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Abstract - The nonlinear kinetic aerosol equation, describing the time evolution of an 
aerosol distribution within a well-stirred container, is formulated in a mathematically 
"conservative" form. A numerical method is then developed for which conservation of  
mass is automatically satisfied. This procedure simplifies the derivation of conservative 
numerical schemes by reducing the number of  approximations that must be made. 
Comparisons between an exact solution of the kinetic aerosol equation and numerical 
approximations show the following: numerical solutions based on the conservative form of 
the kinetic equation are more accurate and are obtained more efficiently than numerical 
solutions based on the standard "nonconservative" form of the kinetic equation. 

I. INTRODUCTION 

In recent years, much effort has been spent on numerically predicting the release 
and transport of nuclear aerosols following a postulated nuclear accident, in order to obtain 
a better understanding of the consequences of  such accidents. The aerosol problem 
contains many physical processes. In this work, we concentrate on one aspect of  this 
problem: the computer modeling of  the coagulation of aerosols within a well-stirred 
container. 

Several computer codes have been written to solve this problem (Silberberg (1979), 
Abbey (1985)). These codes, which use numerical methods based on a standard 
nonconservative form of the kinetic aerosol equation, have several disadvantages. First, 
they can be costly because the volume of the aerosol particles may span over ten orders of 
magnitude, and for the numerical methods used in these codes, a grid containing very many 
points is often required. Second, to obtain numerical schemes that conserve mass, more 
approximations must be made than numerical schemes for other problems usually require. 
[As we will see later, in obtaining the discretization used in the Pardiseko code (Dunbar 
(1984), Bunz (1984)), one must approximate certain integrals that are very difficult to 
evaluate.] 

In this paper we formulate the kinetic aerosol equation, describing the time 
evolution of the aerosol density, in a mathematically "conservative" form. In this form, the 
nonlinear terms that describe the coagulation process can be shown to conserve mass by a 
trivial mathematical procedure. In the conventional nonconservative form, the coagulation 
terms also conserve mass, but showing this requires a substantial amount of  algebra. An 
advantage of the conservative form is that it permits a very simple derivation of accurate 
numerical schemes that conserve mass. To obtain mass-conserving numerical schemes for 
the "nonconservative" form of the aerosol equation, one must employ extra approximations 
that are based on physical, rather than mathematical, principles. In this paper we show that 
numerical methods based on the conservative form of the aerosol equation are generally 
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more accurate and are obtained more efficiently than methods based on the nonconservative 
form of the equation. 

In See. 2 we review the kinetic aerosol equation, written in the conventional non- 
conservative form. In See. 3 we review the derivation of a well-known mass-conserving 
numerical method for this equation. In See. 4 we derive the conservative form of the 
kinetic aerosol equation, and we develop a numerical method for this equation. In See. 5 
we examine the positivity of our method. In See. 6 we discuss numerical results obtained 
using a Runge-Kutta time-discretization method, together with the two methods developed 
in Sees. 3 and 4 of  this paper. We conclude with a brief discussion in See. 7. 

II. THE KINETIC AEROSOL EQUATION FOR A WEJ J~-STIR_RFJ3 CONTAINER 

The quantity of interest in aerosol problems is n(r, v4)d3r dv, the expected number 
of aerosol particles in an incremental volume of  space d°r about the point r ,  having 
volumes in the incremental range v to v + dv, at time t. These particles are subject to the 
effects of atmospheric motion, Brownian motion, and gravity. When two particles collide, 
they may coagulate to form a single new particle whose mass equals the sum of the masses 
of  the original particles. As this process continues and particles become more massive, 
gravity becomes dominant and particles fall out of  the suspension. 

