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A CLASSIFICATION SCHEME FOR VISUAL DEFECTS ARISING IN SEMICONDUCTOR
WAFER INSPECTION
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and
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In this paper we describe a novel scheme to characterize surface defects and flaws that arise in semiconductor wafer processing.
This is done by analyzing the texture of an image of the defect. We have developed a taxonomy for textures. which classifies textures
into the broad classes of disordered, strongly ordered and weakly ordered. Disordered textures are described in terms of their fractal
dimension. strongly ordered textures are by the placement of primitives, and weakly ordered textures by the underlying orientation
field. We have developed an algorithm to measure the fractal dimension of a given texture. We use the qualitative theory of
differential equations to devise a symbol set for the weakly ordered textures in terms of singularities. We have devised an algorithm to

process an image of a defect and extract qualitative descriptions based on this theory.

1. Introduction

The identification, description and classifica-
tion of defects and anomalies is a difficult prob-
lem in process control and automated inspection.
Unfortunately, there is no standardized scheme to
describe defects and anomalies. Most of the fea-
tures used are highly subjective, and terminology
varies considerably.

Hence, there is a need for designing a standar-
dized description scheme. The advantages of a
standardized scheme are that it will allow for a
description of new defects that may arise in the
future and that cataloging the defects will become
systematic [1]. Faced with an absence of standar-
dized symbols, inspection personnel in the semi-
conductor industry are forced to devise peculiar
jargon to describe various textures that are created
during the manufacturing process.

* Formerly at the Artificial Intelligence Laboratory. Univer-
sity of Michigan. Ann Arbor, Michigan 48109-2110, USA.

Fig. 1 illustrates some concrete jargon that is
popularly used to describe different kinds of
anomalies and defects arising during wafer
processing. Such a scheme is ad-hoc. and a more
scientific scheme is desirable.

Texture plays a critical role in inspecting
surfaces that are produced at various stages in all
types of manufacturing [2]. For instance. in the
inspection of semiconductor devices. surface tex-
ture is an important factor that is used to decide
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Fig. 1. Mustration of the jargon used by the semiconductor
industry to describe different kinds of visual defects arising
during the manufacturing process.
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the integrity of a fabricated device [3}. Since many
types of defects are rich in textural content, we
have devised a standardized taxonomy to classify
and describe textural defects.

1.1. The proposed classification scheme

Fig. 2 shows the proposed scheme, which is
hierarchically ordered. Textures are broadly di-
vided into ordered and disordered textures, based
on the presence of repetitive primitive elements
and the directionality of the texture. Textures hav-
ing neither directionality nor repetitiveness are
called disordered, e.g. sand. Textures that exhibit
repetition of some primitive element are called
strongly ordered, e.g. brick wall, honeycomb. Tex-
tures that exhibit directionality (which may vary
locally) but do not contain a primitive element are
called weakly ordered, or flow-like, e.g., wood
grains, fractographs.

2. Analyzing disordered textures

In order to analyze disordered textures, we
need to describe parameters related to the rough-
ness of the texture. For the measurement of
roughness we have implemented an algorithm to
compute the fractal dimension of a surface, called
the “reticular cell counting” anrroach [4]. The
fractal dimension of the texture consititutes a use-
ful measure of roughness. This is because studies
have shown [5] the fractal dimension to correlate
very well with a human’s assessment of surface
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roughness. The fractal dimension defines how
jagged or crumpled a surface is, D=2 corre-
sponding to a flat plane and D = 3 corresponding
to a highly spiked surface.

This method has been implemented [6], and the
results of applying the method to some IC images
are shown in figs. 3a through 3d. The boxes in the
image show the regions selected for roughness
measurement. The numbers within the boxes show
the fractal dimension computed for that part of
the image.

3. Analyzing weakly ordered textures

Weakly ordered, or oriented textures are char-
acterized by local selectivity of orientation, which
can vary arbitrarily over the entire image. In other
words, the texture is anisotropic. Every point in
the image is associated with a dominant local
orientation, and a local measure of the coherence
or degree of anisotropy of the flow pattern. We
define the orientation field of a texture image to be
comprised of two images, called the angle image
and coherence image. The angle image captures
the dominant local orientation at each point in the
texture in terms of an angle, and the coherence
image represents the degree of anisotropy at each
point in the texture.

3.1. Overview of approach

Our approach to the problem of oriented tex-
ture description is to view it as a two-stage pro-
cess. The first stage is concerned with extracting
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Fig. 2. Illustration of the taxonomy for texture.
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Fig. 3. The results for surface roughness measurement using fractal dimension. (a) SEM image of a silicon wafer. The surface on the

right is rougher than the surface on the left. hence the fractal dimension for the right surface is higher than that of the left surface.

