PRODUCTION AND USE OF RADIOACTIVE ⁷Be BEAMS # R.J. SMITH, J.J. KOLATA, K. LAMKIN and A. MORSAD Physics Department, University of Notre Dame, Notre Dame, Indiana 4556, USA # K. ASHKTORAB, F.D. BECCHETTI, J. BROWN, J.W. JANECKE, W.Z. LIU and D.A. ROBERTS Physics Department, University of Michigan, Ann Arbor, Michigan 48109, USA Received 26 February 1990 A beam of ${}^{7}\text{Be}^{4+}$ ions having E=20.7 MeV and intensity 1.5×10^4 s⁻¹ has been produced via the ${}^{1}\text{H}$ (${}^{10}\text{B}$, ${}^{7}\text{Be}$) ${}^{4}\text{He}$ reaction. The beam had an energy resolution of 1.0 MeV FWHM, 1 cm spot size, and 3° angular divergence. The effect of a z-moveable secondary stop on beam purity was investigated. A ${}^{7}\text{Be}^{4+}$ ion beam of E=15.2 MeV, intensity 5×10^3 s⁻¹, and similar energy resolution and emittance characteristics was produced via ${}^{12}\text{C}({}^{3}\text{He}, {}^{7}\text{Be})^{8}\text{Be}$ reaction. The maximum feasible ${}^{7}\text{Be}$ secondary beams from these two reactions are extrapolated to be 5×10^4 and 1×10^5 s⁻¹, respectively. Elastic scattering data for ${}^{7}\text{Be}$ from Au and C targets are presented as an example of the use of this radioactive beam in secondary scattering experiments. ### 1. Introduction As part of our program to produce beams of radioactive ions and utilize them to study nuclear reactions [1,2], we have begun a series of experiments aimed at achieving an intense ⁷Be beam. The elastic scattering of ⁷Be on ¹²C has recently been measured [3] at a beam energy of 140 MeV. However, many of the most interesting studies with this projectile involve the determination of reaction rates at low energy for astrophysical purposes. We report here on our first attempts to produce a ⁷Be beam at energies $E \le 25$ MeV. The reactions utilised were ¹H(10 B, 7 Be) using 1 mg cm⁻² TiH₂ targets at an incident energy of 23.5 MeV, and 12 C(3 He, 7 Be), using a 0.5 mg cm⁻² 12 C target and incident beam energy of 22.5 MeV. Early 10 B + TiH₂ data from this project have been reported previously [4]. ## 2. Experiments The experimental apparatus used to collect and focus radioactive beams has been described in detail elsewhere [1]. Recent additions to this apparatus are a z (beam axis) moveable beam stop in the mid-plane chamber, and a rotating primary target assembly. The z-moveable stop consists of a 3 cm diameter disc which can be positioned under vacuum at distances between 156 and 190 cm from the primary target. This may be used to filter out lower rigidity ions including primary beam scattered particles. Although increasing the magnetic field of the solenoid may achieve the same ends, the improved beam purity comes at the expense of the secondary beam focus. The yield, purity, and energy resolution of the secondary ⁷Be beam was investigated as a function of secondary stop position and solenoid current for two different production reactions. ## 2.1. 1H(10B, 7Be) A 23.5 MeV ¹⁰B beam was used to bombard a 1 mg cm⁻² TiH₂ target. The solenoid acceptance was limited to 4-8° (47 msr) because of the rather large kinematic broadening associated with this inverse reaction. A solenoid current of 97 A gave the secondary target focus for the 20.65 MeV ⁷Be ions shown in fig. 1. At this current the inelastically scattered ¹⁰B ions have already passed through their focal plane (circle of least confusion) and display a ring image on the position sensitive detector. Also shown is the ⁷Be beam energy profile. The 1 mg cm⁻² TiH₂ targets (1 cm diameter) were made at Daresbury National Laboratory and Birmingham University, UK. Because of