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Abstract--The problem of controlling the residence probability of linear stochastic systems in a bounded 
domain is considered. Necessary and sufficient conditions for the existence of a controller that makes the 
residence probability positive (weakly residence probability controllable systems) and arbitrarily close 
to one (strongly residence probability controllable systems) are derived. The approach is based on the 
modern large deviations theory for systems perturbed by small white noise. 

1. I N T R O D U C T I O N  

Consider the system 

dx = (Ax + Bu) dt + eC dw, x(O) = Xo, (1) 

where x e R" is the state, u e R m is a control, w(t) is a standard r-dimensional Brownian motion 
and 0 < E << 1. There are many problems (see Ref. [1] for examples) where it is desired to maintain 
x(t,  xo, u), the solution of  equation (1), in a given bounded set f~ during a specified time 
interval [0, T]. 

A convenient quantity that describes the behaviour of equation (1) in the domain ~ is the first 
passage time (x0 ~ t2) 

~'(x0, u) = inf{t/> 0Ix(t, x0, u) ~ 0R}, (2) 

where Of~ is the boundary of ~. In terms of T'(Xo, u) the above problem formulation becomes 

z'(x0, u) i> T. (3) 

Since z'(Xo, u) is a random quantity expression (3) has to be given some probabilistic meaning. One 
possibility is to replace expression (3) with the condition 

~'(x0, u) = Ex0[Z'(x0, u)]/> T, (4) 

and another one is to replace expression (3) with 

Px0{z'(x0, u) l > T } 1 > l - 6 ,  0 < d i < l .  (5) 

In Refs [1, 2] we discussed in detail how to select a control law u = Kx such that inequality (4) 
is satisfied. In this paper we choose expression (5) as the measure of performance. 

The problem of controlling equation (5), i.e. the residence probability, is also not new. It has 
been described in Ref. [3] and later analyzed in Ref. [4] and more recently in Ref. [5]. However, 
the conditions under which and to what extent the residence probability can be modified by control 
remain unknown. 

In this paper we show that linear systems of form (1) with linear state feedback control laws can 
be divided into two classes, weakly and strongly residence probability controllable systems. Roughly 
speaking, weakly residence probability controllable are those systems for which condition (5) can 
be satisfied for some 0 < 3 < 1 and strongly residence probability controllable are systems for which 
condition (5) can be satisfied for any 0 < 6 < 1. 

The paper is organized as follows: in Section 2 we describe the mathematical technique we use; 
in Section 3 we formulate the control problem and state our main results and in Section 4 we discuss 
the results. All proofs are given in the Appendix. 
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2. M A T H E M A T I C A L  B A C K G R O U N D  

Consider the following linear Ito system 

dx = Ax  dt + EC dw, (6) 

where x ~ R ~, w(t) is a standard r-dimensional Brownian motion and 0 < E << 1. Let f / b e  a bounded 
domain in R n and assume that x(0) = x0 ¢ t'l. Let x(t ,  Xo) be the solution of  equation (6) and define 
the first passage time in fl as 

z((Xo) = inf{t >i OIx(t) E Oil}, 

where 0t l  is the boundary of  il. The probability of  exit of  x(t,  xo) before time T is 

P~o(z'(Xo) <~ T}. (7) 

The asymptotic behaviour of  Pxo {¢(x0) ~< T } as E --~ 0 has been the subject of  considerable research 
for several years. One of  the main results is the following [6], [7]. 

Theorem 2.1 

Assume that the boundary 0f~ is smooth and (A,C)  
[ C A C . . . A n - I C ] =  n. Then 

lira E 2 In Px0{¢(x0) ~< T} = - $ ( T ,  x0), 

where 

is disturbable, i.e. rank 

(8) 

~(T, x0) = min O(t, xo,y),  (9) 
y~&'l 

O,~t<~ T 

c~(t, Xo, y)  = ½(y - e at Xo) T X - I ( t ) ( y  -- e A' Xo), (lO) 

dX(t_____~) = AX( t )  + X( t )A  T + CC T. (11) 
dt 

When the distribution of  the initial point xo is known, the result of  Theorem 2.1 can be 
generalized as follows: let f~m be a subset of  ~ such that Of/N Oilt = ~Zf and assume the initial point 
x0 has a known distribution with density f (Xo)> 0 (independent of  e) so that 

f/t} = f f(Xo) dxo = 1. (12) P{x0 e 
Jo 1" 

The probability of  exit of  equation (6) from f /g iven  x 0 ~ l) t is 

P{z ' ( f l0  ~< T} = I_ Px0 {*'(x°) ~< T}f(Xo) dxo. (13) 
j n  I 

Theorem 2.2 

Under the assumptions of  Theorem 2.1 we have 

lim ¢2 In P(¢(f~O ~ T} -- - ~b(T, f/O, 

where 

(14) 

Proof. See the Appendix. 
The properties of  the constant 0(T,  ilt), the logarithmic exit probability from f~ given x0 ¢ f~t, 

as described in Theorem 2.2, form the basis for the analysis that follows. Note that O(T, f /0  is 
independent of  the distribution of  x0 in f/~. 

