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It is shown that the rational functions of Higgins and Christov, orthogonal on 
[-cc, cc], are Chebyshev polynomials of the first and second kinds with an 
algebraic change of variable. Because of these relationships. the existing theory and 
algorithms for mapped Chebyshev polynomials also apply to the rational functions: 
the Higgins and Christov functions have excellent numerical properties. Howcvcr 
-precisely because of these same connections-it is usually simpler to use the 
change of variable rather than write computer programs that employ the Higgins 
and Christov functions themselves. Nonetheless, the result is a series of orthogonal 
rational functions. For some problems whose solutions decay slowly (algebraically 
rather than exponentially with Iv\), such as the “Yoshida jet” in oceanography, a 
Christov expansion is the only spectral series that converges rapidly. ‘C! 1990 
Academic Press, Inc. 

1. INTRODUC-~~~N 

The book by Higgins [l] and the paper by Christov [2] discuss 
two interesting basis sets that, in contrast to the familiar orthogonal 
polwomials, are rational functions, orthogonal on [-x8, xt]. Boyd [3] 
constructed a similar basis set by applying an algebraic map to the 
Chebyshev polynomials. This note extends the prior work of Higgins and 
Christov by giving convergence theorems and a numerical methodology for 
their functions and by showing the relationship between their basis sets and 
those of Boyd. 

Section 2 establishes the main theorems, which express the connections 
between the Higgins and Christov functions, the Chebyshev polynomials, 
and the terms of an ordinary Fourier series. Although the theorems are 
proved by elementary algebra, previous workers were unaware of them. 
Once demonstrated, these connections allow one to borrow the existing 
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numerical analysis for mapped Chebyshev polynomia1.s and to apply it to 
the Higgins and Christov functions with only trivial modifications as 
discussed in Sect. 3 and in Boyd [6]. The finai section is a summary and 
prospectus. 

2. RESULTS 

We begin with some definitions. Note that what we describe as hi 
functions are given in [ 11 only in complex form, and that our notation 
differs from Christov’s. 

DEFINITION 1. The “rational Chebyshev functions of the first kind” are 
defined by (Boyd [3 ], but without the notation introduced here 

where the 7’,,(x) are the usual Chebyshev polynomials [4]= Note that the 
TB,(J) are rational functions for II even and rational functions divided by 
( 1 + J,‘)“~ when n is odd. 

DEFINITION 2. The “rational Chebyshev functions of the second kind” 
are 

w-here the U,,(X) are the standard Chebyshev polynomials of the second 
kind. 

Like the TB,,(y), the UB,(y) are rational functions only when H is even, 
i.e., when the function is symmetric about J’= 0. but in a minor abuse 
of terminology, we shall refer to these, for all II. as “rational Chebyshev 
functions.” 

DEFINITION 3. The “Christov functions” are defined by 

cc2?,(.Yj= c~,,o’)-~~,,-,i?.)l:2 ?a =o. 1 3 ) -, . ( 3 .j 

SC zlz+l(Y)= - c~u,(l~)+~-,,-L(1:jl!‘(2i) n = O? 1, 2, . . . . (4) 

where the “complex Christov functions” ,IJ,(~) are 

id,-(id--I)“!(i?‘+l)“+’ ?a = 0, + 1, *2, . . . (5, 

The CC2,,(y), like the TB,,(y) and the IIF%,,,( are symmetric about 
J’ = 0; the initial “CI”’ in the symbol was introduced by Christov as a 
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reminder that these functions are “cosine-like” in the sense of having this 
symmetry. Similarly, the SC,, + I are “sine-like” in that they are anti- 
symmetric about the origin, just like the odd degree rational Chebyshev 
functions. In contrast to the latter, however, both the CC,, and SC2,+r 
lack a square root factor and are rational functions for ail n. 

