Calculational details and a table of recent experimental Coulomb displacement 

energies are given in an appendix. 

2. Coulomb energy equations 

The Coulomb energy of isobaric analog members of an isospin multiplet and 

their Coulomb displacement energies between neighboring members are, respec- 

tively, given by the isobaric multiplet mass equation (~MME) ‘,‘) as 

Eo(AaT, L&) = EC’o’(AaT)- TZEC”)(A~T)f(3T:- 1”( T+ l))EC’“‘(AcrT), (1) 

AEC(Aa7; T,) = E’=“‘(AtrT) -3(2Tz - l)EC(“(AH) . (21 

We use the usual notation N, Z and A = N + Z to denote neutron, proton and total 

nucleon numbers and T and T, = $( N - 2) to denote the quantum numbers of the 

total isospin and its z-component. The LY denote quantum numbers needed addi- 

tionally to A, T and T, for a complete characterization of the states. The coefficients 
EC(o), EC(‘) and Ec’2’ are the isoscalar, isovector and isotensor Coulomb energies 

of the multiplet. 

In this work, like in refs. 2,4*5), we consider Coulomb displacement energies 

between neighboring IAS one of which is a I: = f T ground state. In these cases 

one has 

AEC(Aal; T) = E”“‘(AaT) -(6T-3)EC’2’(A~T) 

for neutron-rich nuclei, and 

(34 

AEC(AaT,-T+1)=EC(‘)(AaT)4(6T-3)EC~2)(AaT) (3b) 

for proton-rich nuclei. 

We consider separately diagonal regions in the (N, 2) plane, where the valence 

neutrons and protons are filling the same major shell, and non-diagonal regions, 

’ With a slight modification of the pairing terms in diagonal shell regions, and without the approxima- 

tion Aw = 0 made there. 
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with different major valence shells. As in ref. ‘) the magic numbers Ni are denoted 

by N, = 0, Nz = 2, N, = 8, N4 = 20, N5 = 28, Nb = 50, N, = 82 and N8 = 126 for both 

neutrons and protons. We refer to a shell with N, G N G N;+, as an ith major shell 

and use the notation (i, j) to denote the shell region with the ith neutron and jth 

proton valence shells. Table 1 shows explicitly for easier reference the definition of 

the shell regions and some related parameters. The N,, 2, and A, = N, +Z,, 

introduced in eq. (4), denote the corresponding neutron, proton and total nucleon 

numbers of the doubly magic core of the region. The parameter 6, introduced in 

eqs. (9)-(12) in non-diagonal regions, denotes the total occupation number for 

identical nucleons of the lower valence shell of the region. The last column shows 

the number of experimental CDE with (T,,~ =S 120 keV in the region (see sect. 4.1.) 

2.1. THE COULOMB ENERGY OF THE GROUND STATE 

As in refs. ‘m5) we assume that the ground state Coulomb energy in a given shell 

region is described phenomenologically by the Carlson-Talmi expression 2,3) 

A/3 

EC‘(N,+n,Z,+p)=E,+pc+;p(p-l)d+;(p-6,,,,,)71. (4) 

where, as mentioned above, N, and Z, denote the neutron and proton numbers of 

the doubly magic core, n and p are the respective numbers of valence nucleons, 

and sod+ = $( 1 - (-1)“). The coefficient E. = EC( N, , Z,) is the Coulomb energy of 

the core, c is the average Coulomb interaction of a valence proton with the core, 

n is an average Coulomb pairing energy in the major proton valence shell and d 

TABLE 1 

Definition of the shell regions and related parameters 

Shell 

region 
N Z N, Z, A, 6 

Number of data 

total (n-rich, p-rich) 

(222) 2-8 

(2,3) 2-8 

(3,2) S-20 

(3,3) 8-20 

(3,4) S-20 

(4,3) 20-28 

(4,4) 20-28 

(5,4) 28-50 

(5,5) 28-50 

(6,5) 50-82 

(676) 50-82 

(736) 82-126 

(7,7) 82-126 

(897) 126-184 

(8,s) 126-184 

2-8 2 2 4 

S-20 2 8 10 6 

2-8 8 2 10 6 

S-20 8 8 16 

20-28 8 20 28 12 

S-20 20 8 28 12 

20-28 20 20 40 

20-28 28 20 48 8 

28-50 28 28 56 

28-50 50 28 78 22 

50-82 50 50 100 

50-82 82 50 132 32 

82-126 82 82 164 

82-126 126 82 208 44 

126-184 126 126 252 

26(17,9) 

2 (0,2) 

4 (4,O) 

65 (39,26) 

2 (0,2) 
14 (14,O) 

41 (36,5) 

24 (24,O) 

43 (42,l) 

53 (53,O) 

31 (31,O) 

67 (67,O) 

5 (5,O) 

6 (630) 
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is an average orientation-independent interaction between any two valence protons. 

The factor (A1/A)A’3 is a scaling factor, to be discussed further in sect. 2.4. The 

quantities EO, c and d for shell region (i, i) are in ref. ‘), respectively, denoted by 

+Z,(Zi - 1)~;:~ I-I, Z~W,,,~ and wii. 

Eq. (4) gives ‘) the Coulomb energy of a configuration j” of p protons in a single 

(rdj) subshell in a state of lowest seniority u (i.e. u = 0 for even p and u = 1 for odd 

p). When there are several simultaneously filling valence proton subshells in a well 

defined state of lowest overall seniority and total proton number p, eq. (4) is still 

expected to be a reasonable approximation provided corresponding interaction 

parameters in neighboring subshells have numerical values close to each other so 

that they can be represented by their average in the major shell 5,8). There are also 

some other special cases 9*‘o) in which an equation like (4) holds. 

However, nuclear ground states have a well defined isospin T. This is compatible 

with having a well defined proton state only in non-diagonal shell regions, and also 

on the boundaries of diagonal regions, but not in the interior of the latter. Con- 

sequently, eq. (4) cannot be valid there. 

Hecht “) [see also ref. ‘)] calculated the Coulomb energy of a mixed j” configur- 

ation of a = n +p nucleons in an (dj) subshell in a state of given T and lowest 

seniority ZJ compatible with it. The terms with Eo, c and d, comprising the main 

part of EC (see also sect. 4.3.1), are the same as in eq. (4). On the other hand, the 

expression with the coefficient rr is more involved, and we did not see how to 

generalize it to the case of several simultaneously filling mixed subshells. 

When the protons are in a well defined state of lowest seniority as on the boundaries 

of shell regions, and also when there is only one proton or proton-hole in the shell, 

the exact expressions coincide with eq. (4). On the other hand, in the interior of 

the shell region the coefficient of rr is always smaller than that given in eq. (4). The 

reason for this is that a lowest-seniority state of a mixed j” configuration is a 

superposition of states of both lowest and higher proton seniorities, and therefore 

has a lower average number of proton pairs coupled to Jpair = 0 and hence lower 

Coulomb pairing. The difference between the two equations increases towards the 

center of the shell, and stays below $r for all mixed ground state valence subshells 

occurring in nature. The maximum values of the difference for the four nuclear 

parity types are given in appendix A.I. 

2.2. COULOMB DISPLACEMENT ENERGIES IN DIAGONAL REGIONS 

In order to calculate Coulomb displacement energies from eqs. (3a, b) one needs 

to know EC(‘) and ECc2). In the present work we use the following expressions: 

a-l 
+ - + L” a 

4 
(5) 
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h/3 

1 r, (6) 
A\/3 

EC(z) s,,,,,,(-l)!“‘L 
12T2 rrTT, 1 (7) 

where sodd a =i(l-(-l)“), similar to a,,,,, in eq. (4), and S,,,,,=$(l+(-1)“). 

Substituing expressions (5)-(7) in eq. (l), one obtains eq. (4) for T, = *T ground 

states. 

A derivation of eqs. (5)-(7) is given in appendix A.2.1. Using eqs. (5)-(7) one 

obtains from eqs. (3a, b): 

AEC(Z, + n, Z, +p) 

where n and p denote the numbers of valence neutrons and protons of the higher-T, 

state with the given AEC. For n-rich nuclei T =$(n -p) and for p-rich nuclei 

T=$(p-n)+l. 

One notes, that the derivation of eq. (8) is based on the assumption that both 

ground state and IAS are in nuclei within the same shell region. Therefore, it is 

valid only for nuclei with Z, + 14 N 4 Z, and Z, c Z s Z2 - 1. 

The coefficients of the large parameters Eo, c and d in eqs. (5)-(g) are the same 

as in eqs. (17)-(20) of ref. 5), while the coefficient of T in eqs. (5), (7) and (8) is 

different. This is commented on in appendix A.2. 

2.3. COULOMB DISPLACEMENT ENERGIES IN NON-DIAGONAL REGIONS 

We consider a non-diagonal region with valence neutrons and protons in neighbor- 

ing major shells. For isobaric multiplets having T, = *T ground-state members in 

such regions we use 5,‘2) 

A 

(6) 

h/3 

A, 
EC~“~=E~+f(6+p,)c,+~n,c2+~[S(6-1)+p,(p,-1)+p,(S-l)]d, 

+$,(n,- l)d,-t$,(p,- S)IY, 

+ i( 6 + 2P0 - LldpO) n1+ i( n0 - Sodd .,) r2 

A 

(-) 

h/3 

A, 

E c(1) = [(S -po)c, + w,+t[s(6 - 1) -po(po- l)M+hd~o- 114 

(9) 
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A ( > 
h/3 

- 

A, 
EC’2’=[~(~(&1)+pO(pO-1)-2po(6-l))dl 

+~~,(n,-l)d,+fn,(6_p,)l~, 

+t(s -Po- &idp,)~l +b(n,- &xidn”hl 
1 

2T(2T- 1). 
(11) 

Here, n, and pO are the numbers of valence neutrons and protons in their respective 

shells in the n-rich T, = T member of the isomultiplet. The latter comprises a doubly 

magic core with Z1 neutrons and Z, protons, a major shell completely filled with 

6 = Z, -Z, neutrons and containing in addition p. valence protons, and another 

higher major shell with n,, valence neutrons. The SOaddp,, and SoddnO are defined in 

analogy to SO,,, in eq. (4). The coefficients c,, ni and di (i = 1,2) are the coefficients 

c, rr and d of eq. (4) for the ith major valence shell. The coefficient I:, is the average 

monopole Coulomb interaction between two protons in major shells 1 and 2. 

