Systems & Control Letters 15 (1990) 91-98
North-Holland

91

Robustness margin need not be a continuous
function of the problem data

B.R. Barmish

Department of Electrical and Computer Engineering, University
of Wisconsin-Madison, Madison, WI 53706, U.S A

P.P. Khargonekar

Department of Electrical Engineering and Computer Science
Unwersity of Michigan, Ann Arbor, MI 48109, US A

Z.C. Shi

Department of Electrical and Computer Engineering, University
of Wisconsin-Madison, Madison, WI 53706, U S.A

R. Tempo

CENS-CNR, Politecnico di Torino, Corso Duca degh Abruzzi
24, 10129 Torino, Italy

Received 20 January 1990
Rewvised 13 Apnl 1990

Abstract. For systems with structured real perturbations, 1t 1s
shown that the robustness margin for stability can be a discon-
tinuous function of the problem data
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1. Introduction

Consider a hinear control system with a transfer
function or state space description parameterized
in terms of a vector of uncertain parameters g € R’.
A fundamental problem addressed in a large num-
ber of papers is: Determune the maximum uncer-
tainty bound, call it r_,,, such that the system 1s
stable for all g€ R’ with ||q|| <r,,,. Note that
the chosen norm for ¢ 1s almost always ¢2? or ¢®
and r,,, is generally called the robustness margin,
see Section 2 for a precise definition.

In many cases, a shghtly different formulation
of the problem above is considered; 1e., given an
uncertainty bound r > 0, determine if the system
is stable for all g € R’ with || ¢|| <r. In this case,
only a ‘yes’ or ‘no’ answer is required. In the

sequel, all analysis 1s carried out in the robustness
margin framework but 1t should be noted that the
consequences apply equally well to this alternative
yes/no formulation; e.g., see the discussion asso-
ciated with the example in Section 3.

The simple paradigms above are at the heart of
many robust stability analysis techmiques; e.g., see
the literature ranging from real p as in Doyle [1]
and Packard [2] to the post-Kharitonov [3] litera-
ture (see Barmish [4] and Jury [5] for reviews of
the continuous-time and discrete-time cases re-
spectively), to polytope stability problems as in
Bartlett, Hollot and Huang [6] and to the theory
dealing with frequency sweeping methods; e.g., see
de Gaston and Safonov [7], Biernacki, Hwang and
Bhattacharryya [8], Hinrichsen and Pritchard [9]
and Barmish [10].

Our main technical objective 1n this paper is to
demonstrate that the robustness margin r,,,, is not
necessarily continuous with respect to the problem
data; the notion of problem data will be fully
explained in the sequel. This discontinuity phe-
nomenon 1s seen to be independent of the compu-
tational algorithm used to actually calculate r,,.
Matters are further complicated by the fact that at
the point of discontinuity in the space of problem
data, the robustness margin may be much smaller
than at neighboring points. This may lead to
potentially deceptive conclusions.

We feel that the most important implication of
the present paper is that there is a serious issue
pertailing to conditioning properties of the
robustness margin Despite the possibility that
discontinuity of this margin may be nongeneric, 1n
regions close to the discontinuity set, ill condition-
ing of r_,, must nevertheless be addressed. There-
fore, our conclusion is that a thorough analysis of
conditioning properties of the robust stability
problem is an important area for future research.

The case which we make for discontinuity of
the robustness margin is based on a simple exam-
ple of a unity feedback system - the plant has
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uncertain parameters entering linearly into numer-
ator and denomunator coefficients. We call thus a
linear uncertawinty structure. Using d to represent
the data describing the system, the robustness
margin is wrtten explicitly as r;, (d) and we
prove the following: There exists a sequence of
data (d(n))>_, converging to some 4 * such that

n=1

lim rmax(d(n)) > rmax(d* )

That is, if one solves the sequence of robustness
margins problems corresponding to d(n), the
margins 7,,,(d(n)) may differ considerably from
. (d*) This happens even as the data d(n) gets
arbitranly close to d *.