Within a container in which the aerosol is well-stirred, the aerosol density n is 
independent of  the position variable, and the kinetic aerosol equation describing the time 
evolution of n can be written as (Silberberg (1979), Abbey (1985)) 

3 1 v J 
0 0 

-R(v , t )n(v , t )+ S(v,t) , (1) 

with the initial condition 

n(v,O) = n 0 ( v )  . ( 2 )  

The various terms in Eq. (1) are defined by: 

¢(u,v)n(u, t )n(v, t )dudv = the rate at which aerosol particles in du about u and 
in dv about v coagulate. (¢ is the coagulation kernel.) 

R(v, t)n(v, t)dv = the rate at which aerosol particles in dv about v axe removed, 
due to gravitational settling to the floor, diffusion to the walls, and 
leakage. (R is the removal rate.) 

S(v, t)dv = the rate at which aerosol particles are produced in dv about v due to 
sources. (S is the source rate.) 

The first integral in Eq. (1) represents the rate at which particles with volume v are 
produced as a result of collision between particles of volume u and v - u. (The factor 1/2 
occurs because in integrating u from 0 to v, particles with volumes u and v -  u are 
counted twice.) The second integral represents the rate of  loss of  particles with volume v, 
as a result of  collisions with other particles. One can show that the nonlinear terms in Eq. 
(1), describing the coagulation process, conserve mass: 
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o L2o o 
(3a) 

Therefore, if  one multiplies Eq. (1) by v and integrates over all v, one obtains the 
following ba/ance equation: 

d i v n ( v ' t ) d v = - ' ~ v R ( v ' t ) n ( v ' t ) d v + S v S ( v ' t ) d V ' o  o (3b) 

This states that the rate of  change of the total particle volume (or mass) equals the rate at 
which mass is produced by sources minus the rate at which it is removed. The coagulation 
process neither adds nor subtracts mass from the system. 

The identity (3a) can be established by routine but lengthy manipulations. Because 
this identity does not immediately follow using elementary operations, we refer to Eq. (1) 
as a n o n c o n s e r v a t i v e  form of the kinetic aerosol equation. Special attention must be 
devoted to any numerical method based on Eq. (1) in order to make it conserve mass - that 
is, in order to make it satisfy a discrete version of Eq. (3a). In the next section, we 
consider such a method. 

III. FINITE DIFFERENCE METHOD (PARDISEKO) 

In this section we summarize the numerical method employed in the Pardiseko code 
(Dunbar (1984), Bunz (1984)). To begin, let us divide the volume range into I cells whose 
widths vary logarithmically. That is, the edges vi+ll 2 of these cells are defined by 

/ xill  
- v  [Vm,x ] O<-i<-I  

Vi+ll2 - m i n t ~ )  , (4a) 

w h e r e  vii 2 = Vmi n and v#+ll 2 = V-ax are the prescribed minimum and maximum volumes 
and the width hi of  the i - th tell'Is defined by 

h i = Vi+ll 2 -  vi_l/2 . (4b) 

(It is not necessary to use this particular logarithmic grid, but it is convenient to do so, and 
we shall use it throughout this paper.) We also make the approximations 

and we define 

ni(t) = n(v , t )  , Vi_l/2 < v < Vi+l/2 , (4c) 

Ri(t ) = R(v , t )  , Vi_l/2 < v < Vi+l/2 , (4d) 

Si(t) = S(v , t )  , Vi_l/2 < v < Vi+ll 2 , (4e) 

~ji  = ~ ( u , v )  , Uj_l/2 < u < Uj+l/2 , Vi_l/2 < v < Vi+ll 2 , (4 f )  

AIIE 17:12-E 
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Oi(V)={lo Vi-l/2<v<vi+l/2"otherwise. (5a) 

For a general function G, one can prove the following identity (Dunbar (1984)): 

vi+112 v 
f dv f duO(u,v- u) = 

Vi_ll 2 0 

Vi+l/2 Vi+l/2 

law IduG(u,w)Oi(u+ w) . 
vii 2 0 

(Sb)  

Integrating Eq. (1) over  Vi_l/2 < V < Vi+I/2 and using the identity (5b), we obtain 

d n i ( t ) h i  . ~+~/~ ~i+~/~ " 2 ~ d w  ~ d u n ( u , t ) q ) ( u , w ) n ( w , t ) O i ( u  + w )  
Vl12 Vl12 

