
Math1 Comput. Modelling, Vol. 14, pp. 155-160, 1990 089s7177/90 $3.00 + 0.00 

Printed in Great Britain Pergamon Press plc 

ANALYSIS OF VARIANCE OF CUSTOMER BALANCES FOR A FAMILY OF STOCHASTIC SERVICE 
NETWORKS 

Richard L. Patterson 
School of Natural Resources, The University of Michigan, Ann Arbor, 
Michigan 48109-1115, USA 

Abstract. The coefficient of variation of counts of customers in nodes of 

all members of an equivalence class of stochastic service networks is com- 

puted for three classes of arrival processes: i) Poisson arrivals of 

individual customers, ii) Poisson arrivals of fixed and random sized batches 

of customers, and iii) fixed times of arrivals of constant and random sized 

batches of customers. Time-variable expressions of means, variances, and 

coefficients of variation are computed in terms of arrival process param- 

eters, nodal linkages within networks, and residence time distributions of 

customers in nodes. Coefficients of variation are compared and indices of 

traffic congestion are computed for member networks within an equivalence 

class. Use of these indices are an efficient means of rapidly evaluating 

design parameter changes on performance of networks within an equivalence 

class. 
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Letf= (82,d,,......, JN,...) denote a family of 

equivalence classes of stochastic service net- 

works in which each member network sCdN of each 

class d, contains a finite number N of linked 

nodes dl,...,a ,~ (N=2,3,... ). Each node c(. con- 

tains a finite number of servers each of inlim- 

ited capacity among which customers are routed 

according to a fixed probabilistic protocol 

prior to departing dj for ak. Each member SC- 
& 

for all N is characterized by the following 

conditions: 

i) For each initial node ai of entry into 

S by customers from outside the network all 

other nodes aj(j=i) are accessible from CL;. 

ii) Every customer entering a nonabiorb- 

ing node aj, following a common probabilistic 

tour among servers within aj is retained in 

residence at each server a random length of 

time such that total nodal residence time is a 

random variable with conditional cdf wjk(t) 

whose first two moments are finite and for 

which w. (t) is strictly positive for positive 
jk 

t. Residence times in nodes for customers are 

iid random variables with cdf wjk(t). For 

absorbing nodes aj wjk(t) is defined to be 

zero for finite t and one for t equal to in- 

finity. 

iii) Movements of customers among nodes of 

a member network %jN are governed by a unique 

Markov renewal (MR) process, discrete state- 

continuous time, with N-dimensional conditional 

residence time distribution function matrix 

W=(wjk(t)) where wjk(t) satisfies conditions 

given in ii) above. States of (MR) are in one- 

to-one correspondence with nodes of SdN. 

Comments No network contains fewer than two 

nodes. At least one node of any member Sc8, 

is absorbing which serves purposes of counting 

departing customers and maintaining records of 

traffic flow through the network. The require- 

ment of finite mean and variance of wjk(t) 

rules out absorbing servers within a node which 

is not an absorbing node. Uniqueness of nodal 

cdf w. 
Jk 

(t) requires that all customer condi.- 

tional residence times in node aj are governed 

by wjk(t) which, in turn, implies that wjk(t) 

is independent of a customers point of entry 

into aj from a prior node and its point of 

departure from within dj to a given destination 

node ak. 

The Markov renewal process defined by the pair 

P,W regulating traffic flow within a network 
generates a semi-Markov process (X(t)/t>O) de- 
scribing locations of customers at their most 
recent changes of nodes. Pr(X(t)=aj/X(O+)=ai) 
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is the conditional probability that the proc- 

ess (a customer) is in state j (node aj) at 

time t, given that it was in state i (initial 

node qi) at time t=O+. Conditional probabili- 

ties 

fij(t) = Pr(X(t)=aj/X(O+)=di) 

define an interval transition probability 

function matrix F=(fij(t)) that is stochastic 

whenever P is stochastic. Elements of F are 

computed directly from elements of P and W by 

conditioning upon the number of changes of 

state of the process prior to time t. Although 

pure delays may exist at certain servers with- 

in a node alternate routes around such servers 

exist by assumption so that nodal residence 

time cdf's are positive for positive t. 

