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1. IN~ODUCT~~N 

Let K be a compact subset of !45!’ (s 3 1) satisfying K = Int(K) and denote 
by C(K) the space of continuous, real-valued functions on K. Let 
W, = (WELT: w>O on K} and, for WE IV,, let C,(K) denote the 
space C(K) endowed with the w-weighted L1-norm 

where ~1 denotes Lebesgue measure. If U is a finite dimensional subspace of 
C(K) and fe C(K), let P,(f) denote the set of all best I/. /j,-approxima- 
tions to ffrom U, and let qJ U) denote the set of all functions in C(K) that 
have unique best 11. I/ ,-approximations from U. We say that U is C~~~~~~~~ 
in C,(K) if 4&,(U) = C(K). 

Recently there has been considerable interest in characterizing the 
Chebyshev subspaces of C,(K) owing to the recent discovery that the 
spaces of spline functions on [0, 1 ] with fixe knots are Chebyshev in 
C,[O, l] (see [3,21 and references therein] as well as the older result of 
Krein [ 19, p. 2361) that spaces satisfying the Haar condition on (0, 1) are 
Chebyshev in Cr[O, 11. The only complete characterizations of the 
Chebyshev subspaces of C,[O, l] involve references to the best approxima- 
tion problem or characterizations of best approximations rather than a 
structural property of the subspace C&22]. However, a structural 
property, called the A-property, that is satisfied by the spaces mentioned 
above was introduced by Strauss [23] and shown to be sufficient for a sub- 
space to be Chebyshev in C,(K). A subspace U of C(K) is said to satisfy 
the A-property (or be called an A-space) if for every u E U\(O) and every 
continuous function B: K\Z(u) --+ ( - 1, 1> there exists 2; E U\(O) such that 
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v=O a.e. on Z(u) and 0~20 on supp(u). Here Z(f)= (xEK: f(x)=O) 
and supp(f) = K\Z(f) for f~ C(K). This particular version of the 
A-property was given in [S]. Subsequently, Kroo [7] and Pinkus [13] 
showed that the A-property is necessary and sufficient for a finite dimen- 
sional subspace to be Chebyshev in C,(K) for all w  E W, . In fact, necessity 
requires far fewer weight functions [9, 161. When s = 1 and K= [O, 11, 
Pinkus [ 131 gave a complete “spline-like” description of the A-spaces. In 
the multivariate setting, the situation is not so neat. For instance, when 
s = 2 and K is a rectangle, the known A-spaces include those that reduce 
to univariate A-spaces (through multiplication by a positive continuous 
function or a diffeomorphic transformation of the domain) [lo], the space 
of linear functions, and certain spaces of linear splines with triangular 
elements (see Sommer [20]). Unfortunately, most spaces of polynomials 
and tensor products of univariate spline spaces fail to satisfy the 
A-property. For the fixed weight function w  = 1, few examples of 
Chebyshev spaces are known (see [6,20]). Particularly, it is not known 
whether the polynomials of total degree <n (n > 2) or the tensor product 
of the univariate polynomial spaces of degree dn, m (n, m > 2) are 
Chebyshev in C,(K) when K is a rectangle in BJ2. 

