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GOODNESS-OF-FIT IN OPTIMIZING MODELS 

Hal R. VARIAN* 

University of Michigan, Ann Arbor, MI 48109, USA 

Conventional econometric tests of optimizing models typically involve embedding the optimizing 
model in a parametric specification and then examining the parametric restrictions imposed by 
the optimization hypothesis, The optimization hypothesis is rejected if the estimated parameters 
are significantly different, in the statistical sense, from the values implied by optimization. I 
argue that a more fruitful approach to testing optimizing behavior is to measure the departure 
from optimization using the estimated objective function, and see whether this departure is 
significant in an economic sense. I discuss procedures for doing this that can be used in several 
sorts of optimizing models, and give a detailed illustration in the case of aggregate demand 
estimation. 

1. Introduction 

Much of economics rests on the principle of optimizing behavior. Firms are 
assumed to minimize costs and maximize profits; consumers are assumed to 
maximize utility; and so on. In the last several years, standard techniques 
have been developed to test these models of optimizing behavior. Suppose, 
for example, that we are attempting to test the hypothesis that a time series 
of observations on factor choices by a firm can be viewed as cost-minimizing 
behavior. A common approach would be to pick a parametric form for the 
underlying cost or production function, derive the associated set of factor 
demand functions, and then see if the estimated parameters satisfy the 
restrictions imposed by the model of cost minimization. 

Similarly, if one wanted to test a set of data on consumer choices for 
consistency with utility maximization behavior, one would first specify a 
function form for the utility function, derive the associated set of utility-maxi- 
mizing demand functions, estimate the parameters of these demand functions 
using the consumer choice data, and then see if these estimated parameters 
satisfy the restrictions imposed by the model of utility maximization. 

In my view, these procedures are not very good ways to test models of 
optimizing behavior for two distinct reasons. First, there is often no need to 
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embed the Dptimizing model in a parametric framework. I argue below that it 
is perfectly possible to test reasonably complex models of optimization 
behavior without having to use parametric specifications. Second, testing 
parametric restrictions by using classical significance tests involve an overly 
restrictive sense of ‘significance’. What matters for most purposes in eco- 
nomics is not whether a consumer’s violation of the optimizing model is 
statistically significant, but whether it is economically significant. And the 
economic significance of a departure from optimizing behavior has nothing to 
do with whether or not estimated parameters pass or fail a test of statistical 
significance. 

Hence the conventional methods are lacking in two senses: first, they have 
an excess reliance on parametric forms, and second, they test for statistically 
significant vioIations of optimization rather than economicahy significant 
violations. Let us examine each of these points in more detail. 

2. No~parametric tests of optimizing behavior 

Suppose that we observe a set of price vectors, p’, and net output vectors, 
y’, for t = 1,. . . , T, and want to test the hypothesis of period-by-period profit 
maximization. Then a necessary condition for these data to be consistent with 
profit maximization is that the following inequalities are satisfied: 

PIY’ 2 P’YS, 

for all pairs of observations s and t. These inequalities simply say that the 
profit from the observed choices must be at least as large as the profits from 
any other feasible choice. Varian (1984) refers to this as the Weak Axiom of 
Profit Maximization (WAPM). SimiIar inequalities have been examined by 
several other authors including Afriat (1972) and Samuelson (1947). 

It can also be shown that WAPM is a suficient condition for profit 
maximization in the sense that any set of data that satisfies WAPM can be 
used to construct a ‘nice’ production set that could have generated the 
observed behavior as optimizing behavior. See Varian (1984) for details. 

Hence a sensible test of optimizing behavior in this context is simply to see 
if the observed prices and net output vectors satisfy the inequalities implied 
by WAPM. If the data violate the inequalities, then we reject the model of 
optimizing behavior. 

Suppose that we observe a set of data (w’, x’, y’> for t = 1,. . . , T, where 
w’ is a vector of factor prices, x’ is a vector of factor demands, and y’ is a 
(scalar) measure of output. We might be interested in testing the hypothesis 
that the firm that generated this data is minimizing the cost of producing the 
observed output. 
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If the firm is minimizing costs, it must satisfy the following set of inequali- 

ties: 

w’x’ I w’xs for all ys 2 yf. 

