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Abstract-The present work addresses the problem of synthesizing nonlinear state feedback controllers 
for second-order nonminimum-phase nonlinear systems. The concept of a first-order nonlinear all-pass 
is first introduced. A class of static state feedback control laws is then developed that makes the 
closed-loop system equivalent, under an appropriate coordinate transformation, to a nonlinear first-order 
all-pass in series with a linear first-order lag. A particular control law from this class is calculated that 
results in I.%!?-optimal response. The performance of the proposed methodology in set point tracking is 
evaluated through numerical simulations in a CSTR example. 

1. INTRODUCTION 

Major contributions in the area of linear process 
control in the last decade have established the idea 
that a controller must explicitly or implicitly generate 

a process inverse (Garcia and Morari, 1982). When 
dealing with minimum-phase linear systems, such an 
inverse is stable and can be used for controller 
synthesis. When dealing with nonminimum-phase 
linear systems, an appropriate decomposition of the 
process model into a part with stable inverse and a 
part with unstable inverse is necessary and the con- 
troller must invert only the part with stable inverse. 
In the context of linear state feedback, the same idea 
arises in placing closed-loop poles at the left-half 
plane zeros and at the reflection of the right-half 
plane zeros. Such a control strategy has been shown 
to be ZSE-optimal for step changes. 

In the field of nonlinear process control, the idea of 
a controller that generates a process inverse is central 
in general synthesis methods for minimum-phase sys- 
tems, like the nonlinear IMC structure (Economou et 
al., 1986; Parrish and Brosilow, 1988), which explic- 
itly generates a process inverse on-line and the input/ 
output linearization method (Kravaris and Chung, 
1987) which implicitly generates a process inverse. 
The latter has been shown to lead to ZSE-optimal 
responses for step changes (Kravaris, 1988). How- 
ever, the control of nonminimum-phase nonlinear 
systems in this vein remains a major unmet challenge. 

In this work, a control law for second-order non- 
minimum-phase nonlinear systems will be developed, 
that leads to an ZSE-optimal closed-loop response for 
changes in the set point. The proposed methodology 
hopes to serve as a starting point for the development 
of a more general framework for the control of 
nonminimum-phase nonlinear systems and to moti- 
vate further research effort in this area. 

In Section 2 the characterization of nonminimum- 
phase behavior for second-order systems will be 
reviewed following the approach of Bymes and 
Isidori (1985). In Section 3, a nonlinear analog of the 
linear first-order all-pass will be introduced. Section 
4 will review a standard result for ZSE-optimal state 
feedback control of linear second-order nonmini- 
mum-phase systems and will motivate the develop- 
ment that follows. In Section 5, a class of control laws 
will be developed that lead to a closed-loop response 
of a nonlinear first-order all-pass in series with a 
linear first-order lag. In Section 6, a particular control 
law from this class will be calculated, that results in 
ZSE-optimal closed-loop response in the limit as the 
time constant of the linear lag tends to zero. Finally, 
Section 7 will illustrate the application of the pro- 
posed control methodology and evaluate its perform- 
ance in a CSTR example. 

2. CHARACTERIZATION OF MINIMUM-PHASE 
AND NONMINIMUM-PHASE BEHAVIOR IN 

SECOND-ORDER SYSTEMS 

2.1. Linear systems 

Nonminimum-phase behavior is well-known and 
well-characterized in linear systems. It arises from the 
presence of right-half-plane zeros in the open-loop 
transfer function, which contribute additional phase 
lag without changing the gain of the system. In 
what follows, we provide an alternative characteriz- 
ation of the nonminimum-phase behavior of linear 
systems, that will allow generalization to nonlinear 
systems. 