~b(T, il,) = min ~(T, x0). (15) 
X0~f~ I 
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3. RESIDENCE PROBABILITY CONTROL 

Consider now a system with control 

dx = (Ax + Bu) dt + EC dw. (16) 

Assume that u = Kx. Then if (A + BK, C) is disturbable it follows from Theorem 2.2 that the 
residence probability 

K) > T} ,  

of equation (16) in the domain t~ given x0 e f~ satisfies 

lim E 2 In (1 - P {~'(t2~, K) > T}) = - ~ ( T ,  f~l, K), 
, - - * 0  

where ~b(T, I21,K) is given by equations (9)-(11) and (15) with A replaced by A +BK. In the 
remainder of the paper we assume that ~(0 ~ f~) and f~j are fixed given domains and drop the f~ 
in ~b(T, f~,  K). Based on the above observations we make the following definitions. 

Definition 3.1 

System (16) is said to be weakly residence probability controllable (wrp-controllable) if for any 
T > 0 there exists a control u = Kx such that ~b(T, K ) >  0. 

Definition 3.2 

System (16) is said to be strongly residence probability controllable (srp-controllable) if for any 
T > 0 and any q5 > 0 there exists a control u = Kx such that q~(T, K ) >  qS. 

The above definitions state, in particular, that system (16) is wrp-controllable if there exists 
u = Kx such that (for small E) 

or equivalently 

E21n (1 - P{r'([2,, K) > T}) < 0, 

P{z'([2,, K) > T} > 0; 

and system (16) is srp-controllable if for any q~ > 0 there exists u = Kx such that for small E 

E In (1 - K)  > T})  

or 

P{T'(~I, K) > T} _= 1 - e -~/~2. 

In the remainder of the paper we assume that system (16) contains no modes that are both 
uncontrollable and undisturbable, i.e. (A, [B C]) is a controllable pair. In this case the pair 
(A + BK, C) is disturbable for almost any K [8]. 

The following theorem characterizes the class of wrp-controllable systems. 

Theorem 3.1 

System (16) is weakly residence probability controllable if and only if there exists a K*~  R T M  

such that 

min min IIY - e~A+BX')'X ll5 > 0. (17) 
x • f l  I y E a f l  

O ~ t ~ T  

Proof. See the Appendix. 
Condition (17) is, in a sense, a stability condition on [0, T] for the deterministic system 

dx 
dt = (A + BK*)x, x(O) = Xo. (18) 

Indeed, if condition (17) is satisfied then no trajectory of equation (19) starting in f~l can reach 
the boundary of  t) during the time interval [0, T]. Thus, wrp-controllability is equivalent to 
"stabilizability" of system (16) on the interval [0, T]. 

CAMWA 19/11--1 
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For srp-controllability we have the following result. 

Theorem 3.2 

Assume that system (16) is wrp-controllable. Then system (16) is strongly residence probability 
controllable if and only if 

Im C ~ Im B. (19) 

Proof See the Appendix. 

4. DISCUSSION 

In this paper we formulated and analysed the problem of residence probability control of linear 
systems with small additive white noise disturbances. The main results are the following: a system 
is wrp-controllable if and only if it is stabilizable (in a certain sense) on the interval [0, T] and it 
is srp-controllable if and only if the image of the noise input matrix is contained in the image of 
the control input matrix. 

In Ref. [1] we analysed an analogous problem for the residence time (4). It was shown that linear 
systems are divided into two classes, wrt- and srt-controllable. Furthermore, it was shown that 
wrt-controUability is equivalent to stabilizability of the pair (.4, B) and a system is srt-controllable 
if and only if it is stabilizable and the image of the noise input matrix is contained in the image 
of the control input matrix. In view of the above discussion we conclude that the results of this 
note parallel the results of Ref. [1] with the only difference being that here stabilizability is only 
needed on the bounded interval [0, T] whereas in Ref. [1] stabilizability was needed on the infinite 
interval [0, oo). 

Acknowledgement--This work has been sponsored by the Air Force Office of Scientific Research, under Contract No. 
F49620-87-C-0079. 
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A P P E N D I X  

Proof  o f  Theorem 2.2 (Outline) 

Note that by Theorem 2.1 we have 

Pxo{¢'(Xo) ~ T} = C(~, Xo) exp[-~b(T, Xo)/E2](l + o.~(l)) (A. 1) 

where C(E, xo) grows no faster than polynomially in E. Therefore, 

= f C(~, x0) exp[-q~(T, x0)/~2](1 + oxo(l))f(xo) dx0. (A.2) P{x'(fll) ~< T} 
ja  I 

Now equality (14) follows immediately by Laplace integration in equation (A.2). Q.E.D. 