These inequalities require that the cost of the observed production plan must 
be no greater than the cost of any other production plan that produces at 
least as much output. Varian (1984) calls this the Weak Axiom of Cost 
Minimization (WACM).’ 

Again, this condition is necessary and sufficient for cost-minimizing behav- 
ior in the sense that, if some data satisfy WACM, then it is possible to 
construct a production set that would generate the observed choices as 
cost-minimizing choices. It is very easy to apply this test to observed choices 
to see if they violate the inequalities; no appeal to parametric methods is 
required. 

Finally, suppose that we observe some price vectors p’ and quantity 
vectors x ‘, for r = 1, . . . , T, and want to test the hypothesis that these data 
were generated by a utility-maximizing consumer. Define the revealed prefer- 
ence relation R by x’&’ if and only if there is some sequence of observa- 
tions XI... xU such that p’x’ 2 pfxr, . . . , p”xu 2 p”xs. Then a set of data is 
consistent with the model of utility maximization if and only if it satisfies the 
Generalized Axiom of Revealed Preference (GARPI, 

X’RX” implies psxs I p’x’. 

Again, this condition is easily tested; see Varian (1982al for details. 
Given that each of these classical models of optimizing behavior is easily 

tested by simply checking a set of inequalities, why do the conventional 
procedures use complicated statistical measures? Certainly the inequalities 
described above have been in the literature a long time. See Samuelson 
(19381, Afriat (19671, Diewert and Parkan (19851, and others.2 

One explanation is that economists are simply not used to thinking about 
the implications of optimizing models for a finite set of observations. It is 
more natural for economists, perhaps, to think of the outcome of optimiza- 
tion to be an entire demand or supply function. 

Another, perhaps more important explanation, is that the nonparametric 
tests described above are ‘sharp’ tests: either the data pass the test exactly, or 

‘See Varian (1984) for a discussion of the literature on this sort of test, which includes 
contributions from Samuelson (1947), Hanoch and Rothschild (1972), and Afriat (1972). 

2For more recent work in nonparametric analysis of consumption behavior, see Browning 
(1984), Bronars (1987), Deaton (1985), Green and Srivastava (1985,1986), Houtman and Maks 
(1987), Landsburg (1981), Manser and McDonald (1988), and Varian (1982a, 1982b, 
1984,1985,1988X 
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they don’t. If the data don’t satisfy the test, the optimizing model is rejected: 
the tests do not allow for an ‘error term’. 

There have been some attempts to deal with this problem of the overly 
sharp nature of nonparametric tests. Banker and Maindiratta (1988) suggest 
finding the largest set of observations consistent with optimization. Varian 
(1985) suggests finding the set of data that is nearest to the observed data in 
some appropriate norm. 

Conventional statistical tests do allow for an error term. To test the 

hypothesis that some relationship holds among some estimated parameters, 
we ask whether the value of some test statistic is likely or unlikely according 
to the sampling distribution of the parameters. Roughly speaking, the opti- 
mization model is rejected if the observed value of the test statistic is 
unlikely. 

The problem with this procedure, in my view, is that it has little to do with 
the economic significance of the violation, For example, optimization of some 
particular parametric form may imply that two parameters should sum to 
one. If we test this hypothesis and reject it, we must reject the optimizing 
model. But what are we rejecting? Exact optimization implies that the two 
parameters must sum to exactly one. But exact optimization isn’t a very 
interesting hypothesis. It is very unlikely that firms exactly maximize profits or 
minimize costs; it is even more unlikely that consumers exactly maximize 
utility. It is especially unlikely that consumers maximize some arbitrary 
parametric approximation to utility. 

What we usually care about is whether optimization is a reasonable way to 
describe some behavior. For most purposes, ‘nearly optimizing behavior’ is 

just as good as ‘optimizing’ behavior.3 
The conventional parametric tests miss this distinction: given enough data, 

we can always reject nonoptimizing behavior, even if it is ‘nearly optimizing 
behavior’. The value of the test statistic will typically give no clue as to 
whether the economic agent under examination is nearly optimizing or 
grossly nonoptimizing. 

3. Goodness-of-fit measures 

An alternative approach to testing optimizing behavior is to ask how large 
the violations of relevant inequalities are in terms of a reasonable economic 

3See Akerlof and Yellen (1985) and Cochrane (1989) for interesting discussions of nearly 
optimizing behavior. 