Distributions of Customer 
Counts in Nodes 

Distributions of counts of customers in nodes 

are determined by arrival protocols to the net- 

work and processing behavior upon entering an 

initial node. Effects of processing behavior 

are studied separately by assuming cl,...,cL 

customers arrive at initial (non-absorbing) 

nodes U. 
'1'"" L 

di 
at instant ~20. Then at time 

t > z the joint cdf of customers initially in 

node a i, 
J 

that are in nodes dl,...,aN is multi- 

nomial with parameters c j.fijl(t-Z)....'fijN 

(t-z) (fi k(t-z)>O(k=l,...,N)). When all L 
j 

initial nodes are accounted for the marginal 

cdf of customer count in node ak is that of the 

sum of L independently distributed binomial 

random variables with mean c c f 
j=lj i k(t-z) and 

j 
L 

variance ~,Cjfi,k(t-z)(l-fi k(t-z)). The cdf 
J j 

is approximated by a Poisson distribution with 

parameter 6 = mean of the sum of the L binomial 

random variables. The approximation error has 

been bounded ( LeCam (1)). Traffic effects of 

initial conditions eventually die out although 

ripple effects through the network may be ex- 

perienced for some period of time until custom- 

ers finally enter absorbing nodes. 

Three basic cases of arrival protocols are 

considered: i) Poisson arrivals of individual 

customers to an initial node; ii) Poisson 

arrivals of batches of customers to an initial 

node; iii) Arrivals of batches of customers at 

fixed intervals 0 < t, < t2 < . . . < tk < t. 

Case ii) contains three sub-cases: ii.l) 

batch sizes are iid random variables with 

common mean mD and variance vD where all 

customers are processed independently upon 

entering the initial node; ii.2) case ii.1 

applies except all batches are processed as 

single units in which batch service times are 

modified according to some criterion; ii.3) 

case ii.1 applies except the cdf of batch size 

is a two point distribution, ie, batches are 

of sizes b. and bl with respective probabili- 

ties p and l-p. 

Case i A A network SedN is initially empty and 

in an interval (0,t) n customers arrive and 

enter initial node ai. The joint distribution 

of customer counts in the N nodes of S is: 

Pr( C,(t)=c,,...,O,(t)=c, ) = (1) 

,N mij(t) ‘j e-mij(t) 

j=l Cj! 

where: 

mij(t) = i ai(z).fij(t-z)dz (j=l ,....N) 

and: 

ai is the intensity of the Poisson process 

of customer arrivals to initial node ai. 

Equation (1) was demonstrated by Kelly (2) 

using generating functions for a system simi- 

lar to Se.4,. It was also demonstrated by 

Harrison and Lemoine (3) using a renewal argu- 

ment for a system of servers all of which 

communicate. Equation (1) above is demon- 

strated simply by conditioning a multinomial 

probability function of counts in the N nodes 

by total arrivals n in the interval (0,t) and 

averaging over n using a Poisson cdf. 

Equation (1) shows counts in nodes to be 

mutually independent. A calculation shows 

that no count Cj(t) is independent of the 

cumulative number of arrivals to initial node 

di in (0,t). It is only for this case that 

the joint cdf of counts in the N nodes is 
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obtained, except for a sub-case in which all 

arriving batches are processed as single units, 

remaining intact throughout. 