Combining eqs. (9)-(11) with eqs. (3a, b) one obtains: 

h/3 
AEC(N,+n,Z,+p) 

=[(8-p)cI+“c*+p(G-p)d,+n(p-fi)l:,+S,,,,~,l~, (124 

for a T, = T nucleus in a n-rich non-diagonal region, and 

h/3 

AZ?(N,+n,Z,+p)=[(S-n+l)c,+(p+l)c,+(6-1)(6-n+l)d, 

+p(p+l)d,+(p+l)(&n+l)I$ 

for a T, = -T+ 1 nucleus in a p-rich non-diagonal region. In eqs. (12a, b) n and p 

refer to the higher-T, state as in eq. (8), T = $(S + n -p) for n-rich nuclei, and 

T = f(8 +p - n +2) for p-rich nuclei. Like eq. (8), eqs. (12a, b) apply only to nuclei 

with N,+lS NS N2, Z,SZSZ,-1. 

In ref. ‘) eq. (12a) was first obtained by using a particle-hole formalism and then 

eqs. (9)-(11) were derived using eq. (4) for T, = *T nuclei. A derivation starting 

with eqs. (9)-(11) is given in appendix A.2.2. 

Eqs. (9)-( 12a) are the same as the corresponding eqs. (27)-(29) and (26) of ref. 5), 

with the notation n, = P, 6 -p. = H and Zy, = wi,i+l for shell region (i + 1, i). The 

corresponding relations for the other coefficients were given after eq. (4). 

2.4. DEPENDENCE OF THE COEFFICIENTS ON MASS NUMBER 

In the present work we scale the coefficients of the Coulomb energy eqs. (4)-(12) 

by multiplying them by a scaling factor (A,/A)*“. As in table 1, A, is the mass 



K. Ashktorab et al. / Coulomb energies 33 

number of the doubly magic core of the region and A is a scaling power. The 

parameter A is assigned the value A = 1 for nuclei with valence shells beyond the 

lp shell [from region (3,3) onwards; see table 11, and the value A = 0 for lp shell 

nuclei [region (2,2)]. This scaling reflects the gross empirical variation of the nuclear 

charge radii of stable nuclei 13,14). Regions (3,2) and (2,3), with both lp and ld2s 

valence shells, were excluded in the present analysis. 

We shall consider scaling further in sect. 4.5. 

3. Isodiapheric Coulomb displacement energy systematics 

Expressing AEC in diagonal regions, eq. (8), in terms of a and T one obtains 

A (-) 
h/3 

A, 
AI?(A,+a, T)=[c- Td+$n-]+a[;d] 

(13a) 

for n-rich nuclei, and 

A (-1 
‘4/3 

A, 

AEC(A,+a, T)=[c+(T-l)d+$r]+u[$d] 

&,,,-&+s,,,,,=$ n 1 (13b) 
for p-rich nuclei. 

For given T and T, in a diagonal region the r.h.s. of eqs. (13a, b) describe sums 

of a linear function of a with a slope of +d which is independent of T and T,, and 

an oscillating function of a with maxima for odd-p nuclei for positive QT. The 

oscillation amplitude is (1/4T)7r for half integral values of T and ((2T- 1)/4T’)r 

for integral T-values, both of which decrease with T The constant term of eqs. 

(13a, b) increases by a constant amount of $d when Tz decreases by &. 

The multiplication of the equations by the scaling factors (A,/A)“’ has the effect 

of smoothly reducing the local values of the slope, amplitude of oscillation, and 

distance between lines of constant Tz (isodiapheric lines) when A increases. 

When crossing a proton magic number into a higher major shell, the coefficients 
n- and d, which are defined in terms of average two-body Coulomb matrix elements ‘), 

are expected to decrease discontinuously due to the larger average distance between 

protons in the higher valence shell. Such a decrease would discontinuously reduce 

the slope and oscillation amplitude of isodiapheric AEC lines, and the vertical 

distance between consecutive lines with different T,. Furthermore, one expects a 

discontinuous downwards shift of the lines themselves, due mainly to the weaker 
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interaction c2 - 6I& of a proton in major shell 2 with the protons in the closed-shell 

core of region 1, as compared to c,*. 

The expressions of AEC in non-diagonal regions, eq. (12a, b), in terms of a and 

T are more involved. However, making the rough approximations 

they become 

h/3 

AEC(A,+a, T)= 
C 

c-Td+-& +a[;d]+(-1):““‘& 
I 

(Isa) 

for n-rich nuclei, and 

AEC(A, + a, T) = c+(T-l)d+(l-&)n] 

+a[fd]+(-l)++‘--$ (15b) 

for p-rich nuclei, where c denotes c,, d denotes the approximate common value of 

d,, 4 and I%, and r denotes the approximate common value of rr and v~, eq. (14). 

Eqs. (15a, b) predict for a non-diagonal region regularities similar to those for a 

diagonal region considered above, with the difference that the oscillation amplitude 

is here given by the same expression (1/4T)r for both integral and half-integral 

values of T, and the increase of the constant term when T, decreases by $ (T 

decreases to T-4 in n-rich nuclei and T-i increases to T in p-rich ones) is now 

fd + (1/4T(2T- l))rr, which decreases slightly with T as compared to the constant 

amount of $d in a diagonal region. 

Fig. 1 shows Coulomb displacement energy lines with constant T, values for 

A s 60. The lines for T, = 0, 4 and 1 are marked in the figure. Lines below that of 

T, = T = 1 have values of T = T, increasing by 4 from one line to the next one below, 

and lines above the T = f line have values of T, and T decreasing and increasing 

respectively by 1 from one line to the next one above. Squares and triangles denote 

data from diagonal and non-diagonal regions, respectively. In each of the three 

diagonal regions shown one observes a regular system of equidistant and roughly 

parallel zig-zag lines, with a zig-zag oscillation amplitude mostly decreasing with 

T**. 

In the non-diagonal regions the zig-zag oscillations are sometimes less obvious 

due to lack of data. 

The magnitudes of the slope of the lines and of the oscillation amplitude display 

an overall decrease with A, and there are additionally three obvious downward 

l More precisely, the downwards discontinuity of the lines at a proton magic number is given by 

cz - Sd, - c, 

l * Notable exceptions are the larger amplitude of the T, =2 line as compared to T, = 1 in the lp 
shell, and the very small amplitudes of the T, =$ and 3 lines as compared to T, = 1 and 2 in the If,,, shell. 
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Fig. 1. Coulomb displacement energy systematics for A c 60. Data points for isodiapheres (nuclei with 

the same neutron excess) are connected by straight lines. Data are from refs. *5,‘6) and from table A.2. 

discontinuities of the Tz ==$ line between the lp, ldZs, lfTj2 and lf5,,2plg,,z shell 

regions. Similar discontinuities are observable in the T, =0 and 1 lines. 

These regularities are all in agreement with eqs. (13a, b) and (15a, b). 

Fig. 2 shows the entire systematics of isodiapheric Coulomb displacement energy 

lines, where the data with As 16 are multiplied by ($A)“‘. Here the zig-zag 

oscillations are in each shell region superimposed on a system of parallel equidistant 

straight lines. The slopes of the lines in different regions are about the same, indicating 

a mainly A-“3 variation of the average Coulomb interactions beyond A = 16*. 

The high linearity with respect to A suggests the usefulness of this systematics 

when plotted on a larger scale (not shown here}, both for pointing out possibly 

inaccurate or otherwise conspicuous data, and for predictions. As a rule, neighboring 
lines do not intersect**. Data points where the distance between lines is significantly 

smaller than indicated by the systematics are for the proton-rich nuclei 160 (T = l), 

‘Be (T = 1), ‘3 (T = 2) and “K (T = s), whose values seem to be too low, and for 

the neutron-rich nuclei7’Ga (T = ;, too low), ‘“*Ce (T = 12, too high), ““La (T = 4, 

too low) and 16’Ho (T = 9, too high). These points, as well as 5He (T = f, too high) 

and *930s (T = 4, too high) which are not conspicuous in the systematics due to 

scarcity of nearby data, also come out with significantly large deviations in the 

* Another indication for an A- l/3 dependence is the fact that points belonging to the same element 

are often lying on a horizontal line in heavier nuclei with higher T-values, where the oscillating pairing 

terms are negligible. See also fig. 2 of ref. 16). 

** Except for lines in the light proton-rich nuclei, and also at lX9La, where this is probably due to a 

large experimental uncertainty. 
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Fig. 

0 
0 50 100 150 200 250 

MASS NUMBER A 

2. Same as fig. 1 for AS 238. Data for Aa 16 are multiplied by (&A)“‘. 

least-squares adjustments described in sect. 4.2. The high value of 5He and low 

values of the proton-rich nuclei are presumably mainly due to particle instabilities 

and Thomas-Ehrman shifts. The values of 14’Ce, 139La and 16’Ho agree with the 

systematics within their respective experimental uncertainties of 106, 120 and 

106 keV. 

The relation of the systematics to the liquid drop model is considered in sect. 5.1. 

4. Adjustment of the equations to the data 

4.1. THE EXPERIMENTAL DATA 

We used as data base 383 Coulomb displacement energies as compared to 288 

n-rich values used earlier in ref. ‘). (Data with Z> N were not used in the data 

base of these calculations.) The data were taken from two recent compilations 15,16), 

and from more recent literature. These additional energies are given in appendix A.3. 