4A similar point made by McCloskey (1985, 1989) in a somewhat different context. McCloskey 
points out that significance testing, as commonly used in economics, does not provide an 
appropriate measure of the ‘importance’ of a variable in a regression. But McCloskey’s critique 
applies more broadly; most statistical tests measure violations of a hypothesis in terms of the 
sampling distribution of the test statistic, and this is rarely a useful measure of the importance of 
this violation. 
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norm. For example, suppose that we observe some violations of the Strong 
Axiom of Profit Maximization. That is, we observe a pair of observations s 
and t for which 

pfy’ <p’yS. 

This inequality says that the firm could make more profit by choosing ys 
when in fact it chose y’. In this case, a reasonable measure of the magnitude 
of the violation of profit-maximizing behavior is 

r IS cp’( ys -y')/p'y' =p'y"/p'y' - 1. 

This is simply the percent extra profit that the firm could have made at the 
prices pf if it had chosen the production vector y’, rather than the produc- 
tion vector y’. 

The numbers rrs should be interpreted as ‘residuals’ appropriate for 
examining the optimization model. The best way to present these residuals 
might be to list the observations and indicate next to each one the magnitude 
of the foregone profit. Or, one might want to look at the average value of the 
foregone profit, or the largest value of the foregone profit. Any of these 
numbers would be a reasonable way to measure how ‘close’ the observed 
behavior comes to profit-maximizing behavior. 

The case of cost maximization is almost the same. If we have a violation of 
WACM, we have two observations t and s such that 

w’x’ > w’xS for some ys 2 y’. 

In this case, 

d( x’ - XS)/WfX’ = 1 - w’xS/w’X 

is a reasonable measure of the departure from cost minimization. This 
number simply measures how much the firm could have saved if it had 
chosen xs rather than x’ when it faced factor prices wf. Again, one might 
choose the average value or the maximum value of this index as a measure of 
the degree of violation of maximization. 

If these numbers are small, then it seems reasonable to think of the firm 
under consideration as being ‘more-or-less’ an optimizing firm.’ True, it isn’t 
exactly optimizing, but exactly optimizing behavior isn’t a very plausible 
hypothesis to begin with. 

In addition, the distribution of these measures of profit maximization or 
cost minimization may be of considerable interest themselves. Suppose, for 

‘How small is small? In general this depends on the problem at hand. The ‘magic number’ of 
significance tests, 5%, is probably a reasonable choice. 
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example, that we are examining the case of profit m~imization using data on 
a single firm, and we find that most violations of WAPM indicate that the 
firm would be better off at time t making a choice that was made at some 
later date. This suggests that technological progress or learning-by-doing may 
be involved: the more profitable choices weren’t made at time t because they 
weren’t feasible. 

Or suppose that we are examining cross-sectional data and we find that 
most of the violations of WAPM involve a single firm. This might be taken as 
evidence that this firm really doesn’t have access to the same technology as 
the others. The pattern of violations can tefl us a lot about what is going on in 
the data. 

4. Consumer choice 

The description of a reasonable measure of goodness-of-fit in the case of 
consumer choice is somewhat more involved. We follow the suggestion of 
Afriat (1967). 

Afriat’s measure is calculated in the foIlowing manner. For a given set of 
numbers (e’), t = 1,. . . , T, with 0 5 e’ I 1, define an extension of the standard 
direct revealed preference relation by 

x’R~x” if and only if e’p’x’ 2 p’xs. 

If e’ = 1, this is the standard direct revealed preference relation; if e’ = 0, the 
relation is vacuous in the sense that observation t cannot be revealed 
preferred to any other observation. As e’ varies from 1 to 0 the number of 
observations revealed preferred to other observations monotonically de- 
creases. 

We refer to e’ as the Aji-iat eficiency index for observation t. It can be 
thought of as how much less the potential expenditure on a bundle xs has to 
be before we will consider it worse than the observed choice x’. If e’ is 0.90, 
for example, we will only count bundles whose cost is less than 90% of an 
observed choice as being revealed worse than that choice. Said another way: 
if e’ is 0.90 and xs would cost only 5% less than x’, we would not consider 
this a significant enough difference to conclude that x’ was preferred by the 
consumer to 2. We are allowing the consumer a ‘margin of error’ of (1 - e’>. 