Since many of the important approximating spaces in the multivariate 
setting fail to be A-spaces, we weaken the requirement that %J U) = C(K) 
and examine the question of whether %J U) is dense in C(K) relative to the 
(1. Ij ,-topology or the uniform norm 11. Ij ,-topology. In Section 2, we 
demonstrate that @,J U) is I/. 11,-d ense in C(K) for any finite dimensional 
subspace U of C(K). Of interest here is a recent result of Pinkus [ 141 that 
the metric projection P, admits a 11 . /I ,-continuous selection if and only if 
U is Chebyshev in C,(K). This result will follow immediately from our 
theorem in Section 2. In topologically assessing the prevalence of unique- 
ness for L’-approximation in C(K), it may be more pertinent to use the 
uniform norm. One reason for this is that C(K) with the uniform norm is 
complete and in Section 3 we will show that if G?&,(U) is 11.1) ,-dense in 
C(K), then C(K)\%+4 U) is of first category in C(K) relative to the 11. II m- 
topology. A second reason is that computational errors tend to be 
uniformly small. Thus when a,+,(U) is 11. II ,-dense in C(K), if we “ran- 
domly” but continuously perturbf, then we are almost sure that the result 
has a unique best I/ . II ,-approximation from U. Furthermore, in Section 3, 
when K is locally connected and the nontrivial elements of U have sparse 
zero sets, we give a necessary and sufficient condition for 4&(U) to be 
II.II ,-dense in C(K). Essentially the condition is that no continuous sign 
function annihilates U. In Section 4, we vary the weight functions and com- 
pletely characterize those finite dimensional subspaces U of C(K) for which 
+&(U) is I( . /I ,-dense in C(K) for all w  E W, . There is a striking similarity 
between the A-property and our condition-specifically, Z(u) is replaced 
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by Int Z(u). We shall also see that the conditions of our theorems are easy 
to check as we apply them to multivariate polynomial spaces and tensor 
product spline spaces. We remark that topological assessment of the extent 
of uniqueness is not new. In [4], Garkavi defined a subspace U of a 
Banach space B to be almost Chebyshev in B if the set of elements o 
having unique best approximations from U is of first category in 
his primary tools was a lemma similar to our Lemma 3 which re 
almost Chebyshev property to the density of the uniqueness set in 
B is separable and U is reflexive. In [IS], Garkavi characterized 
dimensional almost Chebyshev subspaces of C(Q) (uniform approxima- 
tion); and in [15] Rozema characterized the almost Chebyshev subspaces 
of L”(R, C, v) and related this property to the nonexistence of co~ti~~~~~ 
selections of the metric projection as we have done in the present context. 
In simplified form, if Q contains no isolated points, then the almost 
Chebyshev subspaces of C(Q) are those for which all nontrivial elements 
have sparse zero sets, and if (a, 2, v) contains no atoms, then all finite 
dimensional subspaces are almost Chebyshev in L’(Q, C, v) (although 
none are Chebyshev). We refrain from using the term “almost Cheb 
in the case of 11. //,-density of %JU) since C,(K) is not complete. 
C(K)\@!,(U) is of first category in C(K) with respect to the /I ~ /I ,-topology, 
we call U uniformly almost Chebyshev in C,(K). 

2. DENSITY OF UNIQUENESS IN C,,(K) 

In this section we demonstrate the density of @JU) in C,(K) for any 
finite dimensional subspace U of C(K) and any w  E IV%. In fact, our result 
is stronger in that for every f E C(K) and u,, E P_(J), wO is a strongly 
unique best [I . I/ ,-approximation to continuous functions arbitrarily near f 
in the /I . I/ ,-sense. We say that uO is a strongly unique best // . I/ ,-approxima- 
Zion to f from U if there is a positive constant y > 0 such that 

for all u E U. 

THEOREM 1. Let U be a finite dimensional subspace of C(K), sli E 
f E C(K) and uO E P,,,(f ). For any E > 0 there exists g E C(K) such 
Iif- g/l Mi < E and uO is a strongly unique best //. I/ ~.~a~~roximat~o~ to g 

from U. 

Before proving Theorem 1, we state two lemmas. The first is a 
known characterization of best L’-approximations 118, 191 and the se 
is a characterization of strongly unique best Lo-approximations due to 
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Niirnberger [ll]. Although both lemmas hold in general L’-spaces, we 
only state them in the pertinent context. 

LEMMA 1. Let U be a finite dimensional subspace of C(K), w  E W, , 
f E C(K)\U, and u0 E U. The following are equivalent: 

(1) uo E Pdf) 
(2) foralluEU 

(3 ) There exists measurable cr : K--f { - 1, 1) such that o = sgn( f - uo) 
on supp( f - uo) and for all u E U, 

s cm dp = 0. 
K 

(2.1) 

In Lemma 1, generally we only have 1~1 d 1 on Z(f - uo), but when the 
underlying measure space contains no atoms (as in the present context) we 
can assume that 1~1 = 1 on Z( f - uo) (see [ 12, Lemma 21). 

LEMMA 2. Let U be a finite dimensional subspace of C(K), w  E W,, and 
f E C(K)\U. Then 0 is a strongly unique best II.Ij ,-approximation to f from 
U if and only if 

s suPPw 
u(wf)w&<j blwd~ 

Z(f) 

for all UE U\(O). 