We used only data with experimental uncertainties not exceeding 120 keV, which 

is about twice the resulting final statistical error. The nuclei thus excluded and their 

experimental uncertainties in keV are: 53Co (162), 57Cu (144), “As (150), lo3Rh 

(ISO), *33Ba (146), 14’Pr (250) and ‘59Tb (150). 

In 19 out of the above cases, where no ground state data were available, we used 

excited states with E, < 500 keV as in ref. ‘). We noticed that in the 81 cases in 

ref. 16) where both ground state and 1st excited state data up to 500 keV are available, 

they do not differ by more than 90 keV. 



K. Ashktorab et al. / Coulomb energies 31 

4.2. LEAST-SQUARES ADJUSTMENTS 

4.2.1. Coulomb displacement energy eqs. (8) and (12a, b). We performed least- 

squares adjustments of eqs. (8) and (12a, b) to the data, with equal weights as was 

done in refs. ‘,5). First we adjusted eqs. (8) and (12a) separately in individual shell 

regions [eq. (12b) could not be adjusted in single proton-rich non-diagonal regions, 

as there are only two data points more accurate than 120 keV in each of regions 

(2,3) and (3,4) and none in the others]. As mentioned above, we used a scaling 

power A = 1 from region (3,3) onwards and A = 0 in region (2,2). 

Then we performed separate adjustments in combined groups of four (only for 

i = 3) or three (for i > 4) regions comprising two neighboring diagonal regions (i, i) 

and (i + 1, i + 1) and the non-diagonal regions (i + 1, i) and (i, i + 1) between them. 

These adjustments were performed from region (3,3) onwards with the scaling 

power A = 1. 

Finally, we performed one big least-squares adjustment to all data from region 

(3,3) onwards with A = 1. 

We noticed, that within the resulting statistical errors’ a given parameter has the 

same adjusted value in the last two procedures of combined calculations, and also 

in the calculation in an individual diagonal region**. On the other hand, the value(s) 

obtained in adjustment(s) of individual non-diagonal regions often did not agree 

with the other values. 

We also noticed, that the resulting statistical errors of the parameters were often 

smaller for adjustments in combined regions than in individual regions. 

Table 2 shows the values of the coefficients resulting from the simultaneous 

adjustment to all data from region (3,3) onwards, and also the adjusted coefficients 

for region (2,2). For convenience the coefficients are uniformly rounded off to 

10m3 keV, in order that ground state Coulomb energies calculated from them will 

have rounding-off errors less than 1 keV in all practical cases. The statistical errors 

of the coefficients are rounded off to two significant figures. The last column of the 

table shows for each region the corresponding scaling parameters A, and A, to be 

used with eqs. (4)-( 12a, b). The A, values in part (a) are regional values from table 

1. For convenience in calculations we also give upscaled values of the coefficients 

as in part (b), to be used with the same value A, = 16 in all shell regions. 

The table shows the adjusted values of c-t&~ rather than c, except for region 

(8,8). We adjusted c+$r and rr rather than c and rr, since c and rr could not be 

separately determined from the data in regions (6,6) and (7,7) whereas the combina- 

tion c+$r could as explained below (see also remark a in table 2). 

The statistical errors of the coefficients d,, It, and in particular cg are considerably 

higher than in lower shell regions. Practical implications of this are considered in 

* The statistical error or standard deviation of the ith parameter is given by the product of the standard 

deviation, eq. (28), and the square root ofthe ith diagonal element of the inverse matrix of the least-squares 
normal equations. 

** Except for the parameters of regions (7,7) and (8,7) which have very few experimental data. 
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TABLE 2 

Adjusted values of Coulomb interaction parameters for eqs. (8) and (12a, b) 

Region 

(i, i) 

Interaction parameters (keV) 

d, =i 

Scaling 

parameters 

A, A 

(a) Regional scaling 
(2,2) 966.832 *41.0 510.721 ;t 15.0 

(3,3) 3 749.369* 13.0 547.009 * 2.2 

(4,4) 7 481.228~~ 12.0 422.861 f 3.7 

(5,5) 9 657.735 * 11 .O 361.355* 1.8 

(696) 14 569.655 zt9.2 296.886 + 2.0 

(7,7) 20 459.799 f 16.0 213.430*34.0 

(8,g) 30 359.240 f 2400.0 “) - 

(b) Global scaling 
(L-2) 966.832 i 41.0 510.721 f 15.0 

(3,3) 3 749.369* 13.0 547.009 f 2.2 

(4,4) 10 153.589* 16.0 573.91015.0 

(595) 14 663.286* 16.0 548.643 * 2.7 

(6,6) 26 837.534+ 17.0 546.868 + 3.7 

(7,7) 44 443.608 * 35.0 463.622 * 74.0 

(8,g) 76 099.958 f 6000.0 “) 

173.158*75.0 

189.512*24.0 

92.557 * 26.0 

81.791k35.0 

173.158k75.0 

189.512k24.0 

125.619 f 35.0 

124.183 i 53.0 

434.149k21.0 

361.552 * 14.0 

394.057 * 5.7 

314.749 *2.9 

353.641 zt78.0 

- 
434.149121.0 

490.702 f 19.0 

598.294* 8.7 

579.773 * 5.4 

768.1941 170.0 

4 0 

16 1 

40 1 

56 1 

100 1 

164 1 

252 1 

16 0 

16 1 

16 1 

16 1 

16 1 

16 1 

16 1 

“) This is the value for the parameter cs. It was obtained from the data in regions (7,7) and (8,7) 

where the parameter v8 does not appear in the adjusted eq. (12a). 

sect. 4.4. Like the disagreements in the results for these regions, mentioned in the 

last footnote, these higher statistical errors are presumably due to the paucity of 

experimental data in regions (7,7) and (8,7). 

The coefficients I$, rr6, rr,, dg, 7r8 and I:, are missing in the table. The I& 

belongs to regions (3,2) and (2,3), which were left out from the adjustments, and 

the last three can be determined only from data in regions (7,8) and (8,8) which 

are presently beyond experimental reach. The other two coefficients, rr6 and 7r7, 

were held fixed on the value 0, since otherwise rr6 comes out statistically insignificant 

(by which one means having a statistical error larger than or about equal to its 

value), and the statistically significant adjusted value of rr, comes out negative, 

which is physically meaningless [eq. (24)]. Like the other irregularities mentioned 

above, the last one is presumably due to the paucity of data determining rr, [mainly 

the odd-2 nucleus 209Bi in region (7,7)]. 

4.2.2. The Carlson- Talmi Coulomb displacement energy equation. For the sake of 

comparison, we made as well least-squares adjustments of the Carlson-Talmi 

Coulomb displacement energy equation 2,3) 

(16) 
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both in individual regions, and in combined groups of two regions (i, i) and (i + 1, i) 

with i 2 3. We used the same scaling factors as before. As in the case of eqs. (8) 

and (12a, b), the values obtained for a given parameter in a combined calculation 

and in an individual diagonal region come out the same within their statistical 

errors, and the statistical errors are somewhat smaller in combined calculations. 

On the other hand, as compared to eqs. (8) and (12a, b), the coefficient 7~~ is not 

insignificant anymore, and the uncertainty of d, is reduced to the same order of 

magnitude as for lighter shell regions. The last point is considered further in sect. 4.4. 

The values of the coefficients obtained in the combined adjustments and also 

those of region (2,2) are given in table 3 organized similarly to table 2. 

4.3. DISCUSSION OF THE RESULTS 

4.3.1. Signs and magnitude relationships of the coe#icients. We discuss first some 

qualitative features of the adjusted values, using the shell-model expressions for 

single subshells as a guideline. One observes that none of the coefficients in tables 

2 and 3 is negative, which is also obvious from the systematics presented in figs. 1 

and 2. This is due to the repulsive nature of the Coulomb interaction between the 

protons. As a matter of fact, for single (nlj) subshells the coefficients are given by 

cj=C(2j,+1)1~xj~ (17) 
OL 

(18) 

1;. = F”( nZj, n’l’j’) -C Gk( nlj, n’l’j’) 
(jll C’k’ll.?)’ 

k (2j+ 1)(2j’+ 1) ’ 

TABLE 3 

Adjusted values of Coulomb interaction parameters for eq. (16) 

Region 

(i, i) 
C, +$T, 

Interaction parameters (keV) 

4 

Scaling 

parameters 

A, A 

c&2) 971.454k42.0 508.692 + 15.0 107.754+47.0 4 0 

(3,3) 3 755.130* 16.0 545.236 * 2.4 90.052 i 17.0 16 1 

(4,4) 7 494.983 f 14.0 419.550*3.5 41.120* 16.0 40 1 

(5,5) 9 653.394* 10.0 359.748*0.82 42.681 zt 13.0 56 1 

(6,6) 14 569.923 + 16.0 294.937 zt 0.74 40.592 i 26.0 100 1 

(7,7) 20 399.262 f 17.0 231.546i2.7 164 1 
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where Fk and Gk are the direct and exchange radial Slater integrals for the Coulomb 

interaction, and Cr’ are normalized spherical harmonics. The summation in eq. 

(17) runs over all closed proton (nJQa) subshells of the core. 

For given subshells the FCk) are positive decreasing functions of k. The Gk are 

also positive, and for different (nlj) and (n’l’j’) subshells they are smaller than the 

corresponding Fk. The coefficients of the radial parameters are given by ‘) 

(jll C’“‘lli>’ 
2j+ 1 

(21) 

(A II C'k'llj2)2 

(2j,+l)(2j2+1) =($ ,” 2)’ 
1 1 1 

(2j,+I)(2j2+1)‘(2j,+I)(2k+1)‘(2k+1)(2j2+1) ’ 

(22) 

which are smaller than 1 [the order of magnitude estimates in eqs. (21) and (22) 

result from the normalization of the 3j symbols]. Thus, all four of the coefficients 

defined by eqs. (17)-(20), as well as the coefficient 

I&= C (2j,+1)(2j~+1)Iyyjp+C (j0(2j,+l)&+t(2j,+l)~~), (23) 
(aP1 a 

where the summation extends over all pairs of closed proton subshells of the core, 

are expected to be positive, and the same presumably applies to the corresponding 

average interactions used in the present work. 