Given an arbitrary set of data ($,a?), let us choose a set of efficiency 
indices (e’> that are as close as possible to 1 in some norm. If the data satisfy 
the revealed preference conditions exactly, then we can choose e’ = 1 for all 
t= l,..., T. If we choose e’ = 0 for all t = 1 , . . . , T, then the data vacuously 
satisfy the revealed preference conditions, since no observation is revealed 
preferred to any other. Thus for any reasonable norm, there will be some set 
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of (e’) that are as close as possible to 1 that will summarize ‘how close’ the 
observed choices are to maximizing choices. 

In Afriat’s (1967) original treatment of this idea, he considered choosing a 
single e that applied to all observations, rather than a different e’ for each 
observation. The advantage of Afriat’s original proposal is that it is much 
easier to compute a singIe index e than the multiple indices (e’>. 

Ho&man and Maks (1987) suggest the following binary search. Start with 
e = 1 and test for violations of revealed preference using Warshall’s algo- 
rithm as described in Varian (1982a). If the data fail to satisfy the strong 
axiom, try e = i. If e = i doesn’t work, try e = i. If e = i does work, try e 
= $, and so on. After f~ revealed preference tests, you are within l/2” of the 
actual efficiency index. 

Computing the set of efficiency indices that are as close as possible to 1 in 
some norm is substantially more difficult. If we choose a quadratic norm, for 
example, we would have to solve a problem such as 

E = min i (e’ - I)“, 
(e’) f-1 

(I) 

subject to the constraint that the revealed preference relation R, satisfies the 
Generalized Axiom of Revealed Preference. This approach is significantly 
more demanding from a computational perspective. 

5. A characterization of the eRiciency indices 

There is a characterization of the set of (e’) that minimize some norm that 
will be useful in what follows. In order to describe it, we need some formal 
definitions. 

As above, define the relation Ilsz by x’R:x iff e’p’x’ )prx, and let R, be 
the transitive closure of this relation. Then define GARP, to mean 

xSR,x’ implies e’p’x’ 22 p’x’. 

If er = 1 for al1 t, then this reduces to the standard definition of GARP. 
Here is another way to state this definition: if some data (p’, x’, e’) satisfy 

GAlWe, then 

for all x’R,x’ we have etp’x’ sp’x’. 

This statement can be written as 

e’ 2 p’x’/~)‘x for all x,‘R,x’. 
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If we attempt to choose a set of (e”> that are on the average as close as 
possible to 1, then this inequality will typically be binding for some observa- 
tions, so we have 

e’= min ( pfxS/ptx'). 
.?R,X' 

(2) 

Note that this is not really an ‘operational’ way to determine e’, since e’ is 
implicitly involved in the relation R,. Nevertheless, the characterization is 
still useful, as we shall see shortly. 

6. Parametric methods in production analysis 

We have seen how to compute measures of goodness-of-fit for nonpara- 
metric methods to test models of profit maximization, and utility maximiza- 
tion. However, the same methods can be used in a parametric context. 

Consider first the case of profit maximization. Let p’ be the price of 
output and w’ the vector of factor prices in observation t. Let y’ be the 
(scalar) output and x’ the vector of factor inputs in observation t. Suppose 
that we estimate some parametric production function y =f(x, 0) yhere J3 is 
a vector of parameters. Given an estimate of the parameters, p, we can 
calculate the maximal profits at each observation t, ~(p’, w’, ,&. We can then 
compare the maximal profits from the estimated technology to the actual 
profits: 

QT( p’, & - (ply’ - WY). 

The magnitude of this number measures the degree to which the observed 
choice behavior at observation t fails to maximize the estimated production 
function. Hence, it is a measure of how closely the observed production 
fermion comes to appro~mating profit-maximizing behavior. 

If we are interested in cost-minimizing behavior, we would simply estima!e 
the cost function implied by some parametric production function, c(w’, y’, p>. 
The deviation from cost minimization is given by 

w’d-c(w’,y’,P). 

This is the difference between the actual cost incurred and the minimal costs, 
conditional on the assumption that the true technology is of the particular 
parametric form described by f(x, B>. 
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7. Parametric methods for consumption analysis 

Suppose that one is willing to postulate that some observed demand 
behavior was generated by the maximization of a particular parametric utility 
function u(x, /3>, where /3 is a vector of parameters. 