Consider a second-order linear system of the form: 

i, =a,,x, +a,,x,+b,u, 

A?* = u*,x, + az2x* + b*U, 

Y=c,x,+c,-%, (1) 

439 



440 C. KR~VAIUS and P. DAOUT~DIS 

with 

c,b, + c,b, # 0. (2) 

This system has transfer function: 

(c,b,+c*b2)S-(a22c,b,+a,,c,b,--a,2c,b,--a,,c,b,) 
~Z-(~,,+~**)~+(~,,u22-~,2~2,) 

and consequently a zero at: 

a,,c,b, + a,,+& - a,zc,bz - a,,~,& .Z= 
c,b, + c,b, 

. (3) 

Based on the above transfer function description, the 
linear system (1) will be minimum-phase if z < 0 and 
nonminimum-phase if z > 0. An alternative charac- 
terization of (non)minimum-phase behavior can be 
obtained by transforming (1) into its output control- 
lability canonical form. In particular, through the 
coordinate change: 

--b, XI I[ 1 > 
c2 x2 

(4) 

where K is an arbitrary nonzero constant, (1) is 
transformed into: _ 

c, = a’,*<, + a’l212, 

iJz=d,,5,+&,L+&nU, 

r=12r 

where 

& = @224 - a,262k, + Gal,& - a2,4k2 

c,b, + c2b2 
3 

d,* = K (%~~ + eb2P2 - (a,,& + a22b,)b, 

c,b, + c2b2 
9 

1 (a,, c2 - %C,h + (021 c2 - a2*Gk2 
azl = ; 

(c,b, + c2b2) 

c22 = (a,,~, + a22c2P2 - (a,,~, + ~21c,P, 

c,b, + c2bz 

62=cc,b,+c2b2. (6) 

(5) 

The internal structure of the output controllability 
canonical form has the following very important 
properties: 

. The input affects only the second state equation. 
l The output is equal to the second state. 

As a result of this internal structure, it can be easily 
seen from (6) that ZLl is equal to the system zero. 
Furthermore, the stability of the first state equation 
of (5) with c2 = y assuming a fixed value, is deter- 
mined by the sign of d,, (i.e. the system zero) and thus 
it can be used as an alternative way of characterizing 
the system as minimum or nonminimum-phase. In 
particular: 

Proposition I-The second-order linear system (1) 
or (5) is minimum-phase if the dynamic system: 

5, = a’,, r* + a’,zY, (7) 

is stable, where y assumes a fixed constant value. It 
is nonminimum-phase if (7) is unstable. 

Remark I-A straightforward calculation of the 
system inverse on the basis of (5) shows that (7) is 
exactly the dynamics of the inverse. 

2.2. Nonlinear systems 

In nonlinear systems, a transfer function descrip- 
tion and therefore an explicit zero characterization is 
not possible. However, there is a normal form for 
nonlinear systems that has analogous properties with 
the output controllability canonical form for linear 
systems and leads to the definition of zero dynamics, 
a concept analogous to the zeros for linear systems. 
The normal form as well as the concept of zero 
dynamics were developed by Byrnes and Isidori 
(1985) for SISO systems of arbitrary order and then 
generalized to MIMO systems by Isidori and Moog 
(1988). Using these concepts, one can obtain an 
explicit characterization of the (non)minimum-phase 
behavior in nonlinear systems of arbitrary order. In 
what follows, we review the case of second-order 
systems. 

Consider a second-order nonlinear system of the 
form: 

where 

i, =fi(x,,+) +g,(x,,x2h4 

k2 =$2(Xlr x2> +g,(x,, x2h 

Y = htx,, xz), (8) 

ah 
g,(rl,x2)~(X1~X1)+R2(X,,XL)~(XI.X1)#0 

I 2 
(91 

and denote by t(x,, x2) a nontrivial particular sol- 
ution of the partial differential equation: 

g,(x,.x2)~+g*(x,,x2)~=0. (10) 
I 2 

Then the change of coordinates: 

il = ?J[t(x,, x2x 

12 = h(x,, ~21, (11) 

where y is an arbitrary nonconstant function, trans- 
forms (8) into a system of the form: 

c, = F,(l,, C2). 

where 

(13) 

with the understanding that the right-hand sides 
of (13) are transformed into the (c,, c2) coordinate 
system. 
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The realization (12) is called the Byrnes-lsidori 
normalform and is the nonlinear analog of the output 
controllability canonical form (5) of linear systems. 
It is characterized by the same properties as (5): 

state line F,(z, y) = 0 and nonminimum-phase for the 
rest. 

l The input affects only the second state equation. 
l The output is equal to the second state. 