Proof of Theorem 1. We write the proof only for w  = 1. For arbitrary 
w, the same proof holds with ,U replaced by the measure ,u~ given by 
dp, = w  dp. Without loss of generality, we assume that u. = 0. By Lemma 1, 
there exists measurable CJ: K -+ { - 1, 1 } so that 0 = sgn f on supp(f) and 
(2.1) for all UE U. 

Fix UES~,:= (UE U: llu/loo = l}. By (2.1), the sets P, := (XE K: 
B(X) U(X) > O> and N, := (X E K: G(X) u(x) < 0) have positive measure. 
If P, n Z(f) has positive measure, choose ru 3 0 so that the set A,:= 
kZ(f): ( ) ( ) r~ x u x > r,} has positive measure. If P, n Z(f) has measure 
zero, then P, n supp(f) has positive measure and thus is nonempty. 
Choose XE supp(f ) so that a(x) u(x) > 0. Since 0 is constant in a 
neighborhood of x, we can choose r,>O and open A,, so that 
XE A, c supp(f) and cru > r,, on A,. In either case, dU := (v E S,: rrv > 0 on 
A,] is a /I. 1) ,-neighborhood of u in S,,. 



ALMOST CHEBYSHEV PROPERTIES 339 

Since S, is compact, there exist finitely many ul, . . . . u, E 5’” such that 
S,G /Jr= I dui. In particular, for every UE S,, ou> 0 on A,,, for some 
i = 1, . . . . n. Reorder the uls, if necessary, so that A,,, . . . . A,, G supp(f) and 

Uk+,, . . . . A,,, c Z(f). Since f is integrable, we can choose 6 > 8 so that 

i:i;:l dP < E for any measurable subset T of K with p(T) < 6. For 
2 ..., k, choose nonempty open Oi and Vi so that Oic Oj c Vi c A,,, anhf 

p(Vi) < 6/(2k), and let 0’ = lJf= I Oi and V’ = u$= i Vi. Thus 0’ and V’ are 
nonempty open sets, p( V’) < 612, 0’ G 0’ E V’ E v’ c supp(f ), and for 
every u E S,, ou>O on a subset of Z(f)u 0’ of positive measure. 
Similarly, we can find nonempty open sets 0” and V” so that p( V”) < S/29 
0” E 0” E V” G supp(f), and for each u E S,, GU c 0 on a subset of 
Z(j) u 0” of positive measure. Letting 0 = ’ u 0” and V= V’ v Vu, we 
see that 0 and V are nonempty open sets, 

and for every UES, 

0 E OS vc supp(f ). 

#MV<6. (2.2) 

p{XEOuZ(f):(TU>Q)>O (2.3) 

and 

p{xEOuZ(f):ou<0)>0. 62.4) 

Now we choose g G C(K) satisfying g = f on K\V, g = 0 on 0, an 
sgn g = sgn f and lgl< IfI on V\B. Such a construction can be made 
using a Urysohn function C# where I$ = 1 on K\ V, 4 = 0 on 0, and 0 < 4 < 1 
on V\B and letting g=f$ By (2.2) 

Also, Z(g) = 0 C.J Z(f) and sgn g = sgn f = CJ on supp( g) = supp( f )\ 
(2.1) (2.3), and (2.4) for YES”, 

s 4sgn g) & = j uodp= - I urrdp< 
suPP(g) SUPP(&T) Z(G) s Iul &. (23 

Z(g) 

By homogeneity, (2.5) holds for all u E U\{O}, and by Lemma 2, 0 is a 
strongly unique best II . // ,-approximation to g from CJ. 

The density result now follows immediately. 

COROLLARY 1. For any finite dimensional subspace U of C(K), @X,,.(U) is 
/I . /I ,-dense in C(K) for all w E W, . 
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Pinkus’ result on continuous selections also follows. 

COROLLARY 2. Let U be a finite dimensional subspace of C(K) and 
WE w,. A necessary and sufficient conditions for P, to admit a Ij.II ,,,- 
continuous selection is that U be Chebyshev in C,(K). 

Proof As is noted in Pinkus [14], sufficiency is well known. For 
necessity, suppose U is not Chebyshev in C,,,(K). Choose f E C,(K) for 
which P,(f) contains two distinct functions u0 and ui. By Theorem 1, 
there exist sequences ( gk) and (hk) in C(K) where /I g,- f /lw + 0, 
/I h, -f/I w  -+ 0, P,(gk) = {u,,}, and P,(h,) = { u1 >. For any selection G of 
P,, G( gk) = u0 and G(h,) = ui. It is now clear that G cannot be 11. IIw- 
continuous at .f: 

3. UNIFORM DENSITY OF UNIQUENESS 

When K is locally connected and Z(U) has an empty interior for all non- 
trivial u in a finite dimensional subspace U of C(K), we give necessary and 
sufficient conditions for U to be uniformly almost Chebyshev in C,(K) for 
lixed WE W,. 