Given a parametric utility function u(x,/~), we can define the associated 
money metric utility function, m(p, x, p), by 

m(p, x, P) = minpy, 
Y 

s.t. U(Y,P) 2u(x,P). 

In words, the money metric utility function measures the minimum expendi- 
ture at prices p the consumer would need to be as well off as he would be 
consuming the bundle x. For more on the money.metric utility function, see 
Samuelson (19741, King (19821, and Varian (1984). 

In terms of the money metric utility function an index of the degree of 
violation utility-maximizing behavior could be given by 

i’ = m( pf, x’, P)/p’x’. 

This index is closely related to the Afriat efficiency index. We can see this 
by writing i’ as 

Note the similarity with eq. (2); the only difference is that e’ uses the partial 
order over consumption bundles given by the revealed preference relation, 
while i’ uses the total order over consumption bundles given by the utility 
function. 

This sort of money metric index is a very natural measure of how close the 
observed consumer choices come to maximizing a particular utility function 
u(x, /?I. I suggest that it is a useful statistic to report as a goodness-of-fit 
measure in models of demand estimation. 

As with most measures of goodness-of-fit, we can also use the money 
metric measure as a criterion to estimate the parameters in questions. A 
natural estimate is to find that value of p that minimizes the degree of 
violation of maximizing behavior as measured by the values of the indices i’. 
For example, one could try to minimize the sum of squares, cT=I(i’>2. I 
believe that this sort of estimator has several desirable properties. 

First, it uses a sensible economic norm for goodness-of-fit. Conventional 
estimators of demand parameters use the sum-of-squared errors of the 
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Fig. 1. This is a good fit in terms of money metric utility although it is a bad fit in terms of the 
usual error terms. 

observed and predicted quantities demand, or some variant on this. But this 
has little economic content, a large difference between predicted and ob- 
served demand can easily be consistent with a small difference in utility. This 
is depicted in fig. 1. Here the observed choice is far from the predicted choice 
is Euclidean distance, but quite close in terms of money metric utility. The 
model is a bad fit in terms of Euclidean distance, but a good fit in the sense 
that the consumer isn’t far from maximizing behavior in terms of money 
metric utility. 

Second, the minimized value of the objective function gives a meaningful 
economic measure of how close the observed choices are to maximizing 
choice for the particular parametric form involved. If the average value of e’ 
is 0.95, then it is meaningful to say that the observed choice behavior was 
0.95% as efficient as maximizing behavior. 

Third, the mechanics of the estimation problem may be much simpler than 
they are using the conventional approach. Economic theory imposes the 
restriction that a money metric utility function must be an increasing, linearly 
homogeneous, and concave function of prices. These constraints are not 
terribly difficult to impose on the maximization problem. By contrast theory 
implies that a system of demand equations must have a symmetric negative 
semidefinite Slut&y substitution matrix. Imposing this restriction involves 
imposing nonlinear cross-equation restrictions on a system of equations. In 
general this is a difficult thing to do. 
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Fourth, this same method can easily be applied to estimation of production 
relationships. If one starts with a null hypothesis of cost minimization, say, 
then it makes sense to measure the goodness-of-fit of estimation procedure 
by comparing the actual costs to the minimum costs implies by the estimated 
parameters. If it is thought that errors in optimization are a significant 
component of the error term, then it can make sense to estimate the 
parameters by choosing parameter estimates that minimize the difference 
between the observed costs and the minimum costs. 

8. An example 

In order to examine the money metric goodness-of-fit measure described in 
the last section, I tried an experiment using U.S. aggregate consumption 
data. The data were taken from the Citibank economic database and con- 
sisted of aggregate consumption of durabfes, nondurables, and services from 
1947 to 1987. The data are presented in table 3. 

Like most aggregate consumption data, these figures satisfy the General- 
ized Axiom of Revealed Preference. This is due to the fact that during the 
post-war period, most developed economies have experienced reasonably 
steady real growth: each year has generally been revealed preferred to the 
previous year and the data trivially satisfy the revealed preference restric- 
tions. Hence the aggregate demand data are consistent with the maximization 
of utility of a representative consumer. 