Vi+ll2 "Vl+l/2 

- ~ d v n ( v , t )  f d u O ( u , v ) n ( u , t ) -  Ri( t )ni ( t )h  i +  Si( t )h i 
vi-112 v112 

i - VJ +112 Vk+ll2 
-~ f dw f dun(u,t)+(u,w)n(w,t)Oi(u+ w) E 

j = l  k=l "v)_l /2  vk_l/2 

Vi+ll2 ] Vk+ll2 
-- I dvn(v' t)  E ~ du*(u ,  v i )n(u , t ) -  Ri(t)ni(t)hi + Si(t)hi 

Vi_ll 2 k=l vk_ll 2 

i i fVJ+ll 2 Vk+ll2 } 
j = l  k=l LVj_ll 2 Vk_l/2 

i 

-- n i ( t ) h i E  nk(t)t~kihk -- Ri ( t )n i ( t )h  i + Si( t )h i . 
k=l 

(6)  

Thus, ff we define 

. Vj+ll2 Vk+ll2 
~'~Yk = . 1. fdw [duOi(u+w) , 

h i iz k ~ J Vj_ll 2 Vk-ll2 
(7) 

then we obtain 

d 1 ~ t 7 
ni( t ) hi = 2 E E n j( t )nk ( t )~'ijk (~ jk hj hk -- ni( t ) ~ E (~ ji nj( t ) hj 

j = l  k=l j = l  

- R i ( t ) n i ( t )  ~ + S i ( t ) h  i , 1 <_ i <_ I . (8) 
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This is a coupled system of I ordinary differential equations having two main deficiencies: 
the constants 7ijk ,  defined by Eq. (7), are difficult to evaluate, and the nonlinear 
coagulation terms m Eq. (8) do not generally conserve mass. To circumvent both these 
difficulties, one simply replaces the definition (7) of  Y/2k by an easily-computed and 
physically-motivated definition. To do this, let us suppose mat every particle in the j-th cell 
has volume v i - t h e  mean volume in this cell. Also, let us suppose that particles with 
volumes v ,  an'd v k coagulate to form a single new particle with volume v, + v k . In general, 
this new v~lume is not a grid point. Therefore, we determine a grid poin~ v i such that 

V i < Vj + V k < Vi+ 1 (if i < I) (9a) 

and we conceptually create two particles, one with mass v i ,  the other with mass vi+ 1, 
whose weights sum to one (to preserve the number of  new particles) and whose volumes 
sum to v j  + v t (to preserve mass). Interpreting Yi j k as the contribution to particles of  
mass v i when two smaller particles of mass v j  and ~ coagulate, we let ]¢i,j,k and ~i+l,j,k 
be the appropriate weights. Then: 

~ i , j , k  + ~¢i+l,j,k = 1 , 

~ i , j , k  Vi 4- ~ i+ l , j ,  k Vi+l = V j  -I- V k . 

Solving these equations we obtain, for j ,  k, and i satisfying Eq. (9a), 

~/m, j ,k  = 

" V i + l - ( V / + V k )  m = i  , 

Vi+ 1 --  V i 

( v j  + v t )  - v i ra = i + 1 , 

vi+ 1 - v i 

0 otherwise . 

(9b) 

If there is no grid point v i such that Eq. (9a) is satisfied, i,e., if 

v j +  v k > v t , (10a) 

where v I is the largest volume in the grid, then we create a particle with mass v l ,  with an 
appropriate weight so that mass is preserved. Fo r j  and k satisfying Eq. (lOa), we obtain 

I v/+  v k i = I , 

Y i ' j ' k = l o  Vl 1 < i < I - 1  . 
(10b) 