THEOREM 2. Let K be locally connected, w  E W, and let U be a jkite 
dimensional subspace of C(K) f or which Int Z(U) = 0 for all u E U\(O). 
Then U is untformly almost Chebushev in C,(K) tf and only tf there does not 
exist a continuous sign function o: K -+ ( - 1,1} such that 

I cruw dp=O 
K 

(3.1) 

for all UE U. 

As in Section 2, we only prove Theorem 2 for w  = 1 and note that replac- 
ing p by CL, yields the proof for any w  E W, . We require three lemmas. The 
first demonstrates that in order to prove that U is uniformly almost 
Chebyshev in C,(K) it suffices to show that 9&(U) is 11 .[I,-dense in C(K). 
The statement and proof are similar to a result of Garkavi [4, p. 171-j; we 
include the proof for completeness. 

LEMMA 3. Let U be a finite dimensional subspace of C(K). If %I( U) is 
II ./I ,-dense in C(K), then U is uniformly almost Chebyshev in C,(K). 

Proof For k= 1, 2, . . . . let 

&= ftC(K):diam(P,(f))>i , 
> 
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where diam(d) denotes the /j. /I ,-d’ iameter of a subset A of C(K). 
Evidently, C(K)\%, ( U) = U F= I pk. 

To show that each pk is I/ . //,-closed, let (f,) be a sequence in Fk an 
f E C(K) where IIf,, -fll m -+O. For n = 1, 2, . . . . choose u,, u,~P~(f,) so 
that 

Now I/u,II 1, llvnll 1 d 2 llf,ll 1 -3 2 llfil 1 since /I. /I ,-convergence implies 
11. /),-convergence. Since dim U < co, we may extract subsequences an 
assume that u, --+ IA and v, -+ v where u, v E U. (Since dim U< oo), these 
latter convergences are with respect to any norm on U.) Since 
]if, -fll i -+ 0 and set valued metric projections onto finite dimensional 
spaces are upper semicontinuous, U, v E P,(f). Further 

l/~-vD/lm~ lb,--Al, -llU--U,llw-llv-vi?ln/lm 

a;-;- /lu-uu,Ij, - Ilv - v,*/l co. 

Letting IZ -+ co, we see that diam(P,(S)) > //~-~lj, 3 l/k so that f~&. 
Thus gk is // ‘11 ,-closed. 

Since sl(u) is j/ . I/ ,-dense in C(K), each Fk has an empty /j. // ,-interior, 
and thus C(K)\%,(U) is of first category in C(K) with respect to the 
II . II z-topology. 

Our next lemma sheds light on the nature of nonuniqueness in best 
I/. I/ ,-approximation, and various versions of it have been used fr~itfu~~~ 
in the literature. For f~ C(K) and UE P,(S), we call u an interior best 
j/ .I/ ,-approximation to f from U if Z(f- u) E Z(v - U) for all 0 E 43,(f). 
Specifically, an interior best approximation to f interpolates f on a rni~~rna~ 
set for all best approximations. 

LEMMA 4. Let U be a finite dimensional subspace of C(K). Thehetz every 
f~ C(K) has an interior best I/ I/ ,-approximation from U. 

Proof. If p,(f) is singleton, the statement is clear. Since B,(f) is 
convex and has finite dimension, it has a nonempty interior relative to its 
afline span. By translation, if necessary, suppose 0 is in the interior of 
relative to its affine span. Let D ~Pi(f). Then t e is an a > 0 so that 
+olv~Pi(f). Thus l\flll = /f-nvlll= llf+avjl, sincef=$(f-m)+ 
$( f f av), we have 
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By the triangle inequality for absolute value, equality above, and 
continuity off and v, /i(f- an) + {(f+ au)1 = +If- azll + #+ clvl on K. 
Hence, (S- av)(f + MU) > 0 on K. Thus f’ 2 a2v2 on K and Z(f) c Z(V). 