3. FIRST-ORDER AIL-PASS 

Definition i-The zero dynamics of the second- 
order nonlinear system (8) or (12) is the dynamic 
system: 

i- = F,(a, y). (14) 

where y assumes a fixed constant value. 
The zero dynamics (14) is exactly the dynamics of 

the inverse of the nonlinear system if calculated on 
the basis of (12), or equivalently, the internal dynam- 
ics of the system when the output is constrained to 
remain constant for all times (in analogy with the 
block transmission property of the zeros in linear 
systems). 

The purpose of this section is to re-examine the 
properties of the (linear) first-order all-pass by study- 
ing its state-space realizations and introduce for the 
first time a concept of a nonlinear first-order all-pass. 
This concept will play a crucial role in the develop- 
ment of nonlinear state feedback laws for nonmini- 
mum-phase second-order systems in the subsequent 
sections. 

3. I. Linear case 

Recall from classical control theory that a linear 
dynamic system with transfer function: 

Remark 2-If Definition 1 provides a meaningful 
concept of nonlinear zeros, then it is reasonable to 
expect that (14) must generate the entire family of 
zeros of the linear approximation of (12), as the 
steady state moves in state space. Indeed, the pole of 
the linear approximation of (14) around the steady 
state (z,,y.?) is aF,/dz(z,, y,), which is equal to the 
zero of the linear approximation of (12) around the 
steady-state (Cls. Cr.) = (r,, v,). 

In analogy with Proposition 1, we can give 
the following definition of (non)minimum-phase 
behavior for nonlinear systems: 

Dejinition 2-The second-order nonlinear system 
(8) or (12) is said to be minimum-phase if its zero 
dynamics (14) is locally asymptotically stable at each 
steady state. It is said to be nonminimum-phase if the 
zero dynamics (14) is unstable. 

For the second-order nonlinear system of interest, 
a characterization of (non)minimum-phase behavior 
is obtained by the following proposition: 

Proposition 2-A second-order nonlinear system 
(8) or (12) is minimum-phase if and only if: 

where T > 0 is called a first-order all-pass. Apart 
from its well-known frequency response characteris- 
tics, a first-order all-pass can be completely character- 
ized by the following properties: 

1. It is stable. 
2. Its zero is at the “mirror image” of its pole with 

respect to the imaginary axis. 
3. It has static gain equal to 1. 

One can use the above three properties to obtain an 
alternative characterization of an all-pass in state 
space. Starting with a general first-order system of the 
form: 

with 

A=ax +/3u, 

y = yx + 624, 

~(Z,y)cO m a neighborhood of the line 

F,(z, Y) = 0. 

and imposing Properties l-3, one can easily deduce 
that the following conditions must be satisfied: 

1. a CO. 

It is nonminimum-phase if and only if: 

2 (z. y) > 0 in a neighborhood of the line 

2. a-+-a, 

3. s-/$=1, 
Fl (z, y ) = 0. 

The proof of the above proposition is a standard 
application of Lyapunov’s direct method. For every 
fixed y, the function V(z) = [Fl((z. y)]* is an appropri- 
ate Lyapunov function for the application of the 
method. 

Remark 3-There may be cases where a nonlinear 
system is minimum-phase for part of the steady 
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1 - Ts 

1 + Ts’ 

(15) 

which are equivalent to: 

1. a CO, 

2’. y = -2: 
B’ 

3’. 6 = -1. 
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Consequently, the general state-space represen- 
tation of a first-order all-pass is: 

i=ux +/%.4, 

y=--2%-u, 
B 

where u < 0 and B # 0, and this has transfer function: 

1+;s 
-. 
I-‘, 

a 

3.2. Nonlinear case 

In this section we will introduce the concept of a 
nonlinear first-order all-pass, in analogy with the 
state-space realization properties of a linear first-or- 
der all-pass discussed previously. Consider a general 
first-order nonlinear dynamic system of the form: 

where 

J = $(x. u), 

Y = w(x, u). (16) 

