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POSSIBLE MECHANISMS FOR NONLINEAR DE HAAS-VAN ALPHEN 
OSCILLATIONS IN HEAVY FERMION COMPOUNDS 
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Three possible many-body mechanisms giving rise to de Haas-van Alphen oscillations with frequencies that correspond 
to linear combinations of ordinary closed orbits of the Fermi surface are discussed in the context of heavy-fermion systems. 
The mechanisms are: (i) magnetic breakdown across the Kondo hybridization gap (magnetically induced tunneling), (ii) 
the strong nonlinear dependence of the heavy-fermion magnetization of the magnetic field may give rise to frequency 
mixing (Shoenberg effect), and (iii) the incipient antiferromagnetic order in many heavy-fermion compounds at low T 
provides a nonlinear coupling mechanism via modulation of the antiferromagnetic order parameter. The latter should be 
very effective in weak antiferromagnets. 

1. Introduction 

The observation of the de Haas-van Alphen effect 
in several heavy fermion compounds (CeCu 6 [1], UPt 3 
[2], CeB 6 [3]) has dramatically demonstrated the exist- 
ence of a Fermi surface and of quasiparticles with a 
strongly enhanced mass. The dHvA oscillations have 
been successfully interpreted in terms of Fermi sur- 
faces arising from band-structure calculations. Since 
many-body correlations are only partially included in 
band-structure calculations, the resulting effective 
masses are not heavy enough. The Fermi surface, on 
the other hand, is essentially determined by the sym- 
metry of the system and Luttinger's theorem [4]. 

There have been several attempts to incorporate the 
heavy masses into the band picture. A 
phenomenological approach, devised by Razafiman- 
dimby et al. [5], builds in the correct effective mass 
into an appropriate resonant level phase shift of a 
KKR band-structure calculation. Microscopic deriva- 
tions of the quasiparticle behavior within the frame- 
work of the Anderson lattice have been incorporated 
into the exponential dependence of the dHvA am- 
plitude on the effective mass by various authors [6-9]. 
Rasul [8] has shown that the effective mass in the 
dHvA amplitude is the same as the one entering the 
specific heat coefficient 3'. It is also concluded that the 
Engelsberg-Simpson expression [10] for the dHvA 
amplitude remains valid despite of the high correla- 
tions among the electrons. 

In this paper we present a qualitative discussion of 
possible many-body mechanisms which may produce 
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nonlinear dHvA oscillations in heavy-fermion systems, 
i.e., oscillations with frequencies that are linear com- 
binations of frequencies of ordinary oscillations (corre- 
sponding to closed orbits of the Fermi surface). The 
new oscillations then do not correspond to an extremal 
closed cross section of the Fermi surface. We discuss 
the following three mechanisms in the context of 
heavy fermion compounds to show that they may give 
rise to observable effects: (i) magnetic breakdown 
[11], (ii) the Shoenberg effect [12], and (iii) modula- 
tion of the antiferromagnetic order parameter [13]. 

Since the quasiparticle picture appears to be valid, 
we consider quasiparticles with a very large mass 
enhancement. Herewith it is implicitly assumed that 
only low energy excitations in the Fermi liquid are 
relevant to the dHvA oscillations. To simplify our 
arguments we assume a nearly free electron Fermi 
surface. The orbits of the heavy electrons in a small 
magnetic field then consist of piecewise circular orbits 
and Bragg reflections at the Brillouin zone boundaries. 

2. Magnetic breakdown 

Trajectories of electrons in k space are defined by 
the intersections of planes perpendicular to the mag- 
netic field H and surfaces of constant energy, in 
particular with the Fermi surface. Nearly free elec- 
trons move along circular orbits until they are Bragg 
reflected at the Brillouin zone boundary. Within the 
reduced zone scheme the Bragg reflections confine an 
orbit to one Brillouin zone and boundaries cannot be 
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crossed. As a consequence of the Bragg reflections a 
gap opens at the zone boundaries. A sufficiently 
strong magnetic field can force the electrons to con- 
tinue their circular orbit across the zone boundary, 
i.e., to tunnel from one Fermi surface orbit to 
another. In other words, a strong magnetic field 
changes the connectivity of the orbits. This effect is 
known as magnetic breakdown [14]. The tunneling 
probability between two orbits depends exponentially 
on the inverse of the field, P ~ e x p ( - H o / H  ), where 
H 0 is approximately 4 v E ~ c / v ~ . h l e  I and Ec~ is the gap. 
The gap is given by the corresponding Fourier-compo- 
nent of the crystal potential (independent of the effec- 
tive mass) and v v is inversely proportional to m*. We 
expect then that H o is very large for heavy fermions 
and the tunneling process to be ineffective if the 
electrons have large masses close to the zone 
boundary. 

There is the possibility of another type of magnetic 
breakdown in heavy fermion compounds, which is not 
related to Bragg reflections at the Brillouin zone 
boundaries. Within the molecular field framework of 
the Anderson lattice [15], the hybridization matrix 
element V of the conduction and quasilocalized states 
is strongly renormalized, I~= V(1 - nf) ~'2, and is very 
small in the Kondo limit, nf-+ 1. In the absence of 
hybridization there are two independent Fermi sur- 
faces, one for the conduction electrons, the other 
corresponding to the highly correlated states (assumed 
here to have a small dispersion). The hybridization 
introduces a gap and modifies the topology of the 
Fermi surface at the points (we consider planes per- 
pendicular to the magnetic field) where the two Fermi 
surfaces intersect. In weak field the electrons follow 
the orbits of the hybridized Fermi surface. In a very 
strong magnetic field, on the other hand, the electrons 
move in orbits of the Fermi surface without hybridiza- 
tion. The competition of two energies, the hybridiza- 
tion gap V (or the Kondo energy) and the cyclotron 
frequency (with heavy mass m*), determine the tun- 
neling process at intermediate fields (i.e., still large 
fields in the lab). 