For the simple case of linear uncertainty struc-
tures as 1n Section 3, it 1s felt that it should be
posstble to perform some sort of apnion check for
discontinuity However, the fact that the discon-
tinuity phenomenon occurs at the level of linear
uncertainty structures serves as a ‘warning’ that
care must be exercised when dealing with more
complicated nonlinear problems. This is consistent
with the example mvolving a nonhinear uncer-
tainty structure in the paper by Ackermann, Hu
and Kaesbauer [11] — severe computational prob-
lems anse arise as a certain data parameter is
changed

2. Notation and definition of the robustness margin

We consider polynomials with real coefficients
a, which depend continuously on a vector of un-
certain parameters g € R® whose 1-th component 1s
g, To denote the dependence of a, on g, we wrte
a,(q). Hence, we take an uncertain polynomial to
be of the form

m—1
p(s.g)=s"+ % a/(q)s"

=0
In Section 3, a,(q) is affine linear and in Section
4, a,(q) 1s mululinear. When g = 0, we obtain the
so-called nominal polynomial p(s, 0), which is as-
sumed to be strictly stable; i.e., its roots lie in the
open left half plane.

A bounding set for the vector of uncertain
parameters g will be a box parametenzed by its
radius r; this box 1s denoted as Q, and 1s de-
scribed by

0,2 {qeR: g ll<r;1=1,2,. .1}

Note that the discussion to follow can easily be
adapted to handle the case when Q, 1s a sphere;
1e., the discontinuity phenomenon 1s not particu-
lar to the Z_ norm on uncertain parameters. In
addition, discontinuities can occur when working
with many other stability regions besides the open
left half plane — the umt disk being a prime
example.

Robustness margin In accordance with the discus-
sion 1n Section 1, the robustness margin (for stabil-
ity) 1s given by

Fmex = sup{r:p(s. q) 1s strictly stable
forall g€ Q,}.

Dependence on problem data. In each of the exam-
ples to follow, the integers

I=dim g and m=deg p(s, q)

are held fixed and problem data consists of the
coefficient functions ag( ), (), ... a, ()
To 1llustrate the discontinuity phenomenon, we
use a finite-dimensional space for this problem
data. That 1s, each a,(-) 1s viewed as a mapping
on data vectors d € R” to continuous functions of
q For example, a family of problems mght be
described by p=6, /=2, m =2 and

p(S, ‘1) =s’+ (dl +dyq, +dyqy)s
+(dy+dsq, +deqs)

A speafic robustness margin problem 1s obtained
with d,=2, d,=1, d;=4, d,=3, d;=6 and
dg =12. This leads to

p(s, q)=s"+2+q,+4g,)s+ (3+6q, +12g,).

Within this data space framework, two problems
are deemed to be ‘close together’ if their associ-
ated data vectors (call them d' and d?) are close
together in some arbitrary but fixed norm on R?;
ie, ||d'—d?| 1s small.

To denote dependence on d, we henceforth
write p,(s, q) and r,.(d) in heu of p(s, q) and
r.., respectively We are now prepared to present

max
our main example.

3. Example establishing discontinuity of the robust-
ness margin

Before formally proceeding, 1t 1s important to
note that it 1s easy to construct relatively trivial
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examples for which discontinuity of r,,, can easily
be demonstrated. Such examples involve cases
when there 1s only one uncertain parameter, cases
when the uncertainty structure is highly nonlinear,
cases when the limiting polynomial p,.(s, q) is
only marginally stable and cases when p,.(s, q)
1s structurally different from py,\(s, 9), e.g,
Pa»(s, g) has lower degree or a smaller number of
uncertainties than p,.(s, g). In contrast, the ex-
ample below is simple yet nontrivial.

Indeed, consider a unity feedback system with
open loop transfer function denoted by

N,(s, q)
Dy(s, q)

where N,(s, g) and D,(s, q) are uncertain poly-
nomials and K, is the loop gain. The subscript
‘d’ is used to emphasize dependence on the data.
In this example, /=2, m=4 and with d=d*,
consider

Pd(S, ‘I) =K,

K,.=a,
N,.(s, g) =4a+10aq,,
and
D, (s, q) =s*+ (20— 20g,)s>
+(44 + 2a + 10q, — 40q, ) s*
+(20 + 8a + 20ag, — 20q,)s + a?,
where
a=3+2/2.
Using our data notation, we write
K,=d,,
Ny(s, ) =d, +dyq,
and
D,(s, q) =s*+ (dy +duq,)s’
+(ds +dgq, +dqgq,)s*
+(dy + dogy + dyoq;)s + dyy.

By comparing the expressions for K ., N,.(s, q)
and D,.(s, g) with K,, N,(s, q) and D,(s, q),
respectively, it is clear that the d4* are readily
available, e.g., dyf =a, d* =4a, d}f =10a, d}
= 20, etc.