Since Property 2 of the previous subsection refers to 
the system zero, we need to determine the zero 
dynamics of (16). Similarly to the case of the non- 
linear second-order system discussed in the previous 
section, the zero dynamics of (16) is the dynamics of 
its inverse or its internal dynamics when the output 
assumes a fixed constant value, i.e. it is the dynamic 
system: 

i = J(X.Y), (17) 

where 6(x, v) = r#~ [x, 9 (x, v)] and where u = 1(1(x, JJ) 
is the implicit function defined as the solution of 
y = w(x, u). The stability properties of (17), i.e. the 
sign of: 

aw 
g-a4 ,?*_a4 

- 
wax 

ax ax au ax ax au aw' 
du 

will determine whether (16) is minimum-phase or not. 
Remark 4-If we consider the linear approxi- 

mation of (16) around the steady state (u,. x,, y,), this 
has a pole at: 

and a zero at 

Thus, we see that the family of poles of the zero 
dynamics (17) generates the entire family of zeros of 

(16), as (u,, x,, _v,) runs through all possible system 
steady states. 

Definition 3-A first-order nonlinear dynamic sys- 
tem of the form (16) will be called a first-order 
all-pass, if the following conditions are satisfied: 

1. g (x. u) < 0, 

a+ 
2. x k u) - g (x. u) 

g (x, u) 

aw = 
x (x9 u) 

- g (x, 24). 

(19) 

3. w(x,u)=u, (20) 

for all x, u on the line c$(x, u) = 0. 
Condition 1 expresses the stability requirement for 

the dynamic system (16). 
Condition 2 is a nonlinear analog of the require- 

ment that “the zero is at the mirror image of the pole 
with respect to the imaginary axis”. 

Finally, Condition 3 states that the static gain of 
the system is equal to 1. 

Proposition 3-A first-order nonlinear dynamic 
system of the form (16) will be a first-order all-pass 
if and only if the following conditions are satisfied: 

1. g (x, u) < 0, 

as 

2’. 2 (x, u) = -2 
ax (x. u> 

2 (x. u) ’ 

3’. %(x,f+- -1, 

(22) 

(23) 

for all x, 11 on the line 4(x, u) = 0. 
Conditions 2’ and 3’ result from Conditions 2 and 

3 of Definition 3, by a straighforward application of 
the implicit function theorem. 

Remark S-Notice that for a given 4, Conditions 
2’ and 3’ of Proposition 3 do not uniquely determine 
W. 

Proposition 4-A nonlinear first-order all-pass of 
the form (16) has the following properties: 

1 Its definition is coordinate-independent. 
. Its linear approximation around the steady-state 

(x,, u,) has transfer function: 

$x,Iu,)+s 

2 (x,, u,) -s 
(24) 

Proof: 

- Under the coordinate change x = s(r), (16) 
becomes: 

e = $tr, u), 

Y = 6;(5, u), 
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where &(<, U) = 4(=(c), u)/=‘(t) and ti(<, U) = 
w@(c), u). It is easy to see that if 4 and w 
satisfy Conditions 1, 2’ and 3’, then & and IZ will 
also satisfy them. 

. Consider the linear approximation of (16) 
around the steady state (x,, IL,). This has transfer 
function 

feedback control 443 

i.e. the closed-loop response is the one of a linear 
first-order all-pass in series with a linear tirst- 
order lag. In the limit as L + 0, the closed-loop 
response is ELF-optimal for step changes in the set 
point v. 

Substituting the expressions for the partial 
derivatives of W, (22) and (23), we immediately obtain 
(24). 

4. ISE-OmIMAL STATE FEEDBACK CONTROL OF 
SECOND-ORDER NONMINIMUM-PHASE 

LINEAR SYSTEMS 

Consider a second-order linear system of the 
form (l), where: 

and 

[(al,b, +Q,*~*)~*-(~21~, +%~,)~,I zo 

and assume that its zero is positive. Then, under the 
state feedback control law: 

where 

tl = Iv - k,x, - k,x,, (25) 

5. STATE FEEDBACK CONTROLLERS FOR 
SECOND-ORDER NONMINIMUM-PHASE 

NONLINEAR SYSTEMS 

In analogy with the linear case, in this section we 
will develop a class of nonlinear state feedback 
control laws for nonlinear nonminimum-phase sys- 
tems, that result in a closed-loop response of a 
nonlinear first-order all-pass in series with a linear 
first-order lag. The development of the control law 
will be carried out in the normal form representation 
of the system, because it provides a convenient 
notational and conceptual framework. The basic 
result is stated in the following theorem: 