3. The Shoenberg effect 

In the classical theory of the dHvA effect the ap- 
plied field H gives rise to oscillatory contributions to 
the magnetization where each frequency appears to- 
gether with its higher harmonics. In the presence of 
electron interactions (i.e., beyond the independent 
electron approximation) the electrons experience the 

total magnetic induction, B -  H + 4wM, rather than 
the applied field H. As has been shown by Shoenberg 
[12] and Pippard [16] this gives rise to a nonlinear 
self-consistent equation for the magnetization. The 
magnetization has oscillatory and nonoscillatory com- 
ponents. Let us assume first that there is only one 
relevant cross section of the Fermi surface and that the 
system is not close to a ferromagnetic instability. The 
self-consistent solution then modifies the content of 
the higher harmonics, i.e., their amplitudes are 
changed. 

If two or more closed orbits are involved the self- 
consistent solution will lead to a mixing of frequencies, 
i.e., to frequencies corresponding to cross sections 
A ~ -+ A 2 and in principle to any linear combination of 
them. I fA  1 andA 2 are of the same order ]A~ - A~] is 
small compared to A~ and A 2 (and their harmonics), 
so that it is in a new region of the spectrum where it 
could easily be detected. The amplitude of the mixed 
frequency I A z - A 2 I  is expected to be small and its 
temperature dependence associated with the sum of 
the effective masses corresponding to A I and A~,  
rnl + rn 2. This magnetic interaction effect has been 
observed in various metals, e.g., in Ag [17] and In 
[18]. 

Heavy fermion systems typically have a very large 
susceptibility (note that the Wilson ratio X/~' is ap- 
proximately the one of free electrons). This large 
magnetic response is mainly due to the spin paramag- 
netism of the f-electrons, rather than caused by the 
quantization of the electron orbits. The oscillatory 
component of the magnetization represents then a 
small fraction of the large susceptibility. However, we 
expect the frequency mixing content due to magnetic 
interactions to be large enough to be observable de- 
spite of the heavy masses involved. 

4. Modulation of the antiferromagnetic order 
parameter 

Incipient antiferromagnetic order with a very small 
ordered magnetic moment has been found in some 
heavy fermion compounds, e.g., UPt3 [19], CeCu,, [20] 
and CeAI~ [21[. The presence of antiferromagnetic 
order, or an order parameter in general, gives rise to 
another mechanism [13] for the nonlinear coupling of 
dHvA frequencies. Long-range order in general mod- 
ifies the properties of the Fermi surface. This is self- 
consistently determined by the many-body collective 
properties of the metal via the energy-gap or order 
parameter A which satisfies a nonlinear integral equa- 
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tion (the gap equat ion or  G inzbu rg -Landau  function- 
al). The presence of a magnetic field (i .e. ,  the quanti- 
zation of the orbits) modifies the kernel  of the integral 
equat ion.  Hence ,  the order  parameter  A has an oscil- 
latory contribution which affects the one-e lec t ron 
energy spectrum and as a consequence the d H v A  
oscillation spectrum. 

Neglect ing the Landau diamagnet ism,  the free ener- 
gy can be written as F( A, H)  = Fc(A, H)  + 
Fosc(A, H) ,  where F~ is the G inzburg -Landau  energy 
and Fos c is responsible for the d H v A  oscillations. The 
equil ibrium value of A(H)  is obtained by minimizing 
the free energy with respect to A, A ( H ) =  Ac(H ) + 
8A(H) ,  where A c is the nonoscillatory cont r ib ,  tion 
and 

gA( H) : - (dF ,  . / d A ) a / ( d 2 F J d A 2 )  a . 
) s o  c ¢ 

Hence,  to second order  the free energy is 

F = F~(A~, H) + C~,:(A~, H) 

- ½[(dFo~ IdA)~ ]21(d2FjdAZ) a . 
c c " c 

The last term gives rise to oscillatory terms which vary 
periodically with inverse magnetic field with f requen-  
cies that are characteristic of areas (niA i ++- njAj) .  In 
all cases the areas are for A = A c, and n i and n/ are 
integers. Hence ,  ant i ferromagnet ic  order  can modify 
the harmonic  content  of  the oscillations, but  the main 
effect is the appearance of new frequencies.  The 
amplitudes of the nonlinear  effect are inversely pro- 
portional to a = d 2 F j d A  2. Since a is a measure  of the 
stability of the order  ~ ( T - T o )  (close to T ) ,  and 
vanishes as T---~ T ,  the mixing effect should be more 
easily observable close to the transition. 

5. Summary 

In summary,  we have pointed out  three possible 
sources of  nonlineari ty in d H v A  measurements  of 
heavy-fermion systems, namely magnetic breakdown,  
the Shoenberg  effect,  and feedback effects related to 
the ant i ferromagnet ic  order  parameter .  The latter two 
processes should produce frequencies  corresponding 
to the difference between Fermi surface cross sectional 
areas. 
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