The numerical method used in the Pardiseko code is given by Eqs. (8) - (10). In 
the remainder of  this paper, we shall describe this as the "Nv" method - the "N" referring to 
~e, fact that the method is based on a nonconservative form of the aerosol equation, and the 
v referring to the fact that the volume variable is used. One can show that this method 

conserves mass, in the sense that the following discrete version of Eq. (3a) holds: 
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i•=lVi n j ( t ) n k ( t ) ] / i j k O j k h j h  k - n i ( t )  O j i n j ( t )  ~ = 0 
k=l "= 

(11) 

However, a difficulty now occurs which is due to the finiteness of the grid: in the 
absence of removal terms, as time increases and the aerosol particles become heavier, all of  
the particles will eventually settle into the I -  th cell. This situation is unphysical because 
in a real problem, when particles attain a sufficiently large size, gravitational effects remove 
them. For this reason, the "simplest" aerosol problem - one with no removal and no 
sources - is a very difficult one to treat numerically for large times. To do this 
operationally, one would solve such a problem with a given grid, but then at some point in 
time, when the number of particles in the I - th cell is large enough, one would have to 
declare that the solution for larger times is incorrect. If the calculation had begun with a 
grid with the same resolution but extending over a broader range of volumes, then the time 
beyond which the solution is unphysical would be larger. These difficulties must occur 
with any mass-conserving scheme on a finite grid in the absence of removal terms. 

We have shown that to obtain a practical mass-conserving method, one must 
employ a physical approximation to evaluate the constants 7i ~ k. In part, this occurs 
because Eq. (1) does not, by means of  simple operations ~'fit can be reproduced by 
discretized versions of Eq. (1), conserve mass. Our contention is that i f  Eq. (1) is 
rewritten in such a way that simple operations that can be reproduced by numerical schemes 
lead to mass conservation, then numerical schemes based on this equation need not contain 
any unnecessary physical approximations. This is the subject of  the rest of this paper. 

IV. THE CONSERVATIVE FORM OF THE KINETIC AEROSOL EQUATION 

By straightforward manipulations, Eq. (1) may be written as: 

- ~  v n(v,t) = - ~ v  F(V,t ) - v R(v,t)n(v,t) + v S(v,t) , (12a) 

where 

"7 F(v, t)= ~ du dwun(u)~(u,w)n(w) . 
0 v -u  

(12b) 

Physically, F(v,t) is the rate at which mass is transferred from particles with volumes less 
than v to particles with volumes greater than v. We term F the mass agglomeration 
density; F plays a role similar to that of  q, the slowing down density, in neutron 
thermalization problems (Williams (1966)). It is obvious, both from the definition (12b) 
and the physical interpretation of F ,  that F(O,t) = 0. Also, under the assumption that 
particles are removed by gravitational effects when they become sufficiently massive, we 
have n(**,t) = 0, so F(**,t) = 0. It immediately follows that, integrating Eq. (12a) overall 
v, the balance equation (3b) is obtained. Eq. (3b) follows from both Eq. (1) and Eqs. 
(12), but the algebra necessary to show that the coagulation terms cancel out of  Eqs. (1) is 
nontrivial, whereas the algebra needed to show that the coagulation terms cancel out of  Eq. 
(12) is trivial. For this reason, we refer to Eqs. (12) as the conservative form of  the kinetic 
aerosol equation. 

We now derive a simple mass-conserving numerical scheme for Eqs. (12). 
Integrating Eq. (12a) o v e r  Vi_l/2 < v < Vi+l/2, w e  obtain: 
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d 
-~ V i ni(t)h i = F(vi_i/2, t) - F(vi+i/2, t) - viRi(t)ni(t)h i + viSi(t)h i . (13) 

It remains to approximate F .  However,  we first observe that no matter how F is 
approximated, as long as we require 

F(Vll z,t) = 0 , (14a) 

F(vt+ll 2,t) = 0 , (14b) 

then it follows from Eq. (13) that 

d i i 1 
"~ ~ vini(t)hi = - E  viRi(t)ni(t)hi + ~., viSi(t)hi " 

- i=1 i=1 

This is just a discretized form of the balance equation (3b), stating that the discretized 
coagulation operator neither creates nor destroys mass. Therefore, no matter how 
F(Vi+ll2,t ) is defined for 1 < i < I - 1, the resulting numerical scheme will conserve mass. 