Theorem I--Consider a second-order nonmini- 
mum-phase nonlinear system in its normal form (12): 

r, = F,(<,, L), 

1 -- 

A= 
L 

(c,b, + c*b,) + OY 

k, = 

a,2(2c*~,+c,b,)- 

k, = 
1 

r(~,,~,+~,2~2)~2-(~2,~,+~22~2)~,l(c,~,+c,~,) 1 

the closed-loop transfer function is given by: 

(c,b, + c262b - (a22c,b, + UHC262 - a,2c,b, - u2, c26,) 1 
- 

(Cl& + c262b + @,,c,b, + a,,c,b, - n,,c,b, -a,, c,b,)cs + 1 ’ 
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Suppose that this system is subject to the state 
feedback: 

where $(<,, &) is a function that satisfies: 

%,, <2) 

on the line F,(<,, c2) = 0 and 

$ Cl, i2) Z 0 for every Cl and C2. 

Then, the resulting closed-loop system is equiva- 
lent, under appropriate coordinate transformation, to 
a linear first-order lag in series with a nonlinear 
first-order all-pass. 

Furthermore. the linear approximation of the 
closed-loop system around the steady state (c,,, Lb) 
has the transfer function: 

Proof-Under the control law (26) the closed-loop 
system is: 

(1 = F,(i,. &). 

iz=d* 
1 

,r(i,, 12) 
2 

y=L. 

Under the coordinate change: 

5 = i,> 

rl= l//K,, &)V 

it becomes 

1 
--v 1 6 1 

(29) 

(30) 

(31) 

where & = w(<. q) is the implicit function defined as 
the solution of rl = +(<, &). 

We have to verify that: 

(32) 

is a nonlinear first-order all-pass. At first, observe 
that from the definition of w and the implicit function 
theorem: 

1 

$15, w(T, s)l 
2 

Therefore, the conditions (27) on + translate into: 

on the line F,[<, ~(5, q)] = 0. 

The above conditions make the system (32) a 
nonlinear first-order all-pass according to Prop- 
osition 3. Indeed, setting: 

&(5, rl) = F,K w(T, SK 

one can verify Conditions 1, 2, 3’ of Proposition 3 in 
a straightforward way. This completes the proof of 
the first part of the theorem. The derivation of the 
transfer function involves a straighforward linear 
approximation of the closed-loop system and use of 
the conditions on I(/. 

Remark 6-The condition al(l /a&([,, &) # 0 for 
every <, , &, is necessary for the coordinate transform- 
ation (30) to be well-defined and invertible, over the 
entire R2. Since &&/a[,([,, c2) = - 1 on the steady 
state line, there will always be a region around the 
operating steady state for which a+ /ac,(<,, c2) # 0 
will be satisfied; therefore the transformation (30) will 
be valid at least locally. 

Remark 7-The state-feedback law (26) can 
be written in a more compact way using the Lie 
derivative notation: 
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where 

Remark 8-The conditions (27) that @ has to 
satisfy do not determine it in a unique way (see also 
Remark 5). Consequently, (26) represents a class of 
control laws that guarantee stability of the closed- 
loop system and provide a response of a nonlinear 
all-pass in series with a linear lag. However, depend- 
ing on the choice of the function *, different perform- 
ance characteristics of the closed-loop response will 
result. 

Remark 9-The limiting closed-loop response as 
6 -0 is easily found from (31) to be: 

I, = E,K,V W(il, fJ)l. 

Y = w-,, 0). (34) 

In analogy with the linear case, we would expect that 
the above limiting response will be ISE-optimal for 
some 4. We will see in the next section that this is 
indeed the case. 

6. ZSE-OPTTMAL STATE FEEDBACK 

CONTROL OF NONLINEAR SYSTEMS 

In this section, we will provide a particular control 
law from the class of control laws (26), such that the 
resulting limiting closed-loop response (34) is ISE- 
optima1 for step changes in the set point. Before we 
proceed in the calculation of the control law, consider 
the nonlinear system (12) initially at a reference 
steady state and let v be a new constant set point 
value for the controlled variable cZ. For this system, 
the ISE-optimization problem can be formulated as 
follows: 

l Minimize: 

subject to 

Remark IO-Notice that no constraints were posed 
in the formulation of the LSE-optimization problem. 
However, an obvious constraint that has to be sa- 
tisfied is the internal stability of the closed-loop 
system. 