embrittlement induced by hydrogen loading of the titanium metal, these foils are extremely fragile and also contain pinholes which degrade the secondary beam energy resolution. Primary ¹⁰B beams in excess of 200 electrical nA (enA) caused H₂ evolution from the TiH₂ target due to local heating. While use of a rotating primary target assembly would increase beam tolerance, it is difficult to manufacture foils of large enough diameter to make this feasible. Fig. 1. (a) Focal plane image of a focussed ⁷Be beam. (b) Ring image of an unfocussed ¹⁰B beam at the same magnet current. (c) Energy profile of ⁷Be beam. The missing segment of the ring in the ¹⁰B image is due to the secondary beam block support structure which has been reduced in size in the present design. Another significant problem in this system is the substantial yield of $^{10}B^{5+}$ inelastically scattered ions reaching the secondary target (fig. 2). The $\Delta E-E_R$ fig- Fig. 2. ΔE vs $E_{\rm R}$ for the scattering of a 20.7 MeV $^7{\rm Be}$ secondary beam on $^{197}{\rm Au}$ at 30°. The $^7{\rm Be}$ beam was produced from the $^1{\rm H}(^{10}{\rm B},^7{\rm Be})$ reaction. ures presented here were obtained with a 300-mm^2 $23\text{-}\mu\text{m}$ ΔE and $300\text{-}\mu\text{m}$ E detector at 12.2 cm from the secondary target, and are for secondary beam scattering from Au at 30° . The yield, ⁷Be/¹⁰B ratio, ⁷Be energy and FWHM were evaluated as a function of the secondary beam stop position and are presented in table 1 and figs. 3 and 4. A maximum yield of 10⁴ ⁷Be ions per second per 100 enA of primary beam was observed. While the Table 1 Yield, $^{7}\text{Be}/^{10}\text{B}$ ratio, ^{7}Be energy and energy resolution (FWHM) as a function of z STOP position: 20.65 MeV ^{7}Be ions, 97 A solenoid current and 4–8° acceptance. | STOP
[cm] | Yield [⁷ Be s ⁻¹
per 100 enA] | $10^3 \times {}^7\text{Be}/{}^{10}\text{B}$ ratio | E
[MeV] | FWHM
[MeV] | |--------------|---|---|------------|---------------| | 156 | 10000 | 5.5 | 20.78 | 1.26 | | 166 | 4000 | 9.7 | 20.51 | 0.77 | | 171 | 2200 | 17.1 | 20.49 | 0.83 | | 176 | 890 | 30.7 | 20.68 | 0.66 | Fig. 3. Yield and ⁷Be/¹⁰B ratio versus STOP position for 20.7 MeV ⁷Be. z-moveable stop may be used to greatly reduce the ¹⁰B at the secondary target, it does this at the expense of ⁷Be yield. Absorbing foils can also be used to filter out the ¹⁰B. Fig. 4. Energy and energy resolution (MeV) for 20.7 MeV ⁷Be. Fig. 5. ΔE vs $E_{\rm R}$ for the scattering of a 15.2 MeV ⁷Be secondary beam on ¹⁹⁷Au at 12°. The ⁷Be beam was produced from the ¹²C(³He, ⁷Be) reaction. The maximum feasible yield, assuming a 2 mg cm⁻² TiH_2 production target and 200 enA of ¹⁰B is calculated to be 5×10^4 s⁻¹. ## 2.2. 12C(3He, 7Be) Also investigated was the α pickup reaction (3 He, 7 Be) on a 0.5 mg cm $^{-2}$ 12 C target at incident 3 He beam energy of 22.5 MeV producing a 15.2 MeV 7 Be beam. The full 5°-11° solenoid acceptance range (95 msr) could be utilised, and the solenoid current to focus the 7 Be beam was 82 A. The $\Delta E-E_R$ plot for secondary beam scattering from Au at 12° is presented in fig. 5. The effects of solenoid current and acceptance angles were investigated and are presented in tables 2 and 3 and figs. 6 and 7. Note that this 7 Be beam is quite clean due to the large magnetic rigidity difference between Table 2 Yield, ⁷Be energy and energy resolution as a function of solenoid current, for ¹²C(³He, ⁷Be) with 4-8° solenoid acceptance. ⁷Be⁴⁺ ions | | Solenoid current [A] | Yield [⁷ Be s ⁻¹
per 100 enA] | Energy
[MeV] | FWHM