Case ii.1. When customers arrive at initial 

node ui in batches of random size where the cdf 

of batch size has mean mB and variance v 
6 

(Poisson arrivals of batches) the counts of 

customers in nodes are no longer mutually inde- 

pendent. The cdf of the marginal count Cj(t) 

is compound Poisson with mean and variance: 

t 
E(Cj(t)) = mB./a.(z).fij(t-z)dz (j=l,...,N) (2) 

0' 

and: 

t 
V(Cj(t)) = mB.Iai(z).fij(t-z).(l-fij(t-z))dz + 

0 

(m 
2 t 2 
B + 'B).Ia.(z).(fij(t-z))dz 

0' 
(3) 

(j=l ,...,N) 

Assume a cdf of batch size such that bk 

customers arrive in a batch with probability 

pk (k=O,l,...,M). The arrival process to in- 

itial node ai of batches of size bk only is 

Poisson with intensity pk.ai(t). The mean and 

variance of numbers of customers in node a. is 
J 

obtained from equations 2 and 3 above by set- 

ting mB=bk , vB=O, and replacing ai by 

pk.ai(z). 

Case ii.2. When all batches are processed as 

single units throughout every node with resi- 

dence time cdfs wijB(t) the cdf of the number 

of batches resident in node aj at time t is 

Poisson with mean: 

t 
iai(z).fijB(t-z)dz 
0 

where: 

fijB(t) is the interval transition probability 

function for batches whose size distribution 

follows that defined in case ii.1 above. 

The number Cj(t) of customers in node aj has 

a compound Poisson cdf with mean and variance: 

t 
E(Cj(t)) = mB.la.(z).fijB(t-z)dz (j=l,...,N)(4) 

0' 

and: 

V(Cj(t)) = (mi + vB).:a.(z).fijB(t-z)dz 
Cl' 

(5! 

(j=l ,....N) 

If batches of fixed size bk only are considered 

equations 4 and 5 are modified in a manner 

analogous to that shown in case ii.1. above. 

Case ii.3. When the cdf of batch size is a two 

point distribution, a subcase of case ii.1. 

above, assume batches of sizes b. and bl arrive 

at initial node C"~ with probabilities p. and 

pl=l-po, respectively. The mean and variance 

of batch size are, respectively: 

bo.po + bl.pl = mB 

and: 

(bo-mBJ2.po + (bl-mB)2.Pl = vB 

For fixed p. batch sizes b. and bl can be com- 

puted which give predetermined mean and variance 

of batch size. In particular, the mean mB can 

be small and the variance can be large or vice 

versa. The mean and variance of customer count 

Cj(t) in node CY~ at time t are given by equa- 

tions 2 and 3. If bo=O case ii.3. is equiva- 

lent to case ii.1. where ai is replaced by 

ai(t).Pl* vB=O, and mB=bl. 

Case iii. Batches arrive at fixed instants 

tl,..., tk (O< t1 < . ..<tk < t) at initial node 

9. 
For each arriving batch of size Bl,...,Bk 

all customers are processed independently 

throughout. The mean and variance of the 

marginal cdf of Cj(t), customer count in node 

aj at time t, are: 

E(Cj(t)) = mB. Z f..(t-t,) (j=l 
,-=l ‘J 

,...,N) (6) 

and: 

V(Cj(t)) = mB. : f. (t-tr).(l-fij(t-tr)) $ 
r=l lj 

k 2 
vBiflfij(t-tr) (j=l,...,N) (7) 
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The probability that a customer entering initial 

node ai at time z>O is in node oj at time t>z 

is 

is 

to 

Tj 

fij(t-z). The mean amount of time a customer 

in residence in nonabsorbing node aj prior 

entering an absorbing node is therefore: 

m 

= /fij(t-z)dt 
L 

(12) 

cable to cases ii.1.. ii.Z., 11.3.. and iii. 

developed above. The count Cj(t) of the number 

of customers in node oj at time t is the sum of 

independent but not identically distributed 

Bernoulli random variables, conditioned on batch 

sizes and times of arrival to initial node a.. 
1 

By averaging over those two parameter sets ine- 

qualities analogous to those presented in 

Theorem 4 of Hoeffding's paper are obtained 

which give upper and lower bounds on 

Pr(Cj(t)lcj) (cj=0,1,2,...). 

