ERRATA

THE STANDARD FREE ENERGIES of formation of $AuOH(H_2O)^0$ and $Au(OH)_2^-$ given in Table 2 of VLASSOPOULOS and WOOD (1990) should have read -345.6 and -275. kJ/mol, respectively. We are grateful to Y.-H. Li for pointing this misprint out to us.

REFERENCE

VLASSOPOULOS D. and WOOD S. A. (1990) Gold speciation in natural waters: I. Solubility and hydrolysis of gold in aqueous solution. *Geochim. Cosmochim. Acta* 54, 3–12.

D. Vlassopoulos S. A. Wood

A. M. Olivarez and R. M. Owen (1989) "REE/FE variations in hydrothermal sediments: Implications for the REE content of seawater." *Geochim. Cosmochim. Acta* 53, 757-762.

Table 2: Tb/Fe ratio for EPR Site 598 sediments (Prox. value) should read 5.4 (not 54).

	Proximal 0 km
La/Fe	210–270
Ce/Fe	9-33
Nd/Fe	140-180
Sm/Fe	27-41
Eu/Fe	8–11
Tb/Fe	3-5.4
Yb/Fe	15-22
Lu/Fe	3–5

Table 2: EPR Site 598 sediments. Here, proximal values are reported as a range to reflect two methods of calculation. Lower values are the ratios of the y-intercept values (concentration at zero distance) obtained from a linear regression of individual elements (ppm) vs. distance from the paleo-rise crest (using both above- and below-ly-socline samples). Higher values, as originally reported, are the y-intercept values from the linear regression of the REE/Fe ratio (ppm) vs. distance from the paleo-rise crest. All values have been multiplied by 106.

Department of Earth Sciences University of Notre Dame Notre Dame, IN 46556, USA	Annette M. Olivarez
Department of Geological Sciences University of Michigan Ann Arbor, MI 48109, USA	Robert M. Owen