The solution of the above optimization problem 
will specify the ISE-optimal response in the (c,, &) 
state space for a constant set point value v, and it will 
very naturally lead to calculation of the function II/ 
which, when used in the control law (26) will result 
in this optimal response in the limit as t -+O. The 
solution of the ISE-optimization problem involves a 
straightforward application of the necessary condi- 
tions for optimality. Following the standard procc- 
dure (for an outline see Johnson and Gibson, 1963), 

we find the following two singular arcs in the (<,, c2) 
state-space: 

. Singular arc 1: 

iz = v, (35) 

. Singular arc 2: 

c _2 F,K,.L,) 
2 

aF, (Cl> 52) 

= 0. 

042 

The ISE-optimal trajectories will have to satisfy 
either (35) or (36). Since we are interested in ISE- 
optimality subject to internal stability, we have to 
check the internal stability characteristics of the 
system when the states are forced to satisfy either (35) 
or (36). 

Whenever the system is forced to follow Singu- 
lar arc 1 (35) this corresponds to “perfect 
control”; the output cZ is identically equal to 
the set point o. The internal dynamics of the 
closed-loop system is then identical to the zero 
dynamics: 

and we already know that this will be stable for 
every u if: 

a& 
Z (cl, CZ) < 0 on the line EK,, C2) = 0. 

Whenever the system is forced to follow Singu- 
lar arc 2 (36), we do not have “perfect control” 
any more. The resulting closed-loop 
will be given by: 

i, = E,K,, OK,, ~11, 

Y = OK,, u). 

response 

where iZ = Q(c,, v) is the implicit 
defined as the solution of (36) for c2. 

(37) 

function 

The stability characteristics of (37) will depend 
on the sign of: 

on the line F,[C,, !A(<,, v)] = 0. 
Using the implicit function theorem and the 
definition of Q, we see that the above quantity 
becomes: 

on the line F,[c,, S2(c,, u)] = 0. Therefore, (37) 
will be stable for every o if: 

~w2w on the line F(c,, &) = 0. 

Based on the above arguments, it is obvious that 
following Singular arc 1 will guarantee internal stabil- 
ity if and only if the system is minimum-phase, 
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whereas following Singular arc 2 will guarantee inter- 
nal stability if and only if the system is nonminimum- 
phase. Therefore, for a nonminimum-phase system, 
forcing the closed-loop system to follow Singular 
arc 2 results in ISE-optimality and the ISE-optimal 
response is given by (37). Comparing the ISE- 
optimal response (37) with the limiting closed-loop 
response (34) we see that they become identical when 
w = 0, i.e. when: 

t$ (Cl7 52) 
2 

It is easy to show that the particular function @ given 
by (38) satisfies the conditions (27) of Theorem 1. 
This leads to the following theorem: 

Theorem a--Consider a second-order nonmini- 
mum-phase nonlinear system in its normal form (12): 

c, = E,(r,, r*>, 

where G,(C,, C,) # 0 and aF,/a<,(<,, &) # 0, which is 
subject to the state feedback: 

The above theorem solves the ISE-optimal state 
feedback synthesis problem for second-order non- 
minimum-phase nonlinear systems in a way which is 
completely analogous to the linear case The only 
inconvenience with the above theorem is that the 
result is expressed in terms of the normal form 
coordinates of the system. Transformation of the 
result in the original coordinates is not difficult and 
leads to: 

Theorem 3-Consider a second-order nonmini- 
mum-phase nonlinear system of the form (8): 

i, =fi(x,,x2)+g,(x,,xz)u, 

-% =Jz(x,, %) + g,(x,, xr)u, 

y = h(x,, xl), 

where L, h # 0 and det[ad;g]g] # 0, which is subject 
to the state feedback: 

Zl= u - ti(x,rx*) -EL/+(x,> x2) 
tL&=@(x,, xz) 

3 (40) 

where 

+(X1? X2) = h + 2 detrf lgl 
detWg lgl 

L,h. 

where 

Assume that: 

$ CC,, L) Z 0 for every Cl and C2. 