To evaluate F(Vi+ll2,t ) for 1 < i < I - 1, we take 

Vi+lt2 vi+l/2 
= Idu 

VII2 Vi+l12 -u 
i VJ+l/2 VI+l/2 

= ~_~ ~duun(u,t) ~dwd~(vj, w)n(w,t) 
j=l Vj_l l  2 vi+ll2-V j 

i f vk+112 I v-+112 1 
= 2vjnj ( t )h / l  fdw¢(vj,  w)n(w,t) + ~,  ~dwdp(Vy, w)n(w,t)[ 

j= l  [vi+ll2-V / m=k+l V._l/2 j 

= j~=l vjnj(t)hj ~Jknk(t)h#k+ m=k+l~'dPjmnm(t)hm (14c) 

Here, k is the unique integer satisfying 

and 
Vk_l/2 < Vi+I/2 -- y j  < Vk+l/2 , 

h,~ k = V k + l / 2  - -  ( V i + l / 2  - -  V j )  . 

(14d) 

(14e) 

F(Vi+ll2,t) is now defined by Eqs. (14). We note that the formula (14c) 
"naturally" satisfies Eq. (14a), but not Eq. (14b). Making the special definition 
F(vt+l/2,t) = 0 establishes that no particles with mass greater than vi+v2 are created and 
has the following effect: if two particles coagulate to form a single particle whose volume is 
greater than v 1, then this mass is automatically placed into the proper number of particles in 
the I - th cell so that mass is conserved. Thus, in the absence of  removal and sources, all 
mass will eventually settle into the I -  th cell, as in the Nv method described in the 
previous section. 
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In the remainder of this paper, we shall describe the method of  Eqs. (13) and (14) 
as the "Cv" method - "C" referring to the fact that the method is based on the conservative 
form of the aerosol equation. 

The approximation used to derive Eq. (14c) consists of  taking n to be constant on 
each cell. Physically, this can be interpreted as assuming that the aerosol particles are 
distributed uniformly within each cell, rather than all being located at the cell centers, as in 
the Nv method. 

One can easily see that the number of mathematical operations required to evaluate 
the coagulation terms in Eq. (13) is significantly less than the number required to evaluate 
the corresponding terms in Eq. (8). This permits the Cv method to be solved more 
efficiently than the Nv method. We have observed this in our computer simulations, which 
we discuss in the following section. 

V. POSITIV1TY 

One of the most important features of any successful numerical approximation is its 
ability to produce non-negative solutions. For our method to be reliable and stable, the 
number density obtained from solving Eq. (13) must be non-negative for all times. One 
way to ensure this is to examine carefully the behavior of the negative terms in Eq. (13) as 
n i ---> 0. A positive, stable method requires that these negative terms vanish as n i tends to 
zero. [This occurs with the Pardiseko method; see Eq. (8).] 

If we examine Eq. (13), which can be written as 

~t vini(t)hi = zlFii(t ) - viRi(t)ni(t)~ + viSi(t)h i (15a) 

where 

AFi(t ) = F(vi_i/2,t ) - F(vi+i/2,t ) , (15b) 

we find that the removal term vanishes as n i tends to zero. Thus, for our method to be 
stable, AFi(t)  must be non-negative as n i tends to zero. 