The main content of this section in the next lemma. 

LEMMA 5. Suppose that K is locally connected, U is a finite dimensional 
subspace of C(K), f E C(K), and u is an interior best )I .I) ,-approximation to 
f from U. If Z(f - U) $C Int Z(V) f or every v E U\ { 0}, then for every E > 0 
there exists g E al( U) such that I( f - gl/ m < E. 

ProoJ Again we assume with no loss of generality that u = 0. We first 
observe that given E > 0 there is a 6 > 0 so that if g E C(K) and 
11 f - gll i < 6, then lv(x)l <s/3 for all v E P,(g) and XE Z(f ). This follows 
since P, is I/. /I 1 - II.11 i upper semicontinuous [19, p. 3861 and II . II i and 
II.11 m are equivalent on U. That is, there is a 6 > 0 so that if g E C(K), 
Ilf-glll<~ and vEPIk), then there exists u E P,(f) so that 
Ilu-ull,<e/3. But u=O on Z(f) so that 1~1 <s/3 on Z(f). 

We also note that if II f - gjl 1 < 1 and v E P,( g), then 

(3.2) 

where K is the equivalence constant for the norms 11. II m and II . II 1 on U. 
Now define H: K -+ [0, CE ) by 

H(Y) = SUPMY)l : UE U, Ilull, GM, lul GE/~ on Z(f )>. (3.3) 

Since the set over which the sup is taken is II .]I ,-compact and therefore 
equicontinuous there is an open neighborhood 0 on Z(f) for which 
H < 2~13 on 0. Further, reline 0 so that If I < 43 on 0. 

Let { ul, . . . . u,} be a basis for U. By the hypothesis that Z(f) $& Int Z(v) 
for any VE U\(O), ul, . . . . u, are linearly independent on 0. Thus we may 
choose n distinct points y,, . . . . yn in 0 over which ui, . . . . u, are linearly 
independent. Thus 

det(ui(yj))zj= 1 Z 0. 

By the continuity of the ul’s, the local connectedness of K, and the 
regularity of ,u, there exist disjoint open connected neighborhoods 
V 1, . . . . V, of yl, . . . . yn, respectively, contained in 0, so that 

det(ui(tj))zj= 1 #O (3.4) 

when tj E Vi (j = 1, . . . . n) and 

(3.5) 
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(j= 1, . . . . n). Since K= Int(K), K has no isolated points and we may c 
SjE Vj\( ,Vi> (j= 1, ...) n). 

We now select g E C(K) satisfying the following conditions : 

g(Yj)=H(Yj) and &j) = -mj1 (j = 1, .~.) n) (3.6) 

\ n 
g=f on K 

\b > 
‘j 0’9) 

j=l 

1 gl G 2e13 On ,Cjl 5. (3.8) 

Since ]HI d 2813 and 1 f 1 < ~13 on U;= I Vj E 0, g can be obtained. 
and (3.8), j/f - g/l m <E. Also, by (3.7) and (3.5) 

llf-gIlI= i j If-Ad&E i AV,I<~intkl). (3.9) 
,=l v, j=l 

To see that g E “lii( U), using Lemma 4, let u be an interior best /j jj !- 
approximation to g from 0: By (3.9) j/uI/ ccI < M and /u/ < s/3 on Z(f ). 
the definition of H and (3.6), u(si) 3 g(sj) and u(yj) G g( y,) (j= 1, ..~) n)~ 
Since each I’, is connected, V, n Z(g - u) #Cl (j = I, ~.., n). Choose 
tie !+Z(g-24) (j= 1, . ..) n). If Pi(g) contained an element ZI other than 
U, then {tl ,..., t,}sZ(g-u)sZ(u-u). Since v-u#O, the basis ur ,... ,u,, 
would be linearly dependent on (t,, . . . . t,) so that 

det(uj(tj));j=, =O 

contrary to (3.4). Thus u E @i( U). 

Proof of Theorem 2. Suppose that a continuous oi : K -+ { - 1, 11 exists 
satisfying (3.1) for all UE U. For all f E C(K) with jj f - G./I m < 4 and v E U 
with llvljoc<~, o=sgn(f -v). By (3.1) and Lemma 1: v~P~(f). T 
6&(U) is not I/ . /j ,-dense in C(K) and U is not uniformly almost Chebys 
in C,(K). Conversely, suppose that no continuous sign function annih~Iates 
U. By Lemmas 4 and 5 and the condition that Int Z(u) = @ for all 
UE U\(O), it suffices to show that Z(f -v)# Izj for all f E C(K) and 
v~P,(f). If Z(f-v)=@ for some fEC(K) and v~P~(f), then 
o = sgn(f- v) would be a continuous sign function and by Lemma I, (3.1) 
would hold for all u E U, a contradiction. 