DEFINITION 4. The “Higgins functions” are 

CHdy) = [A(.Y) + L,(y)]/2 

SJL+ I(Y) = CA+ l(v) -L- ,(~)I/(24 

n = 0, 1, 2, . . . (6) 

n = 0, 1, 2, . ..) (7) 

where the “complex Higgins functions” are 

The sine- and cosine-like Higgins functions have not been previously 
defined. 

To prove Theorem 1 below, we must first establish a lemma which shows 
that the Chebyshev functions can be written in a form that mimics the 
definitions of the Higgins and Christov functions. 

LEMMA 1. The Chebllshev rational functions can be written as the sum or 
difference of a pair of complex functions, viz., 

TW?,) = CO,(Y) + LAv)I/~ n = 0, 1, 2, . . . . (9) 

on( 4’) E (iy - I)““/( iy + 1 )ni2 n=O, +l, f2, . . (10) 

and 

WAY)= Ct~,,-2(.1))-2,(~‘)1/2 n = 0, 1, 2, . ..) (11) 

t,,( y ) E (iy - 1 )rr.‘2 + A/( iy + 1 )“,” n = 0, + 1, *2, . . . (l-2) 

Prooj Davis [S, pg. 831 proves that the Chebyshev polynomials have 
the representation 

T,(x) = [z(x)” + z(x) -“l/2 (13) 

where 1.5, pp. 19-201 the mapping x = (z + l/2)/2 has the explicit inverse 

z(x)=x+ (s2- 1)rt2. (14) 
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The map that transforms T,,(s) -+ TB,(.Y) 1s 

Substituting this map in (14) then shows 

I = (y+ i)/(l + y2)‘,’ = (J)+ i)‘,‘f’(j*- i)“‘, 6, ;fj; 

It is then trivial to see that (13) is identical with (9) if we use the definirio~. 

(10). 
The proof of ( 11) is similar. We begin by using the welt-known identity 

[4] 

UJx)= [l/(n+ l)] dT,,+,(x)dx n=0, 1,2 ,=.. !-~ itI) 

By applying this to (13) and then using (14)-(17), we obtain a represente- 
tion of the UB,( JI) identical to ( 11). QED, 

THEOREM 1. The Christot? and Higgins jklctions me yeiated IG ih.e 
Chehyskec rational functions ns 

[Christov] 

CC2,1()‘) = [l/(1 + y”)] U,,,[JY(l + $)121 (18) 

SC 2,1+,=[l~(l+~‘)]““T,,,+,C?,,iil-c~~~i”g (19) 

[Higgins] 

CH2,,(+r) = T&j’( 1 + J,~)~.~] [20) 

SH 2n+1(1.)=[li(l+?:2)]1;2Ci2,~TI[?,/(1+.li?)’21. .‘?I h,-lJ 

PlooJ Comparison of the identities in Lemma 1 with Definitions 3 and 
4. For example, inspection of (8) and (i0) shows that az,,(j*) = I-,,. 
Comparison of (6) with (9) then establishes (20). The other three par% of 
the theorem are proved in exactly the same way. Q.E.D. 

It is well known that the Chebyshev polynomials are merely i~i- 

gonometric functions with a change of variable, P~.z., T,,(cos t) = coslnr) and 
U,,(cos t) ZE sin( [n + l] t)/sin(t). The rational orthogonal functions have 
similar equivalents as expressed by the following. 

THEOREM 2. With the mapping 

j’= cot(t) ti t = arccosj>s) !?1) .A‘-, 

TB,z(~) = cos(nt) = cos(n arccot[J,]) (23i 

UB,,( J,) = sin( [n + 1 ] t )Gsin( t) (24) 
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CC2,,(y)=(cos[2nt]-cos[(2n+Z)t])/2 (25) 

SC 2,z+1(~)=(sin[(2n+2)t]-sin[2nt])/2 (26) 

CH,,,( y) = cos(2nr) (27) 

SH 2rz+I(y)=sin[(2n+2jr]. (28) 

Proof: Use of the trigonometric definitions of T,Jx) and U,(X) plus 
Theorem 1. 