To show this, we rewrite Eq. (15b) using Eq. (14) as 

i-1 { 1 t 
Z~//(I)= j~lyjnj( t )hj  ~jk, nk,(t)hi_l, jk, + ~ ~)jmnm(t)hm 

- m = k  +1 J 

' ' t - Z v j n j ( t ) h j ,  dpjknk(t)h~ k +  Z ~ P j m n m ( t ) h m  (15c) 
j=l m=k+l J 

Here, k and k" are the unique integers satisfying 

Yk-ll2 < Vi+I/2 -- •j < Vk+l/2 (15d) 

Also,  
Vk'-l/2 < ~ i - 1 1 2  - -  Vj < Vk,+ll2 

hz~/k = IPk+l/2 -- (Vi+I/2 -- V j) 

(15e) 

(15f) 
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hi_1,jv = vv+v2 - (vi_v2- v j)  (15g) 

Eq. (15c) Can be rearranged in the fo rm 

i-1 f t t ) 
AF/(/) = Evjnj(t)hjl E Ojmnrn(t)hmk , -  ~ q)jmnm(t)hmk 

j=l [.m=k m=k 

{ ' r - v i n i ( t ) h  i Ojknk(t)h~:ik+ ~ . , O j ~ n ~ ( t ) h ~  , 
m=k+l J 

(16a) 

where 

and 

h m i f  m > k "  

hmk'= hi_l.jk, i f  m =  k" 
(16b) 

{ h~ i f  m > k  

i f  m = k 
(16c) 

The first term on the fight side of Eq. (16a) represents the rate at which aerosol 
particles are produced in Av i about v i due to the coagulation of other particles, whereas the 
second term represents the rate at which particles in Av i about v i are removed due to 
coagulation with other particles. 

Since k is always greater than or equal to k',  then the first term on the fight side of 
Eq. (16a) is always non-negative. Also, as n i tends to zero, the second term on the fight 
side of Eq. (16a) vanishes. This establishes that AFi(t)  is non-negative as n i tends to 
zero, as required. 

VI. NUMERICAL RESULTS 

In the numerical calculations involving each of the methods developed above, we 
used a standard fourth-order Runge-Kutta method (Anderson (1974)) to discretize t in 
conjunction with the Nv and Cv methods for discretizing v. 

We shall now describe numerical results for a problem in which the exact analytic 
particle number density is known for all times. This solution exists if the coagulation 
kernel is independent of  the aerosol volume, the source and removal rates are equal to zero, 
and the initial condition is a simple exponential function: 

t~(u,v) = ~o , (17a)  

S (v , t )  = 0 , (17b)  

R (v , t )  = 0 , (17c)  

n o ( v ) =  N °  e x p ( - V  ) . (17d)  
vo ~, vo ) 

Here N O is the prescribed total number of particles and v 0 is the prescribed average particle 
volume at t = 0. The exact solution of Eq. (1) with these definitions is Williams (1990)) 
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N(O ( v 

: ex"t -u-mJ ' (18a) 

where  
.? No N(t) = Jn(v, t)dv = 

~'oN 0 , o 1+  t 
(18b) 

and 

7vn(v,t) dv 
u(t) = o - Nov° (18c) 

ln(v , t )d  v N(t)  
0 

In  our  numer ica l  calc~]ati_qjns, we  used the values  (Wil l iams (1986))  v 0 = 1~(1464 x t 0  -19 
c m  3,  N 0 = 9 . 1 5 x 1 0  m -  , a n d  O o = k T / 3 r l ,  w h e r e  k = l . 3 8 x 1 0 - " - "  J K - I  is  
B o l t z m a n n ' s  cons tant .  T = t empera tu re  = 300°~4~, anal 7/ = v i scos i ty  o f  the m e d i u m  = 
1.8 x 10-Skg m -1 see -1. W e  also used Vmi n = 10-  c m  ~. 

This  exact  solution, initially and after one,  five, and ten hours,  is plot ted in Fig.  1. 

n(v,t) (cm -6) 
10 33. 

10 32 

10 31 

10 30 

10 29 , 

10 28, 

10 27 , 

10 26 , 

10 25. 

10 24 . 

10 23 . 

10 22 . 