This result shows that the fractal dimension corresponds to the intuitive ordering of surface roughness. (b) SEM image of a GaAs

wafer. The surface consists of metal deposited via evaporation on a substrate after an RIE etch process. (¢) Image of a silicon wafer
obtained through an optical microscope. (d) Dark field image of a silicon wafer.

an orientation field from the raw image. We use
the algorithm developed by Rao and Schunck [7]
in order to extract the orientation field.

The second stage is concerned with performing
computations on the orientation field in order to
derive a qualitative description. This is described
in section 4.

3.2. Obtaining the orientation field

We present a brief overview of the method for
estimating the orientation of a texture field. and
details may be found in ref. [7].

There are five steps to estimating the local
orientation of the texture field:
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(1) smooth the image with a Gaussian filter tuned
to the wavelength of the pattern;
(2) compute the gradient of the smoothed image;
(3) find the local orientation angle;
(4) average the local orientation estimates over a
small neighborhood;
(5) compute a measure of the coherence (the de-
gree of flow-like texture) of the pattern.
The coherence of the oriented texture pattern is
a measure for how strongly anisotropic the texture
is within a local neighborhood. Let the gradient
vector at point (i, j) in the image have the polar
representation G, jew'f.AThus, the estimate of the
dominant orientation 8 at the center (m, n) of an
N X N neighborhood of the image is given by

i=m+N/2 j=n+N/2

Y Y. G}sin2g,
_1| i=m-=N/2 j=n—=N/2
i=m+N/2 j=n+N/2

Y > G} cos 26,

i=m—N/2 j=n—N/2

(1)

The estimated orientation angle at (m, »n) is then
6., + 7/2, since the gradient vector is perpendicu-

Fig. 4. (a) The original image of the orange peel defect, obtained at a magnification of 500, using Nomarski phase contrast. (b) The

lar to the direction of anisotropy. Let 0:,,,., denote
the estimated orientation angle at point (m, n),
found in the earlier step. To find the coherence at
point (m, n), consider the point (i, j), where i
and j are chosen so that they fall within a window
W of prescribed size around the point (m, n). The
measure of coherence is defined by

| Z ” G,; cos(6,—6,,) H
o= Gm" (i, jyew Z - ) (2)
ij

(i.pHew

Thus, one can obtain a description of the tex-
ture by using egs. (1) and (2).

3.3. Analyzing an orange peel defect

An orange peel defect arises when the surface
texture appears wrinkled, like the skin of an
orange. Such a wrinkled texture is actually an
oriented texture, and the method described in this
section can be used.

Fig. 4a shows an image of an orange peel
defect. The sample consists of a silicon wafer that

orientation field overlayed on the original image in the form of white segments.
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has undergone an isotropic etch using hydrofluo-
ric and nitric acids. The photoresist has a wrinkled
appearance, and the appropriate classification for
this type of defect is to term it a weakly ordered
texture. Fig. 4b shows the orientation field over-
layed on the original image. The orientation field
is portrayed by white segments. such that the
direction of the segment corresponds to the orien-
tation of the underlying texture. and the length of
the segment i1s proportional to the coherence of
the texture.

Currently, inspection technicians use terms like
“moderate” orange peel and “severe” orange peel
to describe the severity of the defect. However. no
precise guantitative measure 1s available. Hence.
we propose the following measure for the severity
of an oriented texture defect. such as orange peel.
Find the average coherence p over the image of
the defect. where p is defined in (2).

In the case of the image shown in fig. 4. the
average coherence measure for the region of orange
peel is 0.12, which represents the severity of the
defect.

4. Using phase portraits to analyze the orientation
field

The question that we address in this section is:
given the orientation field, what higher level (sym-
bolic) descriptors of the field are meaningful? This
will provide qualitative descriptions of the texture.

The problem is formulated with the help of
concepts from the geometric approach to differen-
tial equations. The basic idea is to view a given
texture flow pattern as being comprised of piece-
wise linear flows, and to describe each linear flow
by means of an equivalent phase portrait. The
phase portrait i1s a two-dimensional figure and
represents the qualitative behaviour of a system of
differential equations by a family of trajectories.

A system

x(1)=%=X(x), (3)

where x 1s a vector in R” is called a linear system
of dimension n if X: R"— R" is a linear map-
ping. It can be shown that only a finite number of

qualitatively different phase portraits can arisc for
linear systems [8]. If X: R” — R" is a linear map-
ping. eq. (3) can be written in the form

Ht)=X(x)=Ax. (4)

where 4 1s the coefficient matrix.

To examine the qualitative behavior in the
plane, we must look at the fixed points or singulur
points of eq. (3). When matrix 4 is non-singular,
we get the phase portraits summarized in fig. 7.
The phase portraits are shown in a necighborhood
of the origin, which is the fixed pomt. The
nomenclature for the types of phase portrait. viz.
node. saddle: star-node, improper node. center and
spiral are standard terms in the geometric theory
of differential equations [9.8].