EXAMPLE 1. Let K= [a, b] x [c, d] ~9’. Since K is connecte 
only continuous sign functions on K are constant. Further if U== 
span{p,(x, ~1% . . . . P&, u)} where pl, . ..> pn are polynomials, then Z(p) has 
empty interior for all nontrivial elements p of U. By Theorem 2, U can fail 
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to be uniformly almost Chebyshev in C,(K) precisely when SK pi dp = 0 for 
i = 1, . ..) ~1. If p1 = 1, then it is easy to see that U is uniformly almost 
Chebyshev in C,(K) for all w  E W,. 

EXAMPLE 2. We see that the condition Int Z(U) = @ for all u E U\(O) 
cannot be removed from Theorem 2. Let K= [ -3,3] and U= sp(u,, u2} 
where u1 3 1 and 

u,(x)= 0 

i 

-(x+2) if -36x< -2 
if -2dx<2 

x-2 if 2<x<3. 

No constant sign function annihilates U, but U is not uniformly almost 
Chebyshev in C, [ - 3,3]. We refer the reader to the proof of necessity in 
Theorem 3 for the latter assertion. 

4. VARYING WEIGHT FUNCTIONS 

For a fixed weight function w  E W,, Theorem 2 characterizes those 
subspaces U that are uniformly almost Chebyshev in C,,,(K) under the 
condition that Z(U) has an empty interior for all u E U\(O). In this section 
we circumvent this condition by letting w  vary. 

THEOREM 3. Let K be locally connected and U be a finite dimensional 
subspace of C(K). Then U is untformly almost Chebyshev in C,(K) for 
all w E W, if and only if for every UE U\(O) and continuous 
rs: K\Int Z(U) -+ { 1, - I} there exists v E U\(O) such that v = 0 on Int Z(u) 
and gv 3 0 on K\Int Z(v). 

We note the striking resemblance between Theorem 3 and the 
A-property. The condition of Theorem 3 can be much easier to check since 
we need to check fewer sign functions in this case. This will be born out 
with an example on tensor product spline functions. 

Necessity of the condition requires a lemma on moments which was used 
by Kroo [S] and Schmidt [16]. We state the version used in L-161. 

LEMMA 6. Let (Q, 2, v) be a positive, finite measure space, S= 
span{s, , . . . . s,,} be an n-dimensional subspace of L”(O), and W be a convex 
cone in L w (Q) satisfying 

tf q E L”(4) and J qw dv > 0 for all w E W, then q 3 0 v a.e. on D (4.1) 
$2 
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and let 

If % contains no nontrivial functions that aye nonnegative v a.e. on 0, theaz 
A, = LJP. 

Proof of Theorem 3. For sufficiency, assume that the given condition 
holds and fix w  E W,. By Lemma 5 (with p replaced by p,,,) it suflices to 
show that for every f~ C(K) and u E B,Jf), Z(f - u) g Int Z(v) for all 
DE U\(O). Let f~ C(K) and suppose that OeP,(f) without loss of 
generality. Assume that Z(f) 5 Int Z(v) for some u t U\(Oi. Since sgn f is 
continuous on K\Z(f ), it is continuous on K\Int Z(v) E K\Z(f). 
hypothesis, there exists u E U\(O) so that u=O on Int Z(v)zZ(f) and 
u(sgn f) 3 0 on K\Z(v). As a result, 

julwdp=O<j u(sgnf)w dp 
xf) KC(/) 

which contradicts Lemma l(2). Sufficiency is now proven. 
For necessity, assume the condition fails. Then there exists an open set 

8 in K and continuous cr : K\O -+ ( - 1, I 1 such that the subspace 
u,=(u,EU:OcZ(u,)) is nontrivial and contains no nontrivial element 
u1 such that cul 3 0 on K\O. Let Uz be a complementary subspace of U, 
in U so that U= U,Q Ii,. 