We consider now the relative magnitudes of the coefficients. Due to the summation 

appearing in eqs. (17) and (23) one expects to have the relations 

E,>c>rr,d,I;,>O (24) 

in all cases where there are several subshells in the core. The relationships (24) are 

indeed satisfied by the coefficients in tables 2 and 3 and the coefficient E0 from 

table 8 below in all shell regions from (3,3) onwards. 

Consider next the three valence subshell coefficients V, d and Iy2. From eqs. 

(18)-(22) one expects that the intrasubshell coefficients obey the relation 

d>rr>O (25) 

which is indeed satisfied by the coefficients in tables 2 and 3. However, it is not 

obvious a priori from the above considerations what to expect for the relative 

magnitude of Iy2 and d, as one presumably has both F”( nlj nlj) > F”( nlj, n’llj’) and 

Gk( nb, n’l’j’) < Fk( n/j, nlj). The differences Zy2 - d, are in fact negative for regions 

(3,3) and (4,4) and positive for regions (5,5), (6,6) and (7,7). 
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Relations (24) and (25) are satisfied as well by the corresponding earlier values 

of the coefficients of ref. ‘). 

Eq. (25) is in sharp contrast to the nuclear case, where the d parameters are 

positive and have typically magnitudes of a few hundred keV, whereas the pairing 

energies are negative, with typical magnitudes of l-2 MeV. Altogether, instead of 

eq. (25) one has -rr”“c’ear> dnuClear > 0. This different behavior is presumably mainly 

due to the fact that for attractive short-range nuclear interactions the radial integrals 

are negative, and the magnitudes of Fk for given subshells increase with k. (For 

V,, = 6(r, - r2) one has Fk = Gk = (2k-t l)F’.) In addition, there are non-central 

and spin-dependent nuclear forces, for which eqs. (18) and (19) are not valid. 

We finally consider the shell dependence of the coefficients. Due to the summations 

appearing in eqs. (17) and (23) it is obvious that both E, and c must increase from 

lighter to heavier nuclei and E,, would increase faster. On the other hand, due to 

the larger average distance between the protons in the higher shells in heavier nuclei, 

the coefficients rr, d and Iyz are expected to be smaller in heavier nuclei. These 

expectations for the coefficients E,, c, rr and d are born out by the systematics in 

fig. 1 and by the coefficients in parts (a) of tables 2 and 8* and in table 3. On the 

other hand, the coefficients lp+,,i are sometimes larger in higher shells. 

In part (b) of table 2 the coefficients d in the various shells have similar magnitudes 

[except for region (7,7)]. This is in agreement with the mainly Ap”3 dependence 

of these coefficients discussed in connection with fig. 2 in sect. 3. The smaller value 

of d, is discussed further in sects. 4.4 and 5.3. 

4.3.2. Agreement with the data. Useful statistical parameters for discussing the 

agreement of the theory with part or all of the data are the mean of the deviations 

E and the root mean square (r.m.s.) deviation a,.,.,. defined by 

&= 
C (A.&,- AE:x,) 

N ’ (26) 

~~.rn.S. = 
C (AEFa,,- AE6;,)’ “* 

N 1 ’ (27) 

where N is the number of data considered. The overall goodness of fit is traditionally 

expressed in terms of the standard deviation C, defined as 

CT= 
1 (AE:& AE&,)’ “2 

N-m 1 9 
where N is the total number of data participating in the least-squares adjustment 

and rn is the number of adjustable parameters. 

l Except on the transition from region (2,2) to (3,3), where d, i d,. However, this does not contradict 
the above reasoning, as nuclear radii are about the same for the lp shell and the beginning of the ld2s 
shell. 
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The standard deviations for eqs. (8) and (12a, b) with the scaling discussed above 

are 113 keV for region (2,2) and 49 keV for the combined calculation of all shell 

regions beyond (3,3). This gives a total standard deviation of 55 keV (table 5). The 

corresponding numbers for the Carlson-Talmi equation (16) are 113,56 and 62 keV. 

These results will be considered further in sects. 4.4 and 4.5. 

In order to gain better information on the distribution of the deviations, we 

calculated for each shell region, like in ref. 5), the mean E and the r.m.s. deviation 

u r.m.s. for the parameter values of tables 2 and 3. The results are presented in table 4. 

We discuss first mean values for eqs. (8) and (12a, b). One observes that E usually 

has magnitudes of a few keV, except for the proton-rich region (3,4), where 

E = 76 keV, and region (7,7) with 5 data points, where E = 45 keV. Moreover, in a 

combined calculation of all data with A = 0.80 (see table 5) the resulting value of E 

for region (2,3) is 185 keV. These findings for regions (2,3) and (3,4) are consistent 

with the occurrence of conspicuously low AEC values in the systematics in sect. 3. 

They are also in agreement with results obtained for these regions by extrapolation 

in ref. ‘) (table 3 there). 

A similar higher value of E in region (3,4) occurs for eq. (16) as well. 

One observes further, that the c~.~.~. values for eqs. (8) and (12a, b) are on the 

whole larger in diagonal than in non-diagonal regions. This is probably related to 

the approximate nature of the Carlson-Talmi eq. (4) in diagonal regions. We 

TABLE 4 

Values of E and r_,,, (in keV) for eqs. (8)+(12a,b) and (16) 

Region 
No. of data 

Eqs. (8) and (12a, b) Eq. (16) 

N 
E rr m 6. E 0, m I 

(a) Diagonal regions 
(i, i): (2,2) 

(3,3) 
(494) 
(5,5) 
(66) 
(7,7) 

total diag. i 2 3 

(b) Non-diagonal regions 

(i,j): (4,3) 
(3,4) 
(5,4) 
(65) 
(7,6) 
(%7) 

total non-diag. i, j 2 3 

total i, j 2 3 

total 

26 0.0 106.1 0.0 106.1 

65 -4.2 52.8 -6.7 56.6 

41 0.1 65.3 4.7 67.3 

43 3.6 49.6 -9.4 52.3 

31 -4.1 44.9 -24.5 54.1 

5 45.0 59.2 -7.7 41.8 

185 -0.1 54.1 -7.8 57.5 

14 9.4 71.4 27.0 74.6 

2 75.6 76.1 57.3 63.2 

24 -5.7 32.8 -9.4 33.4 

53 -1.2 31.3 7.9 49.2 

67 -3.2 33.9 11.4 57.1 

6 9.2 32.4 6.5 25.0 

166 -0.5 38.3 8.9 53.3 

351 -0.3 47.3 0.1 55.5 

377 -0.3 53.5 0.1 60.4 
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TABLE 5 

Dependence of the standard deviations (in keV) on the scaling factors for eqs. (8) 

and (12a, b) 

Region (N,m)“) r(A,) Y ‘T(Atm) 

(2,2) (2673) 112.8 (0) 112.1 (0.10) 

(3,3) (6533) 53.7 (1) 49.2 (0.85) 

(4,4) (41,3) 67.7 (1) 43.6 (0.50) 

(5,5) (43,3) 50.5 (1) 50.5 (1.00) 

(696) (31,2) 45.1 (1) 41.9 (0.85) 

(7,7) (5,2) 47.7 (1) 47.7 (1.00) 

(2,2)+(3,2)+(2,3)+(3,3) (97,7) 92.0 (0.65) 

(3,3) + (4,3) + (3,4) + (4,4) (122,7) 61.7 (1) 52.1 (0.70) 

(4,4)+ (5,4) + (5,5) (108,7) 54.9 (1) 51.5 (0.85) 

(5,5)+(6,5)+(6,6) (127,6) 42.4 (1) 42.0 (0.95) 

(636) + (736) + (7,7) (103,5) 39.2 (1) 37.8 (0.90) 

(777) + (837) (11,4) 37.0 (1) 37.0 (1.00) 

total i,jz3,3 
total i, j Z 2, 2 

total(2,2)+(i,jz3,3) 

(351,19) 48.6 (1) 46.1 (0.85) 

(383,23) 65.2 (A = 1) ‘) 61.4 (0.80) 

(377,22) 55.1 ( )d) 52.9 ( ) ‘) 

“) N and m denote the respective numbers of data and adjustable parameters 

[es. (=)I. 
') A, denotes the scaling power 0 for region (2,2) and 1 for (i, j) with i, j 2 3 

(table 2). 

‘) This is not A, from table 2. 

‘) This is the total u for A (2,2) = 0 and A (i, j 2 3,3) = 1. 

‘) This is the total v for A (2,2) = 0.10 and A (i, j z 3,3) = 0.85. 

mentioned in sect. 2.1 that this approximation introduces errors of the order of 

fractions of rr. The differences between the a,,.,. values in diagonal and in non- 

diagonal regions are of this order of magnitude. 

On the other hand, the difference between the u~.,,~. values in diagonal and in 

non-diagonal regions is less conspicuous for eq. (16). This is discussed in sect. 4.4. 

Finally, one observes that as in ref. ‘) the a,,.,. values in the lp shell are 

considerably higher than in heavier nuclei for both equations. This reflects a higher 

degree of smoothness of the Coulomb energy as function of nucleon numbers beyond 

the lp shell, and is presumably related to the weaker average Coulomb interaction 

in heavier larger nuclei. The situation for nuclear mass equations is similar. 

4.4. COMPARISON OF EQS. (8) AND (12a, b) WITH THE 

CARLSON-TALMI EQUATION 

One observes that within the statistical errors the numerical values of the 

coefficients c+$-r and d in part (a) of table 2 and in table 3, obtained respectively 

from eqs. (8) and (12a, b) and from eq. (16), are the same except for c,+$T,. The 
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latter value of table 3 is determined from the small number of the data in regions 

(7,7) and (7,s). However, the pairing energies r are larger in table 2. 