In the case of an affine transformation we get

)

wn

A1) =X(x)=Ax+b. (

where b is a constant vector. The above equation
has a fixed point at

x,=—A 'b. {6)

One can treat a texture as being comprised of
piecewise linear flow. What we must accomplish is
to uncover the differential equation, or the phase
portrait that best matches a portion of the given
texture. This will allow for a qualitative descrip-
tion of the texture which is firmly grounded in the
theory of differential equations. The process is
discussed in detail in ref. [10].

Segmentation of the flow image into qualita-
tively different classes can be performed once we
obtain an estimate of the form

£(1)=Ax+b, (7)

where 4 and b are least squares estimates. Least
squares fitting is performed over successive over-
lapping windows of size 11 X 11 until the entire
image is covered. Fixed points can be identified
by using eq. (6).

Once the fixed points of various phase portraits
are 1dentified, we can find ou the values of matrices
A and b that represent the best fit at each fixed
point. This information can be used to reconstruct
the given texture within a neighborhood of the
fixed point. This is the method we use in order to



A.R. Rao, R. Jain / Classification scheme for visual defects 403

reconstruct salient features of the original texture. 4.1. Analysis of a resist gel defect

To summarize, we obtain a segmentation of the
given texture, and the computation of a likelihood
map describing the locations of singularities or
fixed points. These results are then used to derive
symbolic descriptions of the given textures, and to
reconstruct the original texture based on these
descriptions.

Fig. 5a shows a 240 X 240 image of resist center
defect, obtained from ref. [11]. The result of apply-
ing the orientation estimation algorithm described
in section 3.2 is displayed in fig. Sb. The orienta-
tion field is calculated for each point in the image,

() (b)

node saddle spiral

()

Fig. 5. (a) The original image of the resist gel defect. (b) The orientation field overlayed on the original image in the form of white

segments. The length of each oriented segment is proportional to the coherence. (c) The segmented image. The different types of

phase portraits possible have been coded. Note that the areas around the defect are classified as spiral regions. (d) Shading key for
phase portraits. (¢) Map of spiral fixed points.
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Description ol given 1image:
Spiral fixed points located

at following points:-
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Fig. 6. (a) Symbolic description of the input image. (b) Reconstructed image, based on this symbolic description. This corresponds to
the original image in fig. 5. Observe that the salient feature of the original image, namely the concentric circles of the texture. has
been captured in the reconstructed image.
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Fig. 7. Classification of different phase portraits based on the nature of the eigenvalues and the assoctated Jordan forms.
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but is displayed in a sampled form in order to
avoid clutter.

In fig. 5b, the orientation field is overlayed on
the original image to aid comparison. The orienta-
tion at each point is represented by means of a
line segment, whose direction corresponds to the
dominant local orientation, and whose length is
proportional to the coherence. Observe that the
segments capture the orientation of the texture at
each point, and orient themselves along the direc-
tion of dominant orientation.

Fig. 5c¢ shows the initially segmented flow
image. Segmentation is performed into the follow-
ing classes: nodes, spirals, and saddles (this is the
smallest number of equivalence classes). The seg-
mented regions are gray-level coded, according to
the scheme shown in fig. 5d.

Fig. 5¢ shows the spiral fixed point map. The
map is printed such that the likelihood of a map
point being a fixed point is proportional to the
intensity at that point. The location of the fixed
point agrees with the nature of the original defect
image.

Reconstruction of the resist gel defect

The symbolic description of the image is auto-
matically generated from the program as shown in
fig. 6a. Fig. 6b shows the reconstructed flow image
based on values for 4 and b at the saddle fixed
points.

4.2. Application to semiconductor defect identifica-
tion

In section 1 we had mentioned problems faced
by inspection personnel in trying to describe de-
fects accurately. Based on the theory and results
presented in this paper, we are now in a position

Table 1
A scientific terminology for describing some defects arising in
semiconductor wafer processing

Currently used jargon  Equivalent scientific term

Star-bust Star node

Worm hole Center

Speedboat Section of a saddle

Hillock Surface with high fractal dimension

to give a much more scientific scheme to describe
and classify the same defects. Table 1 illustrates
new terms for the jargon currently being used. The
appropriateness of the new scheme can be readily
seen by comparing fig. 1 which shows the ap-
pearance of the defects, with fig. 7, which shows
linear phase portraits in the 2D case.

5. Conclusion

In this paper we presented a novel method to
classify textural defects arising in semiconductor
wafer inspection. This method involves a taxon-
omy for textures. We have provided the qualita-
tive symbols that form the taxonomy and also
computational techniques to extract these sym-
bols.

We presented results of applying this technique
to real texture images of semiconductor wafers.
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