3. IMPLICATIONS 

The close relationship between the Christov and Higgins functions and 
the Chebyshev rational functions implies that many good features of the 
latter [6] carry over automatically to the former. First, the Christov and 
Higgins expansions will have coefficients that decrease exponentially fast 
with n for any function f(~y) that is analytic along the whole real axis 
except at infinity where it has bounded derivatives. 

Second, the functions and their derivatives can be computed through 
simple recurrences. Christov [2 J derives many such formulas for his basis 
set, but his method-based on obtaining relations for the complex 
functions p,Jy) first-is applicable to all the others including the rational 
Chebyshev functions. In particular, we note that all four species of basis 
functions satisfy the same recurrence, 

d,+2(Y)=2CCYZ-11/Cy2+ 11) 4,,(y)-4,n-*(y), (29) 

where {cLl~l> is any of TB,,, TBzncIr UB2,,, Uh,+,, CG, SL+,, 
CH2,t SH,,+, with the appropriate starting values. The reason for (29) is 
that the Chebyshev polynomials of both kinds satisfy the same recurrence. 
The extra factors of (1 + ~1’) in the Christov and Higgins functions merely 
alter the starting values from those for the TB,(y) and UB,(JJ). 

Third, as noted by Christov [2], the derivative of a rational orthogonal 
function of any of the classes discussed here is the sum of at most three 
basis functions. This implies that when we use Galerkin’s method to 
convert a differential equation into a matrix problem, the matrix is highly 
banded with only a handful of nonzero matrix elements in each row. 

Thus, the Higgins and Christov functions are an entirely practical basis 
for the numerical solutions of differential equations on ~7 E [ - co, a]. 

Unfortunately, numerical experience-the examples in [2] and in [6], 
and earlier works of the author-has shown that the most practical way of 
using these orthogonal rational functions is to simply change the variable 
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from ,r E [-xl, xl] to t E [0, n] as given by (22). For example, rhe 
parabolic cylinder equation 

24,,.+ [E-y2]L4=0 

where E is the eigenvalue becomes 

(30) 

sin6(r) II,, + 2 cos(t) sin’(t) U, + [E sin’(t) - cos’(l)] u = 0. (3ig 

Instead of deriving many new identities in y as Christov has done, we can 
use the familiar rriganonzetric identities to show that after decoupling the 
matrix problem for the symmetric eigenfunctions from that for the anti- 
symmetric modes, each matrix is heptadiagonai-that is, there are only 
seven nonzero elements in each row. Boyd [6] gives a table of the cosine- 
collocation solution of (3 1). 

For functions like sech( y) or exp( -0.5 J*‘) which decay exponentially 
with 1’ as 1.r + 3cj, the differences between the four basis sets are negligible. 
Christov’s functions, which themselves decay with /J,I and thus indtiidtiallj 
satisfy the boundary condition, would appear to be preferable. However, 
(30) is siflgular at ir. The solution which decays for large />,I is the only 
solution which is even bounded at #x’. The numerical results of Boyd [61! 
show that the collocation method automatically converges to this bounded 
solution even when an unconstrained set of TB,( ~7) is used as the expansion. 
In the language of Boyd [73, the condition of boundedness at cc Is a 
‘-natural” rather than “essential” boundary condition, and it is not 
necessary to impose it on the individual basis functions. 