Proof  o f  Theorem 3. I 

Note that 
~(t, x, y, K) = ~(y - exp[(A + BK)t] x ) r X  - ~ (t, K) (y  -- exp[(A + BK)t] x )  ~ II X-~ (t, K) 112 II Y - exp[(A + BK)t l  x LL~. 

(A.3) 
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Thus, 

(T, K) = min min ~ (t, x, y, K) ~< ~ I[ X -  i (t, K) 112 rain min II y - exp[(A + BK)t ] x [[~. (A.4) 
x~l~t . r e ~  xeQI ),~81) 

O~I~T O~tST 

The necessity of  condition (17) follows from relationship (A.4). Next note that 

~b (/, x, y, K) >1 ½ II Y - exp[(A + BK)t] x I1~ 2~,  ( X -  ' (t, K)) 

_ IIY - exp[(A +Bg) t ]x  I1~= IlY -exp[ (A +Bg) t ]x  II~> IlY - exp[(A +Bg)t]xll~ (A.5) 

2km,x (X(/, K)) 2 II X(t, K)112 2 II X(T, K)112 

The sufficiency part  of the theorem follows directly from relationship (A.5). Q.E.D. 

Proof of Theorem 3.2 

Assume first that system (16) is srp-controllable. Then there exists a sequence {K~} such that q~(T, K~)---* ~ as i ~ oo. 
Note that 

q ~ ( T , K ) = m i n  min ~p(t,x,y,K)<~ min ~p(t,O,y,K) 
.x" e f / t  )' e c~f/ y e ~  

O<~t~T O~t~T 

= min ½yrX-~( t ,K)y=min ~IyrX-I(T,K)y<~ min ½yTX-~(T,K)y 

O<~t~T 
R 2 R 2 

= ½,'l.min ( S - '  (T, K)) R 2 - (A.6) 
22max(X(T, K)) 2 II X(T, K) tl2' 

where B(R) is the ball with centre at zero and radius R and 

R 2 = max y r  y. 
y~dfl 

It follows from relationship (A.6) that II X(T, gJ 112---' 0 as i---, oo. Therefore, Tr X(T, K~)---* 0 as i ~ oo and by Fatou 's  
lemma we get 

l i m f f  fo r 0 = ,  Tr exp[(A + BK,)t] CC T exp[(A + BKj) T t] dt >! lim ~ f T r  exp[(A + BK~)t] CC T exp[(A + BK~) T t] dt. 

(A.7) 

Thus, since exp[(A + BK~)t] CC T exp[(A + BK~) T t] >1 O, it follows from inequality (A.7) that  

lim in fTr  exp[(A + BK~)t] CC T exp[(A + BK,) T t] = 0, (A.8) 

for almost all (a.a.) t e [0, T]. Furthermore,  there exists a subsequence {K/} such that 

lim exp[(A + BKj)t] CC T exp[(A + BKj) T t] = 0, a.a. t e [0, T]. (A.9) 

Next note that X(t, K;) satisfies the equation 

(A + BKj) X(t, Kj) + X(t, ~ ) (A  + BK~) T + CC T = exp[(A + BKj)t] CC T exp[(A + B ~ )  r t]. (A. 10) 

Combining equations (A.9) and (A.10) gives 

lim [(A + BK/) X(t, Kj) + X(t, K~)(A + B ~ )  T] + CC r = 0, a.a. t ~ [0, T]. (A.11) 

Thus, since X(t, Kj) ~ 0 as j ~ oo, a.a. t e [0, T], we get 

lim [ B ~  X(t, K/) + X(t, Kj) K~ B x] + CC r = 0, a.a. t ~ [0, T]. (A. 12) 
j ~  

Therefore, the exists a Q(t) such that 

BQ(t) + Qr( t )  B r + CC r = 0, a.a. t e [0, T]. (A.13) 

Finally, equation (A.13) can be true only if condition (19) is satisfied. This completes the necessity part  of  the proof. 
Assume now that conditions (19) is satisfied. Then condition (19) and the controllability of  (A, [BC]) imply that  

(A, B) is controllable. It was shown in Ref. [1] that there exists a sequence {K~} such that  A + BK~ is Hurwitz for each i 
and 

lim X(K~) = O, (A.14) 

where 

(A 4" BKi) X(Ki )  4" X ( K i ) ( A  4- BKi) T -b CC T = O. 

Note that for any T >/0 

Thus, it follows from condition (A.5) that 

X(T, K,) <<. X(K,). 

(A.15) 

(A. i 6) 

lim ~ ( T ,  K~) = oo.  ( A . 1 7 )  