These results are expected, as the terms with c +$r and d are the same in diagonal 

regions for both equations, and the pairing terms with r are small. On the other 

hand, since the coefficient of rr is independent of T in eq. (16), but decreases when 

T increases in eq. (8), the value of G- resulting from the adjustments to the data 

should be larger for the latter. 

The r.m.s. deviations in table 4 have similar magnitudes for the two equations in 

diagonal regions whereas the r.m.s. deviations in non-diagonal regions shown in 

table 4 are mostly smaller for eqs. (12a, b) than for eq. (16), as mentioned earlier 

in sect. 4.3.2. The overall a,,,,,, values for diagonal regions from (3,3) onwards for 

eqs. (12a, b) and (16) are 54 and 57 keV, respectively, and for non-diagonal regions 

they are 38 and 53 keV. 

Thus, it seems that in non-diagonal regions, eq. (12a, b) with its T-dependence 

and its additional parameter Iy2 ’ IS in better agreement with the data than eq. (16). 

It must be emphasized, though, that this better agreement with the data is rather 

modest. In this connection it is also worth mentioning that eqs. (33) and (29) 

representing the direct and total (direct minus exchange) Coulomb energy of a 

uniformly charged incompressible liquid drop, reproduce our data base of 391* 

CDE with a, values of 1321.180 and 1378.886 keV with standard deviations of 386 

and 181 keV. The introduction of an adjustable additive constant b [ref. I’)], account- 

ing in an approximate way for exchange energy and other effects, lowers the standard 

deviation with the two parameters a, = 1425.483 keV and b = -970.240 keV further 

to 95 keV. With the 17 adjustable coefficients from table 3 eq. (16) reproduces 377 

data points** with a standard deviation of 62 keV, and the 22 coefficients of eqs. 

(8) and (12a, b) from table 2 reduce this further to 55 keV. 

Thus, the gross behavior of Coulomb displacement energies is described very well 

by the liquid drop model, and the various approaches of the shell model are crucial 

only for the understanding of fine structure details of CDE systematics. 

The impressive quality of the two-parameter fit to the data is shown in fig. 1 of 

ref. 16). 

We conclude with the following remark: in spite of the overall better agreement 

of eqs. (12a, b) with the data as compared to eq. (16), the latter equation seems to 

be presently preferable in regions (7,7) and (8,7) to eqs. (8) and (12a, b) for the 

prediction of unknown CDE and total ground-state Coulomb energies. This con- 

clusion is based on the much larger statistical errors of the coefficients of eqs. (8) 

and (12a, b) in these regions in table 2 as discussed in sects. 4.2.1 and 4.2.2. 

According to ref. ‘) (see also end of sect. 4.3.1), the values of d, in both table 2 

and table 3 should be considered unrealistically low, and therefore the predictions 

l Including 3H and the 7 points with experimental uncertainties exceeding 120 keV (sect. 4.1). 

l * Excluding 6 points from regions (3,2), (2,3), the ‘H point and the 7 points with experimental un- 

certainties exceeding 120 keV (sect. 4.1). 
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of both equations in regions (7,7) and (8,7) appear unreliable. This conclusion is 

supported by the relatively small value of the ratio [Z, ++ -4~(/3 + r)]d/( c +$r) x 

(1 -K-Y) (see sect. 5.1) and the resulting negative value of p:, eq. (50), in regions 

(7,7) and (8,7) as discussed in sect. 5.3. 

4.5. MASS-NUMBER DEPENDENCE OF THE SCALING FACTORS 

We also carried out least-squares adjustments as described in sect. 4.2 for values 

of the scaling power A increasing by steps of 0.05 in the interval (0, 1). The values 

of A which gave the smallest standard deviation (T (called Abest) and the corresponding 

a-values are given in table 5 for eqs. (8) and (12a, b). The situation for eq. (16) is 

similar. 

One observes that the Abert value is near 0 in the lp shell, and it increases towards 

the value 1 expected for saturated nuclear density in heavier nuclei. This increase 

is not monotonous, and the values of Abest in regions (4,4) and (6,6), particularly 

the first, are lower than in the preceding regions (3,3) and (5,5). The correspond- 

ing fluctuations obtained in combined regions are smaller than in individual 

regions. The overall Abest for eqs. (8) and (12a, b) is 0.85 from region (3,3) 

onwards, and 0.80 for all the data, with corresponding standard deviations of 46 

and 61 keV. 

The standard deviations obtained for Abest are in most cases smaller by only a 

few keV than those obtained for A = 0 in the lp shell and A = 1 for the ld2s and 

the heavier shells. The exception is region (4,4) where Abest is 0.5 rather than 1.0, 

and the improvement is from 68 to 44 keV for eqs. (8) and (12a, b) and from 69 to 

43 keV for eq. (16). 

These findings are in qualitative agreement with the region-dependence of AbeSt 

obtained in ref. ‘) from the more limited data base available earlier. They are 

presumably related to deviations of experimental nuclear charge radii from the A”3 

dependence, as displayed in fig. 2 of ref. 18). However, the study of this connection 

is beyond the scope of the present work. 

Most of the a,.,, values in non-diagonal regions in table 4 are close to those 

shown in table 2 of ref. ‘). The latter were obtained by using different scalings with 

respect to N and Z. 

5. Phenomenological relations to the liquid drop model 4, 

In this section we use the similar A- and Z-dependence of the shell-model and 

liquid-drop-model Coulomb-energy expressions to deduce values for the liquid-drop 

radius and deformation parameters from the shell model coefficients. 
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5.1. COMPARISON OF SHELL-MODEL AND LIQUID-DROP MODEL 

COULOMB-ENERGY EQUATIONS 

The Coulomb energy of a spherical nucleus is given in the liquid drop model by 

where 

with 

f(Z) J%.(Z, A) = UC ~‘/3 (29) 

f(z)=z2-Kz4'3 (30) 

2/3 

= 0.763609 

3 e2 1 
UC=--- 

5 477.&O ro. 

(31) 

(32) 

In eq. (32) e is the proton charge, &0 the permittivity constant of the vacuum, and 

r0 the equivalent uniform radius parameter. The total Coulomb energy of eq. (29) 

is a difference of direct and exchange Coulomb energies, respectively, given by 

E;tir(Z, A) = a, -$ (33) 

and 

z4/3 

E;;xch(Z, A) = KCZc -p . (34) 

Eq. (33) is quadratic in p in all shell regions, with Ap”3 scaling like eq. (4), but 

without the pairing term. Eq. (34) is not quadratic in p, but the smooth function 

z4’3 = (Z, + p)4’3 can be approximated by a quadratic function with deviations in 

all shell regions less than 0.06. The corresponding errors in &,rxch are a few keV. 

With Z = Z, +p one obtains 

%d.(Zl +P, A) 

A, ‘I3 a, 
= 2 A;/’ ( > 

-[(z:-K(Y)+((2z,+1)-K(P+Y))P+(1-KY)P(P--)l, (35) 

AJ%(Z, +P, A) = A’/3 [(=-I + I- K(P + Y))+2(1- K’Y)Pl - (36) 

Here, the coefficients CY, p and y are defined by the expansion of Z4’3 in orthogonal 

polynomials in p which we rewrite as 

(z,+p)4’3=Ly+pp+yp2. (37) 

The explicit expressions and a table of numerical values of a, p and y are given 

in appendix A.4. 
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Eqs. (35) and (36) have the form of the shell model eqs. (4) and (8) without the 

6 odd and hen pairing terms, with corresponding shell model coefficients given by 

z:--Ka 
E,=a,---- l/3 7 

A, 

c+$r = a, 
2Z,+1-K(p+y) 

l/3 
A, ’ 

l-KY 
d =2a,- Ai/3 ’ 

1 

Eq. (36) predicts the main features of the systematics observed in figs. 1 and 2, 

excluding fine structure effects like odd-even variations and magic-number discon- 

tinuities due to shell structure. We discussed its quantitative fit to the data in sect. 4.4. 

Eqs. (39) and (40) predict the following relation between the shell model 

coefficients: 

c+~~_Z,+t-tK(p+y) 
d l-KY . 

(41) 

The coefficients of tables 2 and 3, however, satisfy the inequality (c +$T)( 1 - KY) < 

[Z, +{-~K(P + y)]d except for region (7, 7). Therefore, eq. (4) (for even-Z nuclei) 

cannot be identified with eq. (29) throughout a shell region. 

On the other hand, since the experimental Coulomb displacement energies deter- 

mine only the coefficients c, r and d but not Eo, one still has the freedom to fix 

E, in such a way that eq. (4) coincides with eq. (29) on the Z-boundaries of the 

shell region. As a matter of fact, the requirement E&,, mod(Z, A) = EFdd. mod(Z, A) 

for both Z =Z, and Z = Z2=Zl+S results in a pair of equations allowing the 

determination of a, and E. for given values of c+$r and d. 

Equating eqs. (29) and (4) for p = 0 and for p = 6, one obtains the following two 

equations: 

having the solutions 

“f(G) 
-a,-E,=O, Ai/3 

f(G) 
pa,-E,=6(c+&r)+;6(6-l)d, Ai/’ 

f(G) 
E,=[S(c+f7i)+tfi(fi--I)dlf(z~)_/(Z,). 

(42) 

(43) 

(44) 

The analogous equations for the lp shell with the constant radius R = r0(16)“3 are 

obtained by substituting the values Z, = 2, A, = 16 and S = 6 into eqs. (42)-(45). 
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Numerical values for the quantities uc and E, calculated from the r.h.s. of eqs. 

(44) and (45), with the coefficients of table 2 for the various shell regions, are given 

in tables 6 and 8. Their physical implications are discussed in the following two 

sections. 

5.2. SHELL-MODEL COULOMB DISPLACEMENT ENERGIES AND THE 

LIQUID-DROP NUCLEAR CHARGE RADIUS PARAMETER r, 

From eqs. (44) and (32) one can extract an expression for the parameter r,, 

1 AZ,)-f(Z,) 3 c* 
r”=S(c+$r)+;6(6-l)d A;” 

-~ 
5 4rrEo’ 

(46) 

Using $(e2/47rco) = 0.863974 MeV . fm [ref. “)I and the values of the energy para- 

meters from table 2 we calculated the values of r. for all shell regions. 