We obtain w  E W, so that %!J U) is not // .//,-dense in C(K). We have 
that the subspace CJU, = (oG1: ui E U,} contains no nontrivial elements 
that are nonnegative on K\O. Indeed, aU1 contains no functions that are 
normegative a.e. on K\O because ui = 0 on Bdy(K\O) for all u1 E &I, ~ By 
Lemma 6, there exists a weight function M: defined on K\O such that 

I ou:wdp=O 
K\O 

for all U, E U,. (As is noted in [16], we can choose VU to be positive and 
continuous on K\O.) 

If Uz = {0), the proof proceeds just as in the proof of necessity in 
Theorem 2. We suppose that U2 is nontrivial. By definition of U,, no non- 
trivial element of U, vanishes identically on 0. Choosing dim U, points in 
0 on which a basis for U, is linearly independent and a closed 
neighborhood of this set of points contained in 0, we have a closed set 
FE 0 where 
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for all u2 E U,\(O). We extend w  to all of K so that 

j 
K\O 

(4.2) 

for all USE U2\{O). W e could choose PV = 1 on O/F and w  E c on F where 

and S, is the (1.1) ,-unit ball of Uz. However, w  could also be extended 
continuously. 

We now define f E C(K) for which all continuous functions uniformly 
near f have nonunique best 11. I/ ,-approximations. Since (T is continuous on 
the closed set K/O, we can choose f to be continuous on K satisfying 

f=G on K\O, 

f=O on F, 

and 

O<lfl<l on O\F. 

By (4.2) and Lemma 2, 0 is the unique best 11. /I ,-approximation to f from 
U,. Since metric projections are continuous at points having unique best 
approximations and 11. II ,-convergence implies I/ . I/ ,-convergence, we can 
find 0<6< f so that if gEC(K) and IIf - g/I, ~6, then (IuzJI, < 4 for 
every best /I .I] ,-approximation to g from U2. 

We finally show that if g E C(K) and IIf - g/l m < S, then g has nonunique 
best (I . II ,-approximations from U = U, 0 U2. Let g E C(K), /If - g/l co -c 6, 
u2 be a best /I . /),-approximation to g from U,, and ur any element of U, 
with I(u,/I < i. By choice of 6, g, and u2, 

on K\O. Hence Z(g- (ur + uz)) E 0 and sgn(g- (ur + uz)) = CJ on K\O. 
Further, since ur = 0 on 0, Z( g - (ur + uz)) = Z( g- u2). Now for any 
u=v,+v,~Uwhere~,~U~ andv,EU2, wehaveusingLemma1 that 

s (vl + 4 w(g- (ul + 4)~ dcl 
suPP(g- (u1+ u2)) 

= s,,, dvl+ 4 w 4 + j (~~-+~~)sgn(g--dwd~ O\Z(g - u2) 
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= 
I m*w d/.4+ I v,sgnk-u,)w& 
K\O O\Z(g--2) 

So by Lemma 1, ur + u2 E P,(g) and g has nonunique best // ” jl ,V 
approximations from U. The proof is now complete. 

We conclude this paper by showing that the spaces of tensor product 
spline functions satisfy the condition of Theorem 3 but are not A-spaces. 
We shall refer to Schumaker [17] for all necessary properties of sphnes. 
Let K = [a, b] x [c, d] c ,942’. Let m and n be integers greater than 1 and 
specify knot sequences A, = (a = x,, -c x1 < ... < xk < x~+~ = 6) and 
d, = (c = y0 < y1 < . . . < yI < y[+, = d > and corresponding rn~~tipi~~~ty 
vectors ~2’~ = (m,, . . . . mk) and &Z2= (nr, ..~, n,) where 1 <midm- % 
(i=l,...,k) and 16n,dn-1 (j=l,...,Z). Define Y;=9’(I;I,_1Y~r,dl) 
to be the set of all functions s on [a, b] such that the restriction of s to 
z,.;jh,] is a polynomial of degree dm- 1 (i=O, . . . . k) and s, 

> ., M - lPMm,,s are contmuous at xi (i= 1, ..~, li). Here IIs, denotes the set 
of polynomials of degree p or less and D denotes the differentiation 
operator. The space Yr is called a space of polynomial sphne functions with 
tixed knots and has dimension 

M:=dimq=m-!- t m,. 
i=l 

We define Y; = sP(ZI, _, , JZ2, A2) analogously, and s/i, has dimension 

N:=dimY2=n+ c njs 
j=1 

Note that the multiplicity vectors are chosen so that q E C[a, 6-j and 
Y2 c C[c, d], As in [17, p. 1161, for suitable extended partitions of d, 
and A,, we can construct normalized B-spline bases (B,, . . . . 
P 1, . . . . BN} for YI and Y2, respectively. The tensor product Y = 9”, @ Y; of 
9, and Y2 is the subspace of C(K) having basis (B,: i= 1, . ..) M2 
j=l , . . . . N) where BJx, y) = BJx) B;(y). 