Now, we consider the data sequence (d(n))y_;
described by

d* fori#0,
a for1=0,

4(m) -
where
a,=a—-1/n.

This sequence corresponds to the case where the
plant data is fixed and the gain a, is converging
to a.

Robustness margin. In order to obtain the robust-
ness margin along the d(n) sequence for the
feedback system above, we study the closed loop
polynomial

pd(n)(s’ ‘1) = Kd(n)Nd(n)(s’ ‘1) + Dd(n)(s’ ‘1)
=s5*+ (20 - 20q,)s>
+(44 + 2a + 10q, — 40q,) s*

+(20 + 8a + 20aq, — 20q,)s

+a(5¢1—%+10(a—%)q1) (1)

and for the hmting case, we study the closed loop
polynomual

P+ (s, ) =aN;(s, q) + Dye (s, q)
=5+ (20 —20q,)s>

+(44 +2a+10q, — 40g,)s”

+(20 + 8a + 20aq, — 20q,)s

+(5a* +10a%q,). (2)
Discontinuity claim (see next subsection for proof).
We claim that
0417 = "lin:D Foax(d(n)) > r. (d*) =0.234.

That 1s, we claim that the robustness margin 1s

discontinuous at the data point d *. In fact, for this

example, along the data sequence (d(n))r_,, the
robustness margin is given by

lim r,,, (d(n))=1- {5a=0.417
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However, precisely at d*, the robustness margin
becomes

o (%) = 152

This example illustrates the ‘false sense of secur-
1ty’ associated with the robustness margin. To
further elaborate, if ¢;* = ¢;* = 0234, two of the
roots of the closed loop polynomial p,,(s, ¢*)
approach the imaginary axis as n — oc. That is,
Pamy(5, @) is ‘nearly’ destabilized by an uncer-
tainty vector g* whose norm 1s 0.234 despite the
fact that the predicted margin 1s approximately
0417

=( 234.

Proof of claim. Along the data sequence, we ex-
amine the closed loop polynomial p,,(s, ) given
by (1). Then, to obtain the robustness margin, we
use the fact that the leading minors of the Hurwitz
testing matnx must be positive. This leads to the
following four conditions:

Condition 1:

(20 — 20gq,) >0

Condition 2.

(20 — 204,)(44 + 2a + 10q, — 40q,)
— (20 + 8a + 20aq, — 20q,) > 0.

Condition 3

20 — 204, )(44 + 2a + 10g, — 404,)
2 1
(20 + 8a + 20aq, — 20q,)

4 1
- (20— 20q2)2(5a2 - —a+ 10a(a - E)ql)

— (20 + 8a + 20aq, — 20g,)’ > 0.

Condition 4:
4 1

5a*— —a+ 10a(a— —)ql > 0.
n n

Note that r_, (d(n)) is the supremal value of r

such that the four inequalities above hold for all
g€ Q, That is, letung

r,(d(n)) = sup{r. Condution : holds
forall ge Q,},

1t follows that

Fax(d(n)) = mun {r,(d(n))}.

The remainder of the proof will proceed via a
number of steps
Step 1* We claum that

a
nlin;og(d(n)) =1- 15 =0417

To prove this claim, it 1s first verified that
Condition 3 is equivalent to

2[4va — 20 + 10Va g, + 204, ]’
(20 — 2a — 20g,)
1
+—a(4+10¢,)(20 - 20g,) > 0.

Now, to obtain the quantity hm
rewrite the inequality above as

2F(q)F(q) +G,(g)>0

where

ry(d(n)), we

n—oc

Fi(q) = [4Ya — 20+ 10a g, + 204",
F,(q)=(20—2a - 20q,),

and
1
G,(q) = ~a(4+10¢,)(20 - 20g,)*

To establish the desired himut for r(d(n)), we
observe that if g, =1— {5a and ¢, = —04, then

2F(q)F(q) + G,(q) =0.
That 1s, for all n,
r(d(n)) <1- wa.

Furthermore, 1t 1s also easy to venfy that for
arbitrarily small &> 0, there exists an integer N,
having the following property: For any fixed n >
N, and any uncertainty ¢ € Q) _, ;10—

2F(q)F(q) + G,(q) > 0.
Hence, for n> N,,
r(d(n))=1—-a—e¢

From the two inequalities involving ry(d(n))
above, we conclude that

hm ry(d(n))=1- sa.
n— oo

Hence, the claim is established
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Step 2: We claim that for n sufficiently large,

r.(d(n)) > ry(d(n)) (3)

for 1=1, 2, 4. Indeed from Condition 1, 1t 1s
trivial to see that

n(d(n))=1.