However, it may be of interest to ask how well common parametric forms 
of utility functions do in describing these data. It is typically the case that 
one can reject the restrictions imposed by maximization using parametric 
forms such as the translog utility function; see, for example, Christensen, 
Jorgenson, and Lau (1975). But how large are these violations in terms of the 
economic norm described in the last section? In order to answer this 
question, I estimated the parameters of a Cobb-Douglas utility function and 
measured the goodness-of-fit using the money metric measure. 

The Cobb-Douglas utility function is a convenient parametric form since it 
has a minimal number of parameters and it automatically satisfies the 
maximization restrictions. This means that our estimated goodness-of-fit 
measure will generally be an upper bound on the goodness-of-fit using a 
more flexible function form. For example, the Cobb-Douglas utility function 
is a special case of the translog utility function. Thus the ‘best fitting’ 
Cobb-Douglas function will have at least as good a fit, in terms of our 
money-metric measure, as the best fitting translog function. 

I estimated the parameters of a Cobb-Douglas utility system using three 
different techniques. The first technique was simply to take the average 
expenditure share of each good. The second technique was to estimate the 
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regression xi = a,e/p,, where e is the total expenditure on the three goods. I 
used Zellner’s seemingly unrelated regression technique and imposed the 
normalization that a1 + a2 + a3 = 1. (Estimating the three equations sepa- 
rately gave almost the same estimates.) The third technique was to determine 
the values of the parameters that maximized the goodness-of-fit, as measured 
by difference between the money metric utility and the actual expenditure. 
The first two methods are straightforward, but a description of the third 
method may be in order. 

Let us derive the money metric utility function as associated with the 

Cobb-Douglas utility function u(n,, x2, xJ =x~~x,“zx!~. For algebraic conve- 
nience we impose the normalization that the exponents sum to 1. The money 
metric utility function is defined to be the amount of money that it takes as 
some prices (pl, p2, p3) to choose an optimal bundle that has the same utility 
as the bundle (n,, x2, x,1. 

If we let m be the necessary amount of money, we have the equation 

xnlxa*x;’ = ( ulm/pl)a’( u2m/p2)az( u3m/pJa’. 1 2 

Solving for m we have 

m( p, x) = u;a1u;a2u;“3 (PIXIYY P24*( P3X2r3. (3) 

[For a different derivation, see Varian (1984, p. 1291.1 Taking logs, we can 
write this equation as 

lnm(p,x) = -u,lnu, -a,lnu,-a,lnu, 

+ a, In plx, + u2 In p2x2 + u3 In p3x3. (4) 

We suppose that the log of the actual expenditure in period t, In e’, is equal 
to the log of the expenditure minimizing amount, In m(p’, x’>, plus an error 
term representing the optimization error. Using eq. (4), we have 

In e’ = - a, In a, - u2 In u2 - u3 In u3 

+a, In pini + u2 In pixi + u3 In pixi + E’. 

I estimated this equation using the nonlinear least squares routine in 
MicroTSP, imposing the restriction that a, + a, + u3 = 1. The results from 
the three estimation methods are in table 1. 

The first thing to observe is that the three methods give somewhat different 
answers. This is simply a consequence of the fact that the estimates which ‘fit 
the data best’ depend on what measure of goodness-of-fit you use. The 
regression estimates that minimizes the sum of squared deviations from the 
observed demands will not in general be the same as the estimates that 
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Method 

Table 1 

Estimated parameter values. 

at a2 

~- 

a3 

Expenditure shares 0.152 0.461 0.387 
Regression 0.129 0.358 0.413 
Nonlinear least squares 0.150 0.472 0.378 

minimize the squared difference between money metric utility and actual 
expenditure. 

It is surprising that the expenditure share method and the money metric 
method give very similar estimates, especially since the expenditure share 
estimate involves a system of equations while the money metric estimation 
involves only a single equation. Of course, ultimately it is a single sum-of- 
squares that is minimized in the regression technique, so perhaps this is not 
so surprising after all. 

The computed values of the money metric utility function for each of the 
different parameters are given in table 2, along with the percentage differ- 
ence between money metric utility and the actual expenditure for each of the 
three different estimation methods. 

Note that these percent differences are very small, at least for the expendi- 
ture share estimates and the NLS estimates. Using the expenditure share 
methods the largest difference is 7.4%, and the majority of the differences 
are less than 1%. The average difference is 2%. This suggests that the 
observed aggregate demand behavior is not very different from optimizing 
behavior, at least when measured in units of ‘wasted expenditure’.’ 