The results are given in the third column of table 6. Experimental values 13,i4) of 

the parameter r. of nuclei in the corresponding shell regions are shown for com- 

parison in the fifth column of the table. In most shell regions the agreement is better 

than 0.05 fermi. The discrepancy of 0.13 fm occurs in region (2,2), presumably 

indicating the inadequacy of the liquid drop model for such light nuclei. 

Neglecting the exchange energy (34) by setting K =0 in eq. (30) reduces eq. (46) 

to 

1 22,+63 e* 
ro = ~-- 

c+&r++(S-l)d A;” 5 47~s~ 
(47) 

The calculated values of the r.h.s, of eq. (47) are given in the fourth column of table 

6. They are higher than the corresponding experimental values by about 0.1 fm, 

thus confirming the essential role of the exchange energy in obtaining realistic values 

for r, [ref. ‘“)I when using the liquid drop model. 

TABLE 6 

Nuclear charge radius parameters 

Region ac [es. (44)l r. [es. (46)l r. [eq. (47)l r. 1exp.l”) 

(kev) (fm) (fm) (fm) 

c&2) 682.439 1.27 1.53 1.40 

(3,3)+(4,3) 666.139 1.30 1.42 1.33 
(4,4) + (5,4) 680.044 1.27 1.35 1.26 
(535) + (625) 690.276 1.25 1.31 1.24 
(636) + (7,6) 695.774 1.24 1.28 1.20 

(7,7) + (8,7) 674.679 1.28 1.31 1.21 

“) These values are averages of the experimental r,, values of all nuclei in 
the region, calculated from the r.m.s. charge radii given in ref. 14). 
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5.3. SHELL-MODEL COULOMB DISPLACEMENT ENERGIES AND THE LIQUID-DROP 

NUCLEAR CHARGE DEFORMATION PARAMETER & 

Using eqs. (44) and (45) one can write the Coulomb energy, eq. (4), of an even-Z 

nucleus as 

E:m.(Z~ t-p, 4 

[f(z*)-S(Z,)l[(c+t~)p+~~P(P-1)1 
-D-(-a -f(Z,)l[(c+f~)6+~ds(6 - 1)l 1 f(Z)[(c+$n)6++d8(8-1)] . 

(48) 

The factor multiplying the large square brackets is the liquid-drop Coulomb-energy 

expression (29). The second term inside the brackets vanishes for p = 0 and p = 6, 

as it should according to the requirement made above that the shell model and 

liquid-drop model values of the Coulomb energy coincide for closed proton shells. 

Neglecting the deformation dependence of the exchange energy, the Coulomb 

energy of a deformed nucleus with a small deformation is given to second order in 

the deformation parameter p2 by *‘) 

Eh.(Z, A, PA = a, 5 
2 

[ 1 

Z 4/3 

1-e -KC+---- 
A l/3 . (49) 

Equating eqs. (48) and (49) one obtains an expression for the liquid-drop nuclear 

charge deformation parameter in a given shell region in terms of the shell model 

parameters as 

P:(Z, +P, A) 

Lf(Z2) -f(alr(c+~~)P+~~P(P- 1)l 

z -47T -v-(z) -f(-wl[(c+~~)~ +ws - 1)l 
z’[(c+~~)s+$Is(s-l)] 

(50) 

The r.h.s of eq. (50) attains its maximum value within a shell region at a value 

p =pmax somewhat lower than the middle of the major proton shell $6 [see also eq. 

(A.22), appendix A.41. The maximum value of the deformation in the region, PzmaX, 

is obtained from eq. (50) by substituting respectively pmax and Z,,,,, = Z, +pp,,, for 

p and Z. 

The values of pmax (nearest integer) and the values of P2max calculated from eq. 

(50) with the coefficients of table 2 are given in table 7. Experimental values of pmax 

and Pzmax [ref. “)I for the corresponding regions are also shown for comparison. 

One observes that the calculated values of Z,,, are quite close to the experimental 

values, but the calculated values of Pmax are smaller than the experimental ones, 

particularly for the highly deformed nuclei in regions (2,2), (5,5), (6,5), (6,6) 

and (7,6). 
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TABLE 7 

Nuclear charge deformation parameters 

Region 
Z(max) 

eq. (50) 

Z(max) 

exp. 22) 
Pzmax 

eq. (50) 

P z max 
exp. **) 

(2,2) 3 
(3,3)+(4,3) 11 
(4,4) + (5,4) 23 
(5,5) + (6,5) 36 
(636) + (7,6) 59 

(7,7) + (837) 99 

4 0.26 1.13 (“Be) 
10 0.43 0.73 (“Ne) 
24 0.17 0.34 (Tr) 
38 0.13 0.43 (“Sr), 0.42 (“‘Zr) 
64 0.03 0.29 (“‘Ce), 0.35 (16’Gd) 

98 “) 0.30 (2Wf) 

“1 P:¶n,x = -0.074. 

The reduction of CDE due to deformation in highly deformed rare earth nuclei 23) 

is of the order of 100 keV. It can be described in an average way by eqs. (8) and 

(12a, b) of the spherical shell model, with a slight adjustment of the coefficients. In 

fact, the data of highly deformed nuclei in region (7,6) fit nicely with the rest of 

the systematics in fig. 2 [the same applies to fig. 1 of ref. 16)], and the a,,,,,, value 

for this region in table 4 has similar magnitude to the other regions. On the other 

hand specific small deformation effects cannot be described in this way. Deformation 

effects are explicitly considered in ref. 24). 

The r.h.s. of eq. (SO) for regions (7,7) and (8,7) is negative. This invalidates the 

above correspondence between the shell model and the liquid drop model in these 

regions. As mentioned in sect. 4.4 this behavior is presumably due to the unreliably 

low value of d, in tables 2 and 3. Indeed, according to eqs. (A.21) and (A.22), in 

order to have a positive p,&, value with the c,+$r, value from table 2, the value 

of d, should exceed 253 keV for local scaling (550 keV for global scaling). It is 

perhaps not unreasonable to assume that the low value of d, is due to the fact that 

it was determined essentially from deformed nuclei [the isotopes of Th and U in 

region (8,7)]. 

6. Total ground-state Coulomb energies 

Total ground-state Coulomb energies can be calculated from eq. (4) with the 

numerical values of the coefficients E,,, c, r and d from tables 2 and 8. The last 

three coefficients were determined directly from experimental Coulomb displacement 

energies, whereas E. was calculated above from the other coefficients using the 

requirement that the Coulomb energy of closed-proton-shell nuclei behaves like 

that of a charged liquid drop. 

Closed-proton-shell nuclei are situated on the boundary of two shell regions in 

the (N, Z) plane. Their Coulomb energy can be calculated from the coefficients of 

both shell regions, as either (A,/A) A’3E0 with the coefficient E. of the higher shell 

region, or (A1/A)~“[Eo+6(c+~~)+~6(6-l)d] with the coefficients Eo, c, rr and 
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TABLE 8 

Values of E,, (in keV) calculated from the coefficients in table 2 

51 

Region 
E, from the E, from the 

higher region lower region 

E, from 

AEC(3He) 

(a) Regional scaling “) 
(2,2) 562.188 

(3,3) 13 689.030 
(4,4) 71 295.287 

(5,5) 129738.110 

(6,6) 353 665.399 

(7,7) 795 258.087 

(8,8) 

(6) Global scaling “) 
(L2) 562.188 

(3,3) 13 689.030 
(4,4) 96 762.591 

(5,5) 196 980.657 

(6,6) 651457.235 

(7,7) 1 727 492.016 

(8,8) 

- 903.133 
14 023.995 14 364.940 
69 837.487 70 335.501 

127 814.993 126 957.037 

350 870.805 348 578.485 
820 123.275 815 809.676 

1 644 265.572 1 662 075.405 

14 023.995 

94 784.052 
194 060.799 

646 309.548 

1781 505.191 

4 121 596.594 

903.133 

14 364.940 
95 459.961 

192 758.169 

642 087.059 

1772 135.015 

4 166 239.594 

“) The scaling parameters for each region are the same as in table 2. 

d of the lower shell region. The two values are given in the second and third column 

of table 8. 

The E0 coefficients can also be calculated ‘) by starting from I&(2,2) = EC(4He) 

and successively adding to it the values of (A1/A)*“[S(c+i~)+sS(S- l)d] of the 

corresponding shell regions in table 2. The starting value EC(4He) = AEC(4He) is 

obtained by multiplying the experimental value AEC(3He) = 763.749 * 0.042 keV 

[ref. “)I by 1.1825iO.0189 which is the ratio of the experimental values of charge 

radii of 3He and 4He [ref. ‘“)I. The resulting E, values are given in the last column 

of table 8. 

There are considerable differences between corresponding values of E, obtained 

by the three procedures. According to eqs. (29) and (32) the first two values are 

inversely proportional to the two different values of the nuclear charge radius 

parameter r, in the two regions as given in table 6. The relative differences of both 

the E, and the r,, values are the same. The third value was obtained by a procedure 

which is least dependent on analogies to a liquid drop. However, its accumulated 

error due to the statistical errors and correlations of the coefficients of table 2 might 

be larger. 

7. Conclusions 

The present work updates and extends a previous phenomenological study ‘) of 

Coulomb displacement energies based on the shell model. Shell-model equations 
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(sect. 2) are applied to a detailed interpretation of CDE systematics (sect. 3) and 

are adjusted (sect. 4.2) to CDE of ground states from two recent comprehensive 

compilations i5,16) and more recent literature. These latter values, supplementing 

the compilations, are summarized in table A.2. 