[MeV] | |------------------------------------|----------------------|---|-----------------|---------------| | ⁷ Be ⁴⁺ ions | 83.0 | 480 | 15.12 | 0.66 | | | 82.5 | 600 | 15.01 | 0.88 | | | 82.0 | 710 | 14.97 | 0.94 | | | 81.5 | 880 | 14.80 | 0.78 | | | 81.0 | 870 | 14.72 | 1.17 | | | 80.5 | 920 | 14.22 | 1.70 | | ⁷ Be ³⁺ ions | 83.0 | 280 | 8.38 | 0.70 | | | 82.5 | 450 | 8.24 | 0.97 | | | 82.0 | 300 | 8.11 | 0.93 | | | 81.5 | 340 | 8.04 | 0.79 | | | 81.0 | 300 | 8.02 | 0.69 | | | 80.5 | 350 | 7.89 | 0.70 | Table 3 Yield, ⁷Be energy and energy resolution as a function of solenoid current for ¹²C(³He, ⁷Be) with 5°-11° solenoid acceptance. | | Solenoid current [A] | Yield [⁷ Be s ⁻¹
per 100 enA] | Energy
[MeV] | FWHM
[MeV] | |-----------------------|----------------------|---|-----------------|---------------| | Be ⁴⁺ ions | 83.0 | 460 | 15.23 | 0.70 | | | 82.0 | 760 | 15.14 | 0.77 | | | 81.0 | 1320 | 15.05 | 0.88 | | | 80.0 | 1920 | 14.31 | 0.93 | | | 79.0 | 2340 | 14.44 | 1.59 | | Be ³⁺ ions | 83.0 | 460 | 8.68 | 0.70 | | | 82.0 | 580 | 8.55 | 0.97 | | | 81.0 | 540 | 8.32 | 0.93 | | | 80.0 | 760 | 8.10 | 0.79 | | | 78.0 | 720 | 8.22 | 0.70 | 22.5 MeV ³He and 15.2 MeV ⁷Be ions. ⁷Be³⁺ inelastic events at 8.45 MeV are also accepted by the solenoid bandpass, although the yield is lower. The *Q*-distribution for 15.2 MeV ⁷Be is 53%/36% for ⁷Be⁴⁺/⁷Be³⁺ while at 8.5 MeV it is 45%/46%. Substantial yield is lost by this charge fractionation. The optimum useable yield of ⁷Be⁴⁺ is 8×10^2 s⁻¹ per 100 enA of primary beam. Since ¹²C targets can support ³He beams in excess of 10 Fig. 6. Yield, energy and energy resolution of 7 Be beam versus solenoid current. The 7 Be beam was produced from the 12 C(3 He, 7 Be) reaction and the solenoid acceptance was 4 ° -8°. Fig. 7. Yield, energy and energy resolution of ⁷Be beam versus solenoid current. The ⁷Be beam was produced from the ¹²C(³He, ⁷Be) reaction and the solenoid acceptance was 5° – Fig. 8. Rutherford scattering of ⁷Be: ¹⁹⁷Au(⁷Be, ⁷Be) and ¹²C(⁷Be, ⁷Be) at ⁷Be energies of 22.4, 20.7, 15.2 and 8.5 MeV. Table 4 Cross section ratio to Rutherford for ⁷Be scattering from ¹⁹⁷Au and ¹²C at 22.4, 20.7, 15.2 and 8.5 MeV ⁷Be energies. a) 197Au elastic scattering: cross section/Rutherford cross section | θ _{cm} [deg] | 22.4 MeV | $\theta_{\rm cm}$ [deg] | 20.7 MeV | | |-----------------------|-----------------|-------------------------|-----------------|--| | 22.0 | 1.20±0.10 | 10.0 | 0.96±0.10 | | | 25.0 | 0.80 ± 0.08 | 11.0 | 1.03 ± 0.10 | | | 27.0 | 1.05 ± 0.15 | 12.5 | 0.79 ± 0.10 | | | 28.0 | 1.04 ± 0.13 | 13.5 | 1.03 ± 0.18 | | | 30.0 | 1.04 ± 0.14 | 14.5 | 1.20 ± 0.21 | | | 32.0 | 0.88 ± 0.15 | 15.5 | 0.53 ± 0.15 | | | 33.0 | 0.68 ± 0.18 | 17.0 | 0.77 ± 0.22 | | | 35.0 | 0.93 ± 0.14 | | | | | 38.0 | 1.14 ± 0.22 | | | | | 10.0 | 1.10 ± 0.20 | 10.0 | 0.95 ± 0.07 | | | 11.0 | 1.06 ± 0.22 | 11.0 | 1.14 ± 0.07 | | | 13.5 | 1.26 ± 0.10 | 12.5 | 0.80 ± 0.07 | | | 14.5 | 0.98 ± 0.10 | 13.5 | 0.68 ± 0.07 | | | 15.5 | 0.82 ± 0.09 | 14.5 | 1.15 ± 0.07 | | | 17.0 | 0.71 ± 0.09 | 15.5 | 1.05 ± 0.08 | | | 19.0 | 1.09 ± 0.23 | 17.0 | 0.83 ± 0.08 | | | 20.0 | 0.96 ± 0.19 | 19.0 | 1.08 ± 0.41 | | | 21.0 | 0.83 ± 0.19 | 20.0 | 0.84 ± 0.32 | | | 22.0 | 1.28 ± 0.27 | | | | b) 12C elastic scattering: cross section/Rutherford cross section | $ heta_{ m cm}$ [deg] | 22.4 MeV