Similar results hold for the nonlinear least squares estimates. Here the 
average value of the error is only 1.9%. The regression estimates do much 
poorer, resulting in an average error of about 5%. 

It is worth noting that the residuals in all of the estimates are positive in 
each observation; this is as it should be if the optimizing model is to make 
any sense since the minimum expenditure to achieve a given level of utility 
must always be less than an arbitrary expenditure. 

A closer examination of the index shows the limitations of the 
Cobb-Douglas functional form. The Cobb-Douglas form requires that ex- 
penditure shares remain constant, while the data clearly show that the share 
of services in expenditure has significantly increased. Obviously, a more 
flexible functional form would be appropriate for these data. 

‘Cochrane (1989) independently adopted a similar approach to examining tests of intertempo- 
ral consumption models. He finds that the deviation of actual consumption from the optimal 
intertem~ral allocation of consl~mption is on the order of 30 cents per month - a remarkably 
small number. Cochrane also discusses the distinction between statistical significance and 
economic significance in much the same terms as I do. 
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Year 
-- 
1947 
1948 
1949 
1950 
1951 
1952 
1953 
1954 
1955 
1956 
1957 
1958 
1959 
1960 
1961 
1962 
1963 
1964 
1965 
1966 
1967 
1968 
1969 
1970 
1971 
1972 
1973 
1974 
1975 
1976 
1977 
1978 
1979 
1980 
1981 
1982 
1983 
1984 
1985 
1986 
1987 

Actual (Shares) (Regress) 
expenditure ml m2 

3,855 3,568 3,117 
4,462 4,132 3,609 
4,470 4,235 3,755 
4,876 4,637 4,129 
5,534 5,249 4,658 
5,872 5,634 5,057 
6,257 6,088 5,543 
6,576 6,444 5,924 
7,285 7,149 6,585 
7,816 7,713 7,163 
8,537 8,441 7,867 
9,048 8,979 8,436 
9,939 9,881 9,318 

10,560 10,525 10,002 
11,019 10,996 10,517 
11,933 11,915 11,423 
12,785 12,767 12,290 
13,914 13,894 13,414 
15,350 15,319 14,793 
17,163 17,135 16,550 
18,581 18,554 18,038 
21,431 21,380 20,804 
24,340 24,282 23,729 
27,471 27,389 26,961 
31,294 31,124 30,829 
35,846 35,591 35,382 
42,530 42,374 41,812 
50,710 50,507 49,743 
61,383 61,131 60,316 
72,478 72,090 71,506 
85,701 84,969 84,889 

102,261 101,237 101,465 
124,104 122,988 123,047 
148,952 146,795 148,177 
180,406 177,153 179,803 
205,088 199,545 204,941 
232,873 225,046 232,866 
263,642 253,883 263,598 
294,808 281,220 294,461 
322,488 304,152 321,354 
353.848 331,047 351,875 

Table 2 

Comparison of estimation techniques. 

N-S) 
m3 

_-.- 
3,600 
4,169 
4,265 
4,666 
5,286 
5,670 
6,120 
6,474 
7,177 
7,740 
8,469 
9,006 
9,904 

10,545 
11,014 
11,930 
12,777 
13,901 
15,325 
17,143 
18,555 
21,376 
24,272 
27,372 
31,082 
35.53 1 
42,341 
50,503 
61,113 
72,012 
84,822 

101,043 
122,804 
146,525 
176,757 
198,908 
224,161 
252,772 
279,813 
302,408 
329,083 