To verify (3) for r,(d(n)), we view the left hand
side of Condition 2 as a function of (g, g,) It
suffices to show that this function is positive on a
box of radius r =1 — #a. To this end, notice that
for arbitrary |gq,| <r<0.5 and ¢, <r<0.5, it 1s
easy to verify that we have crude bounds

(20 — 204,)(44 + 2a + 10g, — 40q,) > 300
and
20 + 8a + 20aq, — 20q, < 150.

Therefore, the left hand side in Condition 2 re-
mains positive as required.

Finally, setting the left hand side of Condition
4 to zero, it is straightforward to obtain the for-
mula

na—4

A(d(m) = i =Ty

Hence, it 1s easy to see that
lim r,(d(n))=13%
n— a0

which implies that r,(d(n)) > r;(d(n)) for n suffi-
ciently large.
Step 3: We claim that

lim rp,, (d(n)) =1- {ta=0.417.
n— oo

This claim follows easily from Steps 1 and 2. That
is, we have

]im rmax(d(n)) = hm rB(d(n))
=1- 4a=0.417.

Step 4: We claim that

e (%) = 152

Indeed, as in the d(n) analysis, we use the for-
mula

roax(d*) = | min (r(d*)) @

~(0.234.

where r,(d*) 1s obtained from the i-th Hurwitz
inequality at d*. Analogous to Steps 1-3, we first
analyze Condition 3 with n — oo. By a straightfor-
ward computation, 1t 1s easy to verify that Condi-
tion 3 is equivalent to

2(4/a — 20 + 10Va g, + 20g,)’
(20 — 2a - 20q,) > 0.

Now, we examine each factor separately and ob-
tain the margin

7T—a

r3(d*)= 5

= (0.234.

Next, reasoning exactly as in Steps 2-3, 1t is easy
to venfy that

r(d*)=1>n(d*),
r(d*)>r(d*),
ri(d*)=1%>nr(d*).
Hence, from (4), we obtain

e (@%) = 1y(d %) = 152

=(0.234.

The proof of the claim is now complete.

Yes—No Problem. The discontinuity claim above
can also be interpreted in terms of the yes/no
problem formulation discussed in the Introduc-
tion. To illustrate, consider a robust stability prob-
lem with given uncertainty bound r=0.3. Now,
the following problem arises: When using d *, the
answer to the robust stability question is “no” but
taking d(n) the answer is “yes”.

Remarks. In practice, the robustness margin can
be computed via a number of methods. For exam-
ple, instead of using a Hurwitz matrix as in the
proof of the claim above, one can use the well-
known frequency sweep method. That 1s, letting

Tmax(d, @) =sup{r: p,(jw, g)#0
forall g€ Q,},

it then follows that

Fmax(d) = inf r_, (d, w).
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In our specific example, solution by frequency
sweep method for n finite leads to

rmax(d(n)v ‘IJ)

max{C,(w). D,(w)} 1if w#0,
= Sna—4
10(na — 1) if w=0,
where
2
@ -a)(e -
C(w)= 108 (o) 04|,
2
_|a(w?—a)
D.(e) =102 ta) "
and

A, (w) =w4—a(2— %)w2+a(a— %)

In the hmiting case, we obtain

W =5l _a

maxy 1710 ‘ 10|

rmax(d*’w)z ifw=/=0,w=#‘/;,
1 if =0,
3(7-a) if w=va

4. More complicated uncertainty structures

Given the uncertain polynomial p,(s, g), it 18
natural to wonder whether some simple aprior
test for discontinuity of r,, (d) 1s possible Al-
though we feel that this may ultimately prove to
be the case at the basic level of linear uncertainty
structures, the aprionn detection of discontinuity
may be extremely difficult for more complicated
uncertamnty structures.

In this section, we show that examples of dis-
continuity for multilinear uncertainty structures
are easily created by ‘embedding’ the polynomual
given in Section 3 into a more complicated struc-
ture 1n such a way that it may not be apparent
what 1s causing the trouble. To this end, let

gd(n)(si q) =pd(n)(s’ q)f(s. q)
where p,,,(s, g) 1s given by (1) and

f(s,q)=s+(1+q)s+(1+4q;).