The mean proportion of time in residence in 

nonabsorbing node qj relative to all nonabsorb- 

ing nodes is: 

T./z Tk 
J k 

where: 

k denotes indices of all nonabsorbing nodes of 

SC61N. 

The mean amount of time nonabsorbing node aj 

contains n customers is: 

m 

Cjn = iPr(Cj(t)=n)dt 
0 

(13) 

The mean proportion of time nonabsorbing node 

dj contains n customers is consequently: 

m 

c. /z c. 
Jnkzo Jk 

The mean time of residence of a customer in 

S&J, exclusive of absorbing nodes is: 

z T. = x /m f..(t-z)dt 
j J jz 'J 

(14) 

where: 

index j ranges over all nonabsorbing nodes 

the network. 

in 

The cdf of residence time of a customer in the 

network is: 

Pr(residence time in Sc&'N &-z/customer enter- 

ed S at time z) = (;fij(t-z)) (15) 

where: 

index j ranges over all absorbing nodes in S. 

Network residence times for customers and 

counts of customers in a network are related 

by the formula: 

EE(Ck(t)) = X:a.(z).fk(t-z)dz = 
k k0 ’ 

t 
Uai(z).(l-fij(t-z)dz = 
j0 

t 
la.(z)dz-;a.(z).(Ef..(t-z))dz 
0' 0’ j'J 

(16) 

where: 

i) index k ranges over nonabsorbing nodes; 

ii) index j ranges over absorbing nodes. 

Indices for Network Design 

Equations (12) - (16) may be used to compare 

different structural configurations of net- 

works within a given classdN. Additionally, 

the squared C.V. and ratios of squared C.V.'s 

may be used for making the same kinds of com- 

parisons. The above indices may be used to 

make comparisons at both a nodal and network 

wide level. Interval transition probability 

functions need not necessarily be computed 

exactly although a catalog of fij(t) functions 

may be compiled for a wide variety of network 

configurations. Qualitative behavior of 

fij(t)'s may be used to make comparisons by 

assuming monotonicity, convexity or concavi- 

ty, maximum values, and zeros of the first 

time derivative of fij(t) within an interval 

(0,T). An advantage of reducing a network to 

membership in an equivalence class of minimal 

dimension prior to evaluation lies in ef- 

ficiency of analysis and an ability to com- 

pare networks which may contain widely differ- 

ing numbers of component service systems, each 

of infinite capacity. 

Networks containing N nodes some or all of 

which have finite capacity behave the same as 
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Continuous approximations to equations 6 and 7 

are: 

E(Cj(t)) 
tk 

: mB.l fij(t-z)dz (j=l,...,N) (8) 
0 

and: 

tk 
V(Cj(t)) - mB.l fij(t-z).(l-fij(t-z&z + 

0 

tk 2 vB./ fij(t-z)dz (j=l,...,N) (9) 
0 

Coefficients of Variation of C:(t)_ 
J 

The squared coefficients of variation of Cj(t) 

are used to compare variability among cases. 

Let 

t t 
I1 = Ja.(z).fij(t-z)dz and 12=lai(z).f:j(t-z)dz 

0' 0 

The squared C.V. is shown in Table 1 for all 

cases. By dividing the squared C.V. in each 

case except ii.2. by I;' a comparison of the 

coefficient of variation relative to that of 

the standard case of individual Poisson ar- 

rivals is obtained and shown in Table 2. Ade- 

quacy of approximation of models of cases ii. 