A major motivation was to use the adjusted coefficients as input in the construction 

of nuclear mass equations. A second motivation was to use the results for predictions 

of unknown CDE, excitation energies of IAS, and IMME coefficients, particularly 

for nuclei far from stability. In order to increase the predictive power of the equations 

we adjusted them to the widest data base available to us (see sect. 4.1), and we 

checked the physical plausibility of the adjusted values using as a guideline explicit 

expressions of shell-model Coulomb-interaction matrix elements (sect. 4.3.1). Values 

contradicting the latter, like negative Coulomb pairing energies, were rejected in 

the final analysis (tables 2 and 3). 

With 22 adjustable coefficients for 12 shell regions (table 1) the equations repro- 

duce 377 CDE with a standard deviation of 55 keV. A detailed study of the residuals 

(sect. 4.3.2 and table 4) shows that they are not evenly distributed. In the first place, 

they are as a rule larger for light nuclei, where the interparticle distances are smaller 

and nuclear structure effects are expected to be more pronounced. Residuals of 

nuclear mass equations behave in a similar way. 

Secondly, the residuals are conspicuously large and positive (calculated CDE are 

too high) for exotic light proton-rich nuclei in the vicinity of the proton drip-line. 

This reflects similar deviations from the CDE systematics of fig. 1 for these nuclei 

(sect. 3), which are presumably due to Thomas-Ehrman shifts. Thus, predictions 

of CDE of such nuclei using the present results should be considered less reliable 

than in other regions. It would be interesting to find out if regular deviations due 

to particle instabilities occur as well near the neutron drip line, where there are 

presently no experimental data available. 

Another region where the present results should be considered unreliable is for 

2 5 82. This is indicated by the rather low value of d, in tables 2 and 3 (sects. 4.3.1, 

4.4, 5.1 and particularly 5.3), which is presumably due to the fact that it was 

determined essentially from the very few data in region (8,7) belonging to deformed 

nuclei. 

On the other hand, the deviations in regions of deformation are statistically similar 

to those for non-deformed nuclei. This is to be expected, considering the small 

magnitude of deformation effects on CDE 23) (sect. 5.3). 

Coulomb displacement energies can be calculated from the adjusted coefficients 

of tables 2 and 3. On the other hand, to calculate total ground state Coulomb 

energies one needs the value of the Coulomb energy of the closed shells, &, as 

well. In ref. ‘) the values of E0 for all shell regions were calculated by starting from 

a renormalized experimental value for 4He, and adding to it successively the 

interaction of valence protons in the higher closed major shells. The latter were 

calculated from the adjusted values of the c, m and d coefficients. In the present 
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work we exploited the similar p-dependence of the liquid-drop and shell-model 

Coulomb-energy expressions to calculate E, in each region in terms of its c, r and 

d coefficients, by imposing the requirement that the two expressions coincide on 

the Z-boundaries of the region (sect. 5.1). As a matter of fact, this can be done in 

two different ways (sect. 6). The three values of E,, thus obtained (table 8) are not 

equal, which should serve as a warning against the indiscriminate application of 

the results to the construction of nuclear mass equations. 

The above summarizes the main practical conclusions from the present work. In 

addition, a very regular isodiapheric systematics of CDE is presented (sect. 3). This 

is simpler to use as a predictive tool than the equations, and it is presumably as 

reliable for interpolations and short-distance extrapolations. 

Furthermore, we considered briefly the approximations used in deriving the 

equations (sect. 2 and appendix A.2), and gained a better understanding of their 

relations to other shell model approaches (sect. 2, 4.2.2, 4.4 and appendix A.l). We 

also pursued the above-mentioned formal analogy between the shell-model and 

liquid-drop-model Coulomb-energy equations to derive phenomenological “shell 

model” values, calculated from the adjusted shell-model coefficients, for the liquid- 

drop charge radius and deformation parameters (sect. 5 and appendix A.4). The 

resulting radii for regions (3,3) to (7,6) agree with the experimental radii to better 

than 0.05 fm (table 6), but the resulting deformation parameters are too small 

(table 7). 
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Appendix 

A.l. DIFFERENCES BETWEEN THE CARLSON-TALMI ‘) AND THE HECHT”) 

GROUND-STATE COULOMB ENERGY EQUATIONS 

The fourth and fifth columns of table A.1 show the maximum values (in units of 

r) of the difference ACTpH = E& - EE for states of lowest isospin T and lowest 

seniority ~1 compatible with this value of T for mixed j” configurations. The second 

and third columns of table A.1 show the a, T, u and t values for the maximum 

difference. The difference is the same for any two particle-hole-conjugate nuclei. 

The u-values given are for T, 30. The t denotes the reduced isospin quantum 

number, and 6 = 2j + 1. 
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TABLE A.1 

Differences between the Carlson-Talmi and the Hecht g.s. Coulomb energy equations 

Parity type 

(a, T, 0, t) ACT-“(r) 

$3 even $8 odd $6 even $5 odd 

(j=;,z,y,...) (j=15~ ) 

z,z,z,-" (j=z,g,y,...) (j=$,s,$,..) 

even-even 

odd-a 

odd-odd 

odd-odd 

s2 
(6 0, 090) (s*Lo,o,o) 

(s+2)(6-2) 

24(S+l) 24(6+ 1) 

s2 
(s+l,t, 1,;) (s-l,;, 1,;) 

(s+2)(6-2) 

24(6+1) 24(6 + 1) 

(S-2)2 
(8 * 2,0,2,0) (6 (x2,0) 

S(S -4) 

24(6+1) 24(6+1) 

6-4 
(6, 1,2,1) (6+2,1,2,1) 

(S-1)(6-2) 

20 20(6+1) 

A.2. THE ISOSCALAR, ISOVECTOR AND ISOTENSOR COULOMB ENERGIES 

The values of the Coulomb energy of the T, = *T ground-state members of an 

isospin multiplet do not allow a unique determination of the isoscalar and isotensor 

Coulomb energies separately. In fact one has 

EC(,) _ Ec( T -0 - EC( T 7-1 - 
2T 

7 (A-1) 

E’(O)+ T(2T- l)E ““=f[EC(I--T)+EC(T, T)], (A.2) 

where EC( T, f T) denote the Coulomb energies EC( T, T, = f T) of the ground-state 

members of the multiplet. This explains why it is possible to have different pairing 

terms for EC(‘) and EC’*’ in diagonal regions in ref. ‘) and in the present work, both 

of which are based on the Carlson-Talmi eq. (4) for ground-state energies. 

A.2.1. Diagonal regions. Eqs. (5)-(7) were derived as follows: the Carlson-Talmi 

eq. (4) can be written in a diagonal region as 

A 

( ) 

A/3 

A1 

EC(A,+a, T, T,)=[E,+~a(c+$r)+(~a(u-2)+;T(T+l))d] 

-T,[c+;n++(u-l)d]+(3T,2-T(T+l))[;d] 

- hM~:aH,h-. (A.3) 

The first two lines have the form of an IMME, eq. (l), indicating a possible “natural” 

choice of EC(‘), EC”’ and EC’*’ as the respective square brackets on the r.h.s. of 

eq. (A.3). The last term, however, is not a quadratic function of T,. 
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However, one can write quadratic functions of T, which coincide with &,dd&~~) 

for T, = f T [see also ref. “)I. One such choice is 

8 odd(;aPrzJ(for T, = *T) 

=Ss,,,,(l-(-1):“-‘(T,/T))+~S,,,,.(1-(-1)5”~r(T?;/T2)) 

=[;-a ..,,,,(-I)+‘( T+ 1)/67-l 

- T,[S,,,,(-1)+‘/2T]+(3Tf- T(T+1))[-6,,,,,(-1)+T/6T2]. (A.4) 

Substituing eq. (A.4) into (A.3) one obtains an expression which has the form of 

an IMME. The corresponding coefficients of this expression are given by eqs. (5)-(7), 

which we adopted in the present work. 

A.2.2. Non-diagonal regions 12). In non-diagonal regions like those considered 

in sect. 2.3 one has in the notation used there 

( > 

A A13 

A1 
E’(T, T)=Eo+~Po(c,+S~TT1)+~~O(PO-l)dl-~~Poodd~~TT1 (A.54 

c-1 

A h/3 

A, 

E’(T,-T)= E0+6(cl+~~,)+;6(6-l)d, 

+n,(c2+~~2)+~no(n,-1)dz-6,,,,,~~2. (ASb) 

The interaction EC(‘), eq. (lo), is obtained from eq. (A.l) using eqs. (ASa) and 

(A.5b). 

The isoscalar Coulomb interaction E c(o) of a T-multiplet is given by the expecta- 

tion value of the isoscalar Coulomb hamiltonian, 2~ ($++(ti. t,))e2/rjj where the 

summation extends over all nucleon pairs, in any of the (2T + 1) members of the 

multiplet. We shall calculate its expectation value in the T, = T ground-state member 

of the multiplet. 

In a non-diagonal region the calculation can be carried out in a np scheme, using 

the value (t, * t,) = 4 for identical nucleons and (t, . tj) = --a for a neutron-proton pair. 

Furthermore, in the approximation of equal values for corresponding parameters 

in neighboring subshells (sect. 2.1), one can proceed as if each major shell was 

comprised of one subshell. For the configuration vj~l+‘j~on--fu, with each subshell 

in a state of lowest seniority, one obtains by summing all intrashell and intershell 

interactions of the neutron and proton groups the expression 

EC’o’=Eo+~(6+po)c,+~noc2+~(~+po-~~~odd)~,+~(no-~n,odd)~2 

+;[6(6-l)+po(po-l)]d,+;p,61~,+~n,(n,-l)d, 

+~no(Po-S)~~2+~Sn,,odd~~poodd~;2 9 (A.61 

where :I:, is the antisymmetrized (direct minus exchange) monopole interaction 

between a neutron and a proton in subshell j,, and iTi2 is the higher-k (k 2 1) 

multipole interaction between thejp protons and j,“u neutrons in an odd-odd nucleus. 
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Using the relation 

p=2j,d,+L 
’ 2j,+l 2j,+l r’ (A.7) 

obtained from eqs. (18)-(20) one observes that the r.h.s. of eq. (A.6) is equal to eq. 