For solutions which decay algehraicali~~ with ~3, however, it is a different 
story. The Chebyshev rational functions give exponential convergence with 
n provided the decay is as an eveir power of J, but inspecting the set 
(cos(nt)) and the map ~=cot(t) in the limit .r + 0 (that is, as :i’ -+ x ; 
shows that it is not possible to use the cosines-or even hnear combina- 
tions of the cosines-to match the behavior of a function which decays as 
an o& power of ~3; for example, 

If we expand this as a cosine series in t-a series of TB,, in )*--we find that 
the coefficients are 0( l/n’). The Christov expansion. in contrast, converges 
in just one term because (32) is SC,(y)! Christov [2j and. Boyd 161 give 
physical examples whose solutions fall in this same class: antisymmetric 
about the origin with decay as l/jr. One can show [6] that the coefficients 
of the Christov series decrease exponentially with ~2 while those for the 
rational Chebyshev expansion are still Oil/n’). Thus, we conclude tha: 
the Chebyshev basis functions are poor for some functions that de-cay 
algebraically with y. 
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However, the machinery of Christov’s recursions is still unnecessary: to 
expand functions like (32) we can simply change variables and use a sine 
series in t. It is easy to invent examples such as g(a) = (1 + Y’)“~ which are 
symmetric about the origin and decay as an odd power of 1~1. All four of 
the basis sets discussed here fail for this class of functions because all the 
sets are equivalent (for a symmetric g(j))) to a coske series in t, but the 
remedy is to simply change variables and use a Fourier sine series. 

4. SUMMARY 

In this note, we have shown that the orthogonal rational functions of 
Higgins and Christov have excellent numerical properties. In particular, if 
a functionffy) decays exponentially as (~11 --f cx) along the real axis and the 
function has no singularities for real 4’ except at infinity, then the terms in 
a series of Higgins or Christov functions will decrease exponentially fast 
with II. The rational function series may also give exponential convergence 
for f( ~1) which decay algebraically with 1~11 or tend to a constant as 
1~1 + WI, provided that f(y) has an asymptotic series in l/y of the 
appropriate form. Because of their close connection with both sines and 
cosines and with the Chebyshev polynomials, it is easy to apply both 
Galerkin and pseudospectral methods with the Higgins and Christov 
functions, and the former will give banded matrices if the differential 
equation has polynomial or rational coefftcients. 

Boyd [S] shows that one may define similar orthogonal rational 
functions for the semi-irlfinite interval, J’ E [0, co]. These functions, denoted 
TL,(yj, have no direct connection with the basis sets on [-*co, co] 
discussed here, but have many similar properties including a simple 
connection (via a mapping transformation) with a Fourier cosine series. 

The only caveat about orthogonal rational functions is that precisely 
because of these same connections with trigonometric functions, it is 
usually easier to apply the change of variable (22) and then use the 
equivalent Fourier series method than it is to work with the Higgins or 
Christov functions explicitly. For this reason, the theorems derived here 
have been omitted from the applications-oriented article [6] in favor of 
this self-contained treatment. 

Nonetheless, this change-of-variable strategy for writing the computer 
program does not alter the fact that J(y) is approximated by a sum of 
rational functions. Boyd [6] shows that for the problem of the so-called 
“Yoshida jet” in oceanography, the asymptotic behavior of u(y) (antisym- 
metric about j> = 0 with an asymptotic series in odd powers of l/y) is such 
that Hermite series, sine expansions, and sums of algebraically mapped 
Chebyshev polynomials (TB,( 1’)) all converge very, very slowly (as some 
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small inverse power of the number of terms in the series). In contrast: the 
Christov expansion is exponentially convergent. Even if the pseudospectrai 
matrices were created by evaluating trigonometric functions (as was in fact 
the case), the approximation [6] 

1! = - J(440.8017 + 15.098 1” + 1.1412 y4)/(9 + pj:. (33) 

which has a maximum error of only 0.006 for ~1 E [ - co, cc 1. is merely the 
sum of the first three terms in the Christov series m (>,/3,!, Nothing else 
works well. 

The conclusion is that even though a programmer need not become an 
expert in their properties, the Higgins and Christov functions have a small 
but secure place in the numerical toolbox. 
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A’ore added in proof. Christov and Bekyarov [9] have successfully applied Christov fmrc- 
tions to compute solitary waves of the Kortewegde Vries and Kuramoto-Sivashmsky 
equations. Orthogonal rational functions are also discussed in the new book by the author 

IlOl. 
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