1 ., ii.3., and iii. by the standard model of 

Poisson arrivals of single customers is shown 

in terms of magnitudes of ratios of squared 

C.V.S. Effects of variability of times be- 

tween successive arrivals of batches are esti- 

mated by comparing cases ii.1. and iii. in 

either Tables 1 or 2, representing completely 

random arrivals and completely determined 

times of arrivals. As shown in Table 2 the 

difference in ratios is approximately 12.1;‘, 

a fraction always less than unity. The corre- 

sponding difference computed from Table 1 is 

approximately 12.1i2 , a quantity that does not 

exceed I;' in magnitude, the reciprocal of the 

mean number of customers in node aj arriving 

from initial node di in (0,t). Processes 

describing batch arrivals to initial node di 

for which the variance of independent inter- 

arrival times is less than that of the Poisson 

process with intensity ai will yield 

squared C.V.'s of Cj(t) which differ from 

either case ii.1 or case iii. by at most I;'. 

Variability of customer loading in a node dj at 

time t expressed as a percentage of the mean 

may be maximized in some cases. As shown in 

Table 1 for cases ii.l., ii.3., and iii. the 

squared C.V. is maximized for a fixed t by set- 

ting the first derivative of squared C.V. with 

respect to I;' equal to zero and solving for 

-1 
I1 . For cases ii.1. and ii.3. maximization 

occurs when: 

I1 = 212.(l-mB- + ) 
B 

For case iii. maximization occurs when: 

I1 = 212.(1- L ) 
mB 

(10) 

(11) 

For given arrival intensity ai equations 10 

and 11 are integral equations in the unknown 

interval transition probability function fij(z) 

defined on (0,~). 

Effects of Dependencies 
in Customer Routing 

Without specification of service times of 

batches considered as single units a direct 

comparison of cases ii.1. and ii.2. cannot be 

made. In the special case where service time 

of a batch of any size is the same as service 

time of a customer the difference between 

squared C.V. for those cases is: 

L1;l .(l-121il) 
“B 

from which bounds on the difference are: 

1 
OI_ 

1 

mB 
.I;l.(l-121$ : - 

mB 
.1;1 . 

Cases ii.1. and ii.2. represent extremes of 

dependencies among customer routings among 

nodes of Sd,. Squared C.V. for case ii.1. is 

never smaller than that for ii.2. and it is 

only when fij(z) is identically 1 over the 

interval (0,t) that they are equal. 

Bounds on C,(t) 
J 

Hoeffding (4) developed bounds on probabilities 

of sums of independently but not identically 

distributed Bernoulli random variables, appli- 
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8, so long as no customer is interrupted during 
. . . 
111. 

1 .I;' 
"B - 

mB 
+(0+- 

2 
its normal processing sequence through the 

infinite capacity network. Therefore, if 

mB 
-2 

.$.I, 

interruptions due to blockages, waits for 

service, etc.. occur only occasionally a finite 

capacity network may also be evaluated in an 

approximate sense using the indices developed 

above. For the majority of customers that 

TABLE 2 Ratio of Squared Coefficients of 

Variation Using Case i. as a Standard 

of Comparison 

encounter no interruptions the above indices Case 
apply exactly. Number 

1. 1 
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m 
B 
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ii.3. 1 .- 

mB 

Hoeffding, W. 1956. On the Distribution of iii. 1 - 
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721. 

Kelly, F. P. 1979. Reversibility and 

Stochastic Networks. J. Wiley. 
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TABLE 1 Squared Coefficient of Variation of 

C,(t) for Five Cases 
J 

Case Number Squared C.V. 

-1 
1. 

I1 

ii.1. -l- .I_' + (1 + 
"B - 

m 
B ’ 2 

mB 

ii.2. 

ii.3. 

1 -7 
_ 1.12.1, - 

mB 

(1 +v+ 
-2 

+ O).I*.I1 

mB 

1 
-1 

_' I1 
+(l+ "B- 

mB 
2 

mB 

1 1.1,.1;2 

mB 

Ratio of Squared C.V. 

+ (1 + "B - 1 ).Iz.I;’ -- 
” f mB 

+(l+ "B -L).I I 
-1 

T 
mi 

2' 1 
mB 

+(0+ "B - 1 

7?- 

).12.11 -1 

B mB 