Mean 
.I_- 

(Shares) (Regress) (NLS) 
I - ml/e 1 - m/e 1-m,/e 

0.074 0.191 0.066 
0.074 0.191 0.066 
0.053 0.160 0.046 
0.049 0.153 0.043 
0.052 0.158 0.045 
0.041 0.139 0.034 
0.027 0.114 0.022 
0.020 0.099 0.015 
0.019 0.096 0.015 
0.013 0.084 0.010 
0.011 0.079 0.008 
0.008 0.068 0.005 
0.006 0.063 0.004 
0.003 0.053 0.001 
0.002 0.046 0.000 
0.002 0.043 0.000 
0.001 0.039 0.001 
0.001 0.036 0.001 
0.002 0.036 0.002 
0.002 0.036 0.001 
0.001 0.029 0.001 
0.002 0.029 0.003 
0.002 0.025 0.003 
0.003 0.019 0.004 
0.005 0.015 0.007 
0.007 0.013 0.009 
0.004 0.017 0.004 
0.004 0.019 0.004 
0.004 0.017 0.004 
0.005 0.013 0.006 
0.009 0.009 0.010 
0.010 0.008 0.012 
0.009 0.009 0.010 
0.014 0.005 0.016 
0.018 0.003 0.020 
0.027 0.001 0.030 
0.034 0.000 0.037 
0.037 0.000 0.041 
0.046 0.001 0.051 
0.057 0.004 0.062 
0.064 0.006 0.070 

0.020 0.052 0.019 

To the extent that a more flexible functional form would fit the data better 
than the Cobb-Douglas form, our goodness-of-fit measure should be re- 
garded as an upper bound on ‘wasted expenditure’. If the average ‘wasted 
expenditure’ in the Cobb-Douglas case is less than 2%, it would be even less 
if we used a more flexible functional form. 
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Table 3 

U.S. Aggregate consumption (Citibank economic database). 
-___ 
Durables 

PI 

27.40 
28.77 
29.95 
31.23 
31.85 
31.57 
31.77 
32.10 
33.38 
34.73 
36.50 
34.92 
38.50 
38.77 
38.88 
39.75 
40.15 
40.35 
40.92 
41.55 
42.33 
44.55 
46.10 
47.80 
50.25 
51.05 
50.83 
54.08 
61.15 
65.88 
69.15 
72.78 
78.25 
85.55 
93.65 

100.00 
101.60 
102.97 
102.35 
101.38 
100.40 

Nondurables 

P2 

26.88 
29.18 
27.85 
27.73 
29.73 
29.85 
29.38 
30.02 
30.60 
30.95 
31.90 
32.85 
33.17 
33.63 
34.08 
34.58 
34.90 
35.25 
36.10 
37.35 
38.23 
39.98 
41.98 
44.05 
45.92 
47.90 
53.75 
59.58 
65.13 
67.60 
71.03 
76.00 
83.55 
88.85 
96.78 

100.00 
102.50 
106.17 
108.50 
110.13 
114.05 

- 

Services 

P3 

Durables Nondurables 

XI x2 

16.85 20.43 90.88 
17.77 22.85 96.60 
18.45 25.05 94.85 
18.90 30.73 98.22 
19.40 29.85 109.15 
20.30 29.23 114.72 
21.40 32.67 117.83 
22.18 32.10 119.67 
23.02 38.88 124.70 
24.02 38.20 130.78 
25.02 39.65 137.10 
26.10 37.17 141.75 
26.93 42.80 148.47 
27.80 43.42 153.20 
28.40 41.90 157.40 
29.13 47.02 163.82 
29.85 51.80 169.35 
30.60 56.85 179.68 
31.43 63.48 191.85 
32.60 68.53 208.45 
33.80 70.63 216.90 
35.65 81.00 235.00 
37.70 86.22 252.18 
40.38 85.67 270.32 
43.08 97.58 283.27 
45.58 111.22 305.10 
48.10 124.72 339.55 
51.77 123.75 380.90 
56.38 135.35 416.20 
60.65 161.45 451.95 
65.45 184.50 490.45 
70.30 205.57 541.80 
75.88 218.95 613.25 
83.72 219.28 681.35 
92.30 239.88 740.58 

100.03 252.65 17 1 .oo 
106.13 289.10 816.70 
111.60 335.55 867.30 
117.25 368.70 913.13 
122.25 402.43 939.35 
127.42 413.73 982.88 
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.- 
Services 

x3 

50.60 
55.48 
58.42 
63.15 
69.03 
75.13 
82.13 
88.05 
94.30 

101.63 
108.55 
115.67 
125.00 
134.00 
141.80 
151.05 
160.63 
172.78 
185.40 
200.30 
216.00 
236.43 
259.43 
284.02 
310.65 
341.27 
372.98 
411.90 
461.23 
515.92 
582.25 
656.10 
734.55 
831.95 
934.70 

1026.97 
1128.75 
1227.63 
1347.52 
1458.05 
1571.22 
.._ 
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