10 ° 101 

Time = 0 

T ime  = 1 Hr  

T i m e  = 5 Hrs  

T ime  = 10 Hrs  

10 2 10 3 10 4 10 5 10 6 10 7 
. . 1  

10 8 10 9 
v/Vmin 

Figure 1: Exact  n(v,t) 
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This shows that as a result of  the coagulation process, more large particles are 
created that subsequently are involved in the coagulation process. Therefore, to accurately 
simulate the problem for sufficiently large times, one must use a sufficiently large value of  
Vma x . For this special problem, we see that if  the duration of  interest is ten hours, then we 
must  consider a volume range that spans nine order of  magnitude. We used this range in 
our numerical calculations. Thus, with Vmi n = 10 -24 cm 3, we have Vma x = 10 -15 cm 3. 

Since the total mass in this problem is conserved (there are no source and removal 
terms), the system evolves in time from one having a large number of  small particles to one 
having a smaller number of  larger particles. The relative total number of  particles in the 
system as a function of  time is displayed in Fig. 2. 

N ( t )  
1 

.1 

.01 

N(0) 

.001 , , , , T ime  (Hrs . )  

0 2 4 6 8 10 

Figure 2: Exact N ( t )  / N(O)  

We ran the problem described above, using the logarithmic/grid defined by Eqs. (4) 
with I = 50 cells. I f  we define 

Nexact(t) - N ( t )  
Relative error of  the total particle density = N----~ct(t- ] , (19a)  

1 
N ( t )  = Y~ni(t)h i , (19b) 

i=1 

then the results shown in Fig. 3 illustrate that the Cv method produces a more accurate total 
particle density than the Nv method. 

ANE 17:12-F 
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Error (%) 
1.5 

1.0 

Nv 

0.5 

0.0 . . . . . . . .  , . . . . . . . .  , . . . . . . . .  , . . . . . . . .  
.001 .01 .1 1 10 

Figure 3: Relative Error in N(t) 

Time (Hrs.) 

If we define: 

nexact( V, t )  - n (  v , t )  
Relative error in the particle spectrum= n e x a c t ( v , t )  , (20) 

then Figs. 4 - 6 display these relative errors for the Nv and Cv methods for t = 1, 5, and 10 
hours. We see that the the Cv method generally produces a more accurate particle spectrum 
than the Nv method, particularly for small v. 

Finally, in Table 1, we present timing results obtained by solving the above 
problem on three grids (25, 50, and 100 cells), for t = 10 hours, on an Apollo DN4000 
computer. These results show that the Cv method is about three times faster than the Nv 
method. This is due to the simpler algebraic structure of the Cv method, as discussed in 
the previous section. 

VII. CONCLUSIONS 

In thi~ paper we have developed a new approach to the numerical simulation of 
nuclear aerosol problems by using a "conservative" form of the kinetic aerosol equation. 
Although the conservative and original forms of the aerosol equation are mathematically 
equivalent, they generate numerical approximations that are not mathematically equivalent. 
We have shown that numerical methods obtained from the conservative form of the 
equation have advantages over methods obtained from the original form of the equation. A 
particular advantage of the conservative form is that numerical methods can easily (without 
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Figure 6: Relative Error in Particle Spectrum for t = 10 Hrs. 

N u m b e r  
of Cells 

25 

50 

100 

Nv 

Method 

11 

45 

223 

Cv 

5 

14 

55 

Table 1: Timing Comparison (in sec) of the Nv and Cv Methods. 

making any unnecessary physical assumptions) be derived for it that conserve mass. We 
have shown that a simple such method is both more accurate and more efficient than a 
corresponding method based on the nonconservative form of the kinetic aerosol equation. 

More sophisticated numerical methods can certainly be developed for the 
conservative form of the kinetic aerosol equation. For example, linear finite element 
methods have been developed for the nonconservative form of the equation (Dunbar 
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(1984)), and there is no doubt that these can be systematically developed for the 
conservative form of the equation. However, we will not pursue this here. 

In summary, the conservative form of the kinetic aerosol equation is useful for 
generating accurate and efficient numerical schemes. We have observed no apparent 
disadvantages to numerical methods based on this form of the equation. 
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