Of interest to us are the supports of the B-splines. Specifically, supp Bi 
is an interval in [a, b] which is open relative to [a, b] and has endpoints 
in the knot sequence A,. Further B, > 0 on supp Bi. A similar description 

640/61/3-7 
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of supp Ej holds, and supp B, = (supp Bi) x (supp Ej). We shall call any 
rectangle (xi, xi+i) x (yj, yj+i) a cell in K 

THEOREM 4. The space Y is uniformly almost Chebyshev in C,,,(K) for 
all w  E W, . 

Prooj We consider any nonzero function 

in Y. Since s #O, some cPq #O. We show that if cPq #O, then 
supp B,, E K\Int Z(s). In this case, any continuous sign function (T on 
K\Int Z(s) would be constant on the connected set supp Bp4. Hence, 
B,, =0 on Int Z(s) and (T( + Bpy)>O on K\Int Z(s). 

To prove our assertion suppose supp BP4 $E K\Int Z(s). Then some cell 
( xr&j+lb(YI> Y5+1) contained in supp BP4 contains a point of Int Z(s). 
Since s is polynomial in two variables over this cell, s= 0 on 
G+L+~x(Y~, Y~+A. Let BE, . . . . B, be the B-splines for Y; whose 
supports contain (x,, xrl+ 1) and B,, . . . . B, be the B-splines for s whose 
supports contain ( y[, ye + i). Then 

2 (i e,B,iy)) B,(x)=0 
i=a j=y 

for all XE(X~,X~+~) and y~(y(, yi+i). By [17; p.169, Theorem4.651, 
B,, . . . . B, are linearly independent over (x,, xV+ i). Thus 

for all y E (ye, y,, i) and i = a, . . . . p. As above, By, . . . . B, are linearly 
independent on ( yr, y[ + i), and, hence, cij = 0 (i = CI, . . . . B, j = y, . . . . 6). In 
particular, cPq = 0 and the assertion is proven. 

Finally, we remark that S is not a A-space in C(K). We outline the proof 
only. Consider the first two B-splines B,, B, and B,, & in Y1 and Y;, 
respectively. By [17, Theorem 4.651, each pair forms a Haar System on the 
knot intervals (x0, x1) and ( yO, yl) and their supports do not extend 
beyond x2 and y,. Construct s1 ~sp(B~, B,} and s2 ~sp(B~, B2} where s1 
has one zero CI in (x,, x1) and s2 has one zero y in (y,,, yl). Consider the 
nontrivial function s in Y given by 

4x3 v)=s,(x) S2(Y). 
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Now Z(s) includes all (x, y) where x2 6 x < b or y, 6 y 6 d or x = z or 
y=y. Define o:K\Z(s)-+ (-1, l} by 

! -1 ifa<x<aandc<y<y 
dx,Y)= 1 otherwise 

If Y were an A-space, then Y would contain a nontrivial 3 where $ = 0 ae. 
on Z(s) and a? 2 0 on K\Z(s). Then S = 0 on every cell except possibly 
(x~,x~+~)x(~~, v,+~) (i,j=O, 1). But since S is a polynomial in two 
variables on the cell (x0, x1) x ( y,, y I), the sign changes in that cell force 
SS 0 there. So supp(S) must be contained in the closure of the union of 
the cells (x1, x2)x (uo, ~~1, (x0, x1)x (yI, yd, and (x1, 4 x (yI, ~~1. If 
(x1, x2) is not the support of any of the B-splines 8:, ~.., B, and (yl, y2) 
is not the support of any of the B-splines B,, ..~, BN, then the argument in 
the proof of Theorem 4 shows that S= 0, a contradiction. We omit t 
remaining cases but note that they involve constructions similar to S in 
other cells. 
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