[deg] | $ heta_{ m cm}$ [deg] | 15.2 MeV | $ heta_{ m cm}$ | 8.5 MeV | |-----------------------|-------------------|-----------------------|-----------------|-----------------|-----------------| | 21.0 | 0.71 ± 0.21 | 19.0 | 1.10 ± 0.20 | 19.0 | 1.46±0.18 | | 22.0 | 0.54 ± 0.16 | 20.5 | 1.06 ± 0.22 | 20.5 | 1.83 ± 0.26 | | 23.0 | 0.31 ± 0.12 | 22.0 | 1.26 ± 0.10 | 22.0 | 1.56 ± 0.26 | | 24.0 | 0.38 ± 0.14 | 24.0 | 0.98 ± 0.10 | 24.0 | 1.00 ± 0.19 | | 25.0 | 0.39 ± 0.15 | 28.0 | 0.82 ± 0.09 | 25.0 | 1.45 ± 0.42 | | 26.5 | 0.26 ± 0.10 | 30.0 | 0.71 ± 0.09 | | | | 28.5 | 0.39 ± 0.20 | | | | | Note: The Centre of Mass energies for these ⁷Be ions on ¹²C are 14.1, 9.6 and 5.3 MeV, respectively, while the Coulomb barrier energy is 10.1 MeV. μA without significant degradation, beams approaching 10⁵ ⁷Be s⁻¹ are feasible assuming, e.g, 10 μA of ³He beam and a 0.6 mg cm⁻² ¹²C target. The ¹²C primary target thickness is limited by the large energy spread of ⁷Be ions produced from the front and back of the ¹²C foil. Lower solenoid currents result in more ⁷Be ions, but the energy resolution deteriorates significantly (table 2). Finally, scattering of 22.4, 20.7, 15.2 and 8.5 MeV ⁷Be beams from ¹⁹⁷Au and ¹²C is reported in table 4 and fig. 8. While the Au scattering is, as expected, entirely Rutherford scattering, that on ¹²C for higher energy ⁷Be beams shows distinct deviation from Rutherford as expected by a simple Optical Model calculation [5]. It should be noted that scattering of the first excited state of ⁷Be (0.43 MeV) is included in these differential cross sections. ### 3. Conclusions Beams of 7Be , produced from the $^1H(^{10}B, ^7Be)$ reaction between 4° and 8° outgoing angle, had a rate of 10^4 ions s $^{-1}$ 100 enA $^{-1}$ with an energy resolution of 1.0 MeV. Beams of 7Be from the reaction $^{12}C(^3He, ^7Be)$, between 5° and 11° outgoing angle had a rate of 8×10^2 ions s $^{-1}$ 100 enA $^{-1}$, and with an energy resolution of 1.2 MeV. This compares favourably with the results reported by Yamagata et al. [3] who produced a beam of 2×10^4 ions s $^{-1}$, with an energy resolution of 1.6 MeV, by the reaction $^1H(^7Li, ^7Be)$ at 0°. The large cross section for the ¹H(¹⁰B, ⁷Be) reaction, and the increased hydrogen atom concentration in plastics, make a polyethylene or similar hydrocarbon target attractive. However, our own experience suggests that ¹⁰B beams in excess of a few enA burn through such targets. Cooling the target by aluminizing the surfaces and rotating the plastic may increase its maximum beam current tolerance. In summary, while beams of 10^{57} Be s⁻¹ are achievable by the reactions investigated above, beams of 10^6 s⁻¹ or more are required for the sequence of nuclear reactions X(⁷Be, ⁸Be), and the astrophysically important reaction ¹H(⁷Be, ⁸B), to be conveniently investigated. To this end we shall shortly investigate the ¹⁰B(⁶Li, ⁷Be) reaction as well as C¹H₂(¹⁰B, ⁷Be) using aluminium-coated rotating targets. Note added in proof: We have recently measured the cross section and secondary beam yield for 7Be produced via the $^{10}B(^6Li, ^7Be)$ reaction, using a 23 MeV 6Li beam, a 205 $\mu g/cm^2$ ^{10}B target, 94.2 A solenoid current, and 5–11° acceptance. The lab differential cross section is 26.2 mb/sr at 8°, and the yield is 940 Be ions per second per 100 enA. #### References - [1] J.J. Kolata, A. Morsad, X.J. Kong, R.E. Warner, F.D. Becchetti, W.Z. Liu, D.A. Roberts and J.W. Janecke, Nucl. Instr. and Meth. B40/41 (1989) 503. - [2] F.D. Becchetti, W.Z. Liu, D.A. Roberts, J.W. Janecke, J.J. Kolata, A. Morsad, X.J. Kong and R.E. Warner, Phys. Rev. C40 (1989) R1104. - [3] T. Yamagata et al. Phys. Rev. C39 (1989) 873. - [4] J.J. Kolata, R. Smith, K. Lamkin, A. Morsad, F.D. Becchetti, J. Brown, J.W. Janecke, W.Z. Liu and D.A. Roberts, Proc. 1st Int. Conf. on Radioactive Beams, Berkeley, CA, USA, 1989. - [5] J.C. Overly and W. Whaling, Phys. Rev. 128 (1962) 315.