Similarly, we take

g4+ (5. q) =pa (5. q)f(s.q)

where p,«(s, g) is given by (2). Note that the
uncertainty structures above are multilinear and
the first factors in g4,,(s, ) and g «(s, q) are
the same polynomials which were used 1n Section
3. Moreover, since the robustness margin of f(s, q)
15 unuty, it follows that the margins for g, ,,(s, 9)
and g,+(s, q) are exactly the same as those found
for pyn(s, q) and p,«(s, q) in Section 3 Notice
that if gy,,(s, ¢) and g,. (s, q) are given in ex-
panded form rather than factored as above, the
detection of the discontinuity becomes much more
difficult. That 1s, if one has a theory to flag
discontinuity at the level of affine linear uncer-
tainties, then one 1s faced with a complicated
factorization problem. As seen below, matters can
be even worse because it 1S easy to construct
examples for which a factorization does not exits

Modification which does not permit factorization.
Take f(S, q)’ gd(n)(sv q)v gd*(s’ q)v pd(n)(s’ ‘I),
pa+(s, q), d(n) and 4* as above and let {b,);,
be any sequence of positive real numbers con-
verging to zero. Now, using the polynomials
8am(s. q)+b, and g,.(s, g), it can be shown
(see Appendix) that the same discontinuity phe-
nomenon occurs along appropnately constructed
subsequences (d(n,))>; of (d(n));-, and
(b,, Yi=1 of (b,)7_,. Moreover, by examination of
the coefficients of s° 1t is easy to see that a
factorization of the modified polynomuials into a
product of polynomials each having affine uncer-
tainty structure 1s impossible. That is, 1t 1s
straightforward to verify that the quantity

coef(s?) =a(5a— % + 10(a— %)41)(1 +q5)
+b,

cannot be factored as a product of two affine
linear functions of q.

5. Conclusion

In view of the arguments and examples given 1n
thus paper, 1t 1s felt that mvestigation into condi-
tioning properties of the robust stability problem
15 an important area for future research.
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Appendix

We consider the same setup as in Section 3; 1.e.,
p4(s, g) is a monic polynomual with robustness
margin r,,,(d) and {(d(n));_, 15 a sequence con-
verging to d*. Given any ¢ > 0, define
Pa(s, g, €) =pa(s, q) +e
whose robustness margin is denoted by 7., (d, €).
Now, we establish a basic lemma.

Lemma. Suppose that for each n,

Tmax (d(n)) > B.

Then there exists an integer N and a sequence
(&,)>_, of positwe numbers converging to zero such
that

Fmﬂx(d(n)’ e’l) > ﬁ

foralln=N.

Proof. Since d(n) converges to d*, pick N such
that

|[d(n)—d*| <1

for all n> N. Now, letting n > N be fixed, the
proof continues with a sequence of claims.

Claim 1. There exists an w,>0 having the
following property: For arbitrary |w| > wy, g€
Qp and e €0, 1},

|ﬁd(n)(.l“-’r q9, “3)| #0.

This claim is easily established after noting that
for w sufficiently large,

o> max{| .0, 4) = 00)":
g€ Qp; e€[0,1]; |d—d* | <1}.

Claim 2. With w, as in Claim 1 and e € [0, 1],
let
F, () émin{'ﬁd(n)(j‘l’, q, 5)|3 g€ Qp; |w]| 5"’0}-
Then
F,(0)>0.
This claim is established by contradiction. Indeed,
if F,(0) =0, it follows that | p;,,(»*, 4*,0)| =0
for some |w* | < w, and ¢* € Q. Hence,

Fmax (d(n)) = oo (d(n), 0) < B,

which is a contradiction.

Claim 3. F,(&) 1s continuous with respect to
e €0, 1]. This claim follows from continuous de-
pendence of j,,,(w, ¢, €) on (w, ¢, €) and com-
pactness of [ —wy, wy] and Qg. That 1s, F,(e) is an
infimal value function; e.g., see Berge [12]

Claim 4. There exists some ¢} > 0 such that

F,(e)>0

for all e [0, ¢*]. This claim is immediate from
the fact that F,(0) > 0 and F,(¢) is continuous.
To complete the proof of the lemma, take

o7 )
g, =min{ —, €

Now, by construction, 1t follows that the sequence
(e, )n_, converges to zero and

F,(e,)>0

for all n > N. Consequently,

ﬁd(n)(J“” q, En) +0

for all w € R and g € Q. This implies that
Frax (d(n), €,) > B

for all n> N The proof of the lemma 1s now
complete.
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