Then, the resulting closed-loop response is equiva- 
lent, under appropriate coordinate transformation, to 
a linear first-order lag in series with a nonlinear 
first-order all-pass. 

Furthermore, the closed-loop response is ISE- 
optimal for step changes in the set point u, in the limit 
as L -0. 

Remark I I-The condition &?/a~,(~,, &) # 0 is 
necessary not only to make the control law (39) finite, 
but also for the solvability of (36) for cr. 

Remark I2-Clearly, a$/a&([,, cz) = -I on the 
steady state line. This implies that there will always 
exist a region around the desirable steady state for 
which a$ /ac2(<, , cz) # 0. As long as the entire trajec- 
tory, including the initial conditions, lies within this 
region. the result of the theory will hold. 

Assume that: 

L, + # 0 for every x, and x2. 

Then, the resulting closed-loop response is equiva- 
lent, under appropriate coordinate transformation, to 
a linear first-order lag in series with a nonlinear 
first-order all-pass. 

Furthermore, the closed-loop response is ISE- 
optimal for step changes in the set point o, in the limit 
as 6 -+O. 

7. EXAMPLE 

Consider a continuous stirred tank reactor, where 
the isothermal series/parallel Van de Vusse reaction 
(Van de Vusse, 1964; Kantor, 1986) is taking place: 

A+B-cC, 

~A-ND. 

The rates of formation of A and B are assumed to be: 

rA = -k,c, - k,c;, 

rB = k,c, - k,c,. 

where k, = 50 h-‘, k, = 100 h-l, k, = 10 l(gmol.h)-’ 
are the reaction rate constants. The feed stream 
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consists of pure A. The mass balances for A and B 
are given by: 

V% =F(c,, - CA) + V(-k,c* - k,ci), (41) 

v% =F(-cc,)+ V(k,c*-kk,cpJ, (42) 

where F is the inlet tlowrate of A, V is the reactor 
volume which is kept constant during the operation, 
c, and cr, are the concentrations of the species A and 
B inside the reactor, respectively, and c& = 
10 gmol . lm 1 is the concentration of A in the feed 
stream. We wish to maintain cg at its set point, by 
manipulating the dilution rate F/V. Initially the 
system is at steady state with cA, = 3 gtnol~l-’ and 
cr,, = 1.117 gmol.ll’. By letting: 

X, = CA, 

x2 = cs , 

F 
u=--, 

V 

y=c,, 

the system is put in the standard form (8): 

2, = --k,x, -/&x:+(c&-x,)u, 

&=k,x,-kk,x,-xx,u, 

y=+. (43) 

One can easily verify that the system satisfies con- 
dition (9): 

= -x* #O. (44) 

A nontrivial particular solution of the partial differ- 
ential equation (10) is t(x) = (cAo - x,)/x* . Thus, the 
change of coordinates: 

The zero dynamics of (46) is i = F, (z, Y), i.e. 

i _ k,(l --zk,--zy)+k ,zy+k,(c+q,-v)2 
3 (WJ 

Y 

where y assumes a constant value. 
Based on Proposition 2, the sign of: 

dF, 
z (2. v) = 

k,(2zy --Y -c&+&Y -2&Y(c,--Y) 
9 

Y 
(51) 

or, in the original coordinate system (x,, x,), the 
sign of: 

kZ - k, - 2k,x, + k, cao 
- 2x, 

, 
X2 

locally around the steady state, will determine 
whether the system is minimum- or nonminimum- 
phase. For the initial steady state (xlS = 3.0, 
x& = 1.117) and the values of the reaction rate con- 
stants, one can easily check that the quantity (52) is 
positive and therefore the operating steady state lies 
in the nonminimum-phase region of the steady state 
line. The open-loop behavior of both the nonlinear 
system and the linearized around the initial steady 
state system is shown in Fig. 1, for a negative step 
change at the input from u = 34.28 to 25 at time = 0. 
Clearly, in a neighborhood around the initial steady 
state, the nonlinear response is successfully approxi- 
mated by the linearized one. An inverse response can 
be observed in both cases, as a result of the unstable 
zero dynamics (or the positive zero in the linearized 
system). The nonlinear state-feedback control law is 
obtained from (40): 

u _ u - rL(x,,x2) -cL,$,(x,, x2) 
~L,(I/(X,, x2> 

where 

transforms (43) in its Byrnes-Isidori normal form: 

6’1 = F,(c,, L), 

where 

0.14- 

0.12. 