(9) plus the additional higher-multipole term with Zi2. 

Having calculated EC(‘), one obtains the isotensor Coulomb energy EC’*’ by using 

eqs. (A.2) and (ASa, b). The resulting expression is equal to eq. (11) plus an 

additional higher-multipole term [-s,,,,,s,,,,,~Z;,]/2T(2T - 1). 

Finally, the expression of AEC, calculated from EC(‘) and EC(*) according to eq. 

(2) is equal to eq. (12a) plus an additional (6 oddn&,ddpZ:2)/2T term for n-rich nuclei, 

and to eq. (12b) plus an additional (-S,,,,.6,,,,,1:,)1/2T term for p-rich ones. 

We now consider these Ii2 terms. Contrary to the other coefficients Eo, c, r, d 

and Z& which depend only on the nlj single-proton quantum numbers, the Z;, 

coefficient depends in addition on the total angular momentum .Z, and also depends 

weakly on the numbers of nucleons in the subshells. For odd subshells in states of 

seniority ~1 = 1 it can be written as “) 

z;,=zJj,J+ 
2j,+l-2p, 2j,+l-2n, 

2j, - 1 2j, - 1 zJij,J (A.81 

where I” ,,,,,and ZJ:,,, denote respectively the expectation values of the odd and even 

higher multipole components of the antisymmetrized Coulomb interaction in the 

state 1 j, j,J). 

The odd and even higher multipole energies in the Ij,j,.Z) state are given by 

qrz, = -iT Gk(n,hjl, n2l2j2G II CW2)2 [{;: ; ;} -&] (A.9) 

x G2ll C’k’llj2)(-l) 
jI+j2+J{:: t kJ} 

-iT Gk(n,4_il, n212j2)(jl II C(k)llj2)2 

(A.lO) 

From normalization considerations like those in sect. 4.3.1, the coefficients of all 

radial integrals are seen to be smaller than 1. Since for two different shells Fk > Gk 

and since intershell Fk integrals are smaller than intrashell ones, one expects to 

have ) Iy,j,Jl < I Ij’jgl< r. Furthermore, the coefficient of the larger term zyij,J in eq. 

(A.8) is a product of two fractions which is sometimes positive and sometimes 

negative and has a vanishing average value over all jpjp configurations. 
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In conclusion, the average higher multipole interaction Ii2 is expected to be 

smaller than the interaction parameters 7r, d and Iy2, eqs. (18)-(20). 

These expectations are supported by the experimental data. The Ii2 coefficient is 

hardly recognizable in the systematics in figs. 1 and 2, and attempts to retain it in 

the least squares adjustments resulted in statistically insignificant values in most 

non-diagonal shell regions. Consequently, we omitted it from the final eqs. (9), (11) 

and (12a, b)*. 

This behavior of Zi2 is in sharp contrast to the nuclear case, where a negative 

odd-odd interaction I{, (the so-called neutron-proton pairing) significantly affects 

the systematics of nuclear energies 26). This means that for nuclear ground states 

one has 1;l,< Zr2< 0 [see also ref. “)I. The difference between the nuclear and 

Coulomb case is presumably due to the similar magnitudes of the nuclear Fk and 

Gk integrals and their increase with k, and also to the existence of odd-tensor, 

non-central and spin-dependent components in the nuclear interaction (see also 

sect. 4.3.1). 

A.3. EXPERIMENTAL COULOMB DISPLACEMENT ENERGIES 

Table A.2 of experimental Coulomb displacement energies is arranged as in 

refs. 15,16). The symbols n and c, respectively, denote values added to or changed 

from the values given in these references. The CDE for the isotopes of Cd, Nd, Ta, 

Pt, Th and U are deduced directly from measured Q-values. All other CDE are 

calculated from the measured E”(IAS) with the use of ref. 2”). 

A.4. QUADRATIC APPROXIMATION IN THE MEAN TO Z4’3 

The polynomials 

Y,(P) = 
J( 

i l-;p+$p’ ) 
> 

(A.ll) 

(A.12) 

(A.13) 

define an orthonormal system of polynomials in p in a given shell region of width 

S=Z*-z,. 

The function Z4’3 = (Z, +P)~” can be approximated to in the mean by an 

expansion in these polynomials 

(Z, tpy = * ,F; GYi(P) 2 (A.14) 

* The adoption of the r.h.s. of eq. (A.8) with two independent coefficients Iy2 and 1; is impractical, 
as the n and p of the odd subshells are not well defined for mixed nuclear configurations. 
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TABLE A.2 

Experimental Coulomb displacements energies 

A Z<-Z> T J” Ex(Z<) Ex(Z>) CDE 

U=V) WV) (keV) 

0 22 F-Ne 

” 22 Mg-AI 

n 35 K-Ca 

n 41 Ar-K 

” 48 Cr-Mn 

n 57 Ni-Cu 

c 63 CU-2” 

n 95 Y-Zr 

c 110 Cd-In 

n 116 Cd-I” 

n 111 In-S” 

c 115 In-Sn 

c 117 In-S” 

c 119 In-S” 

c 121 In-S” 

c 123 In-S” 

n 142 Nd-Pm 

C 144 Nd-Pm 

n 146 Nd-Pm 

n 148 Nd-Pm 

n 150 Nd-Pm 

c 181 Ta-W 

n 192 Pt-AU 

” 194 I+AU 

n 196 Pt-AU 

n 198 I%A” 

n 207 Tl-Pb 

n 230 TI-Pa 

n 232 Th-Pa 

n 234 U-Np 

n 236 U-Np 

c 238 U-Np 

2 

2 

7 

10 
13 
z 

17 
z 

f 

y 

9 

25 

121 

12 

13 

14 

15 
y 

18 

19 

20 

21 
7 

25 

26 

25 

26 

27 

4+ 

4+ 
++ 

z- 

:+ 
;- 

3- 
I 
f- 

0+ 

0+ 
e+ 
2 
f’ 

p 

9+ 
z 
9+ 
2 
8+ 

:+ 

0+ 

0+ 

0+ 

0+ 
;+ 

0+ 

0+ 

0+ 

0+ 
I+ 

:+ 

0+ 

0+ 

0+ 

0+ 

g.s. 14070*40 

14044*15 g.s. 

9053*45 gs. 

gs. 8349*15 

5792+1 g.s. 

gs. gs. 
gs. 5495*7 

g.s. 14980+20 

gs. 8 767*206 

gs. 11990*50 

g.s. 10507*50 

g.s. 13 317*50 

g.s. 14 151*50 

gs. 14 995 *so 

gs. 15953150 

g.s. 16943*50 

gs. 9972*43 

gs. 12 372112 

g.s. 13 128+ 16 

g.s. 13970*1s 

gs. 14359124 

gs. 16 572*8 

g.s. 14124117 

g.s. 15086*13 

g.s. 16023+7 

g.s. 17 134*7 

g.s. 19 280+60 

g.s. 177651-17 

g.s. 18530+11 

gs. 17610112 

g.s. 18 434*56 

gs. 19 117+8 

3 995*50 

5225*72 

7346*70 

6639*15 

8 597*22 

9 509*50 

964418 

11317*21 

13 490*50 

13 240*50 

13 737*51 

13 604*50 

13 479*50 

13 442*51 

13373*57 

13325*58 

15624+14 

154s7*11 

153s7*14 

15296*13 

15228*12 

17 54216 

18422&S 

18 360*3 

18 310*3 

18 242*3 

18 635+60 

19 857* 16 

19792~1~5 

20203*7 

20 145126 

2004517 

Refs. 

27.28 
1 

29.28 
1 

30,28 
1 

31,211 
1 

32,x? 
1 

28 
1 

27.2s 
1 

)3,28 
1 

34 
1 

34 
1 

35,28 
1 

35.28 1 
35.28 ) 
35.28 1 
35.28 ) 
35.28 1 
36 1 
36 1 
36 1 
36 ) 
36 ) 
37 ) 
37 1 
37 1 
37 1 
37 1 

38.28 1 
39 1 
39 ) 
39 ) 
39 1 
39 1 

where 

(A.15) 

c, = -~y')_~(~;/'+~;/') ) 

I 

(A.16) 

c2 = )-~(Z;"'3+Z:D;')+:(Z:'3-z~'3) . 

I 

(A.17) 
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Rearranging eq. (A.14) one obtains eq. (37) with 

(A.18) 

(A.19) 

(A.20) 

Using the quadratic approximation (37) one obtains for pi of eq. (50) the 

expression 

&(Z, +p, A) = -47r 
(C+h)(l-K+d(&+#K(P+y)) p(6-p) 

c+$r+;d(6 - 1) (z, +P)z. (A-21) 

The r.h.s. of eq. (A.21) attains its maximum value in a given shell region at 

(A.22) 

The r.h.s. of eq. (A.22) agrees with the integral values of prnax from the second 

column of table 7 to better than *OS in all shell regions, except for region (6, 6), 

where the two terms in the numerator of the r.h.s. of eq. (50) largely cancel for 

p = pmax. The value of the r.h.s. of eq. (A.22) for regions (6,6) and (7,6) is 12.1, as 

compared to the value 9 in table 7. 

On the other hand, the values of the r.h.s. of eq. (A.21) for p = JI,,,_ from eq. 

(A.22) agree with the values of Pzmax in the fourth column of table 7 from eq. (50) 

to better than 0.01 in all shell regions, except for region (2,2) where the respective 

P 2ma.x values of eqs. (A.21) and (SO) are 0.11 and 0.26. 

For convenience in calculations we give in table A.3 the numerical values of the 

coefficients (Y, p and y for the various shell regions. 

TABLE A.3 

Numerical values of the coefficients (I, p and y 

Major shell (Y P Y 

2 2.471767 1.790024 0.078420 
3 15.938215 2.733875 0.038844 
4 54.281730 3.629458 0.026770 
5 84.960218 4.085665 0.019448 
6 184.120597 4.943732 0.013671 
7 356.149987 5.820223 0.010085 
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