LeQWKl 
l.lO- ----NonLinear modeC 

--n--Linearized model 

g 1.06- 
E 
0 1.06- 
* 

1.001 1 . . . . fl 
a000 0.010 0.020 0.030 0.040 0.060 

Time (h) 

Fig. I. Open-loop response 
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E <....‘” ..,, ‘. 
‘f.? 
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1.00 . . . . . . . . .._.....,,,,,,,~,, 

CLOOC 0.010 0.020 a030 0.040 o.oso 
Time (h) 

Fig. 2. Closed-loop response. 

The response of the closed-loop system for a negutiue 
set point change in the output y from 1 .117 to 1 is 
shown in Fig. 2, for different values of the adjustable 
parameter t. Decreasing values of t result in a faster 
closed-loop response and smaller ISE values (at the 
expense of larger input values of course). As E -+O, 
the ZSE-optimal response (37) is obtained. 

Figure 3 provides the local picture of the Singular 
arc 2 (36) together with the steady state line, in the 
region of interest in the (cl, c2) state space. Notice 
that the particular singular arc corresponds to the 
specific postulated final set point, u = 1. Under the 
control law (40) the closed-loop trajectory starts 
from the initial steady state (c, = 6.26, & = 1 .117), 
instantaneously jumps to the singular arc at 
([, = 6.26, & = 1.22) and then evolves along the 
singular arc until it reaches the final steady state 
(i, = 7.5, <* = 1). 

Remark 13-Because of the shape of the singular 
arc, the trajectory of the closed-loop system for the 
specified final steady state, depends drastically on 
the initial steady state. For example, in the case that 
the initial steady state lies in the region which is to the 
right of the singular arc (i.e. c, > 9), the condition 
that guarantees solvability of (36) for & and con- 
sequently the result of Theorems 2 and 3 do not hold. 
Such pathological cases may occur and the present 
work does not address them. 

2 

1.6- Legend 
-Steady *tat0 une 
- sinqu1ar arc 

d Inltlal stuldy state 
x Final *toady State 

0.6 - 

0.6 - 

6 6 7 6 9 

51 

Fig. 3. Singular arc and steady state line. 

8. CONCLUSIONS 

The present work addressed the problem of non- 
linear state feedback control of second-order non- 
minimum-phase systems. A class of control laws was 
developed that results in a closed-loop response of a 
nonlinear first-order all-pass in series with a linear 
first-order lag. A particular choice of the control law 
leads to ZSE-optimal closed-loop response. The pro- 
posed methodology is analogous to the one of placing 
poles at the “mirror image” of right-half-plane zeros 
in linear systems. The performance of the control law 
in set point tracking was successfully tested, through 
simulations in a CSTR example. 
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response with poles at the reflection of right-half plane zeros 
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NOMENCLATURE 

C, = Concentration of species i in the reactor 
(g mol I-‘). 

F = Volumetric feedrate (h - I ) 
Y = Reactor volume (1) 

k,, tr I pa;: constants for first-order reaction (h-‘) 

’ (lg 
constant for second-order reaction, 

mol h-l) 
RZ = Two-dimensional Euclidian space 

u = Manipulated input 
v = Set point 
x = Vector of state variables 
y = output 

f, g = Vector fields 
f, , fz = Components of the vector field .f 
g, , g, = Components of the vector field g 

h, I = Scalar fields 
F,, F2 = Scalar fields in the normal form 

Gr = Scalar field in the normal form 
s = The Laplace domain variable 

Greek letters 

C = Transformed state variables 
L = Adjustable parameter in the control law 

@ = Scalar function appearing in the control law 
R = Scalar function that corresponds to the ISE- 

optimal closed-loop response 

Math symbols 

ag w 
adjg = %f - z g (first-order Lie bracket between the 

vector fields / and g) 

det[.] = Determinant of a matrix 

L,h = g g, + g g, (Lie derivative of the scalar field h 
I 2 
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