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Al~traet--A periodic array of interface cracks was considered earlier as a simple model to study the 
effect of crack interaction on the elastic fields of a solid composed of two dissimilar isotropic elastic 
materials. This paper focuses on the perturbation of the elastic compliances of the solid due to the 
interacting interface cracks. The problem is formulated using Betti's reciprocal theorem. The 
analysis provides the equivalent elastic compliances in terms of the geometric parameters of the 
interface cracks for various levels of loadings and material combinations. The results show that the 
interaction between cracks is significant only when the crack spacing is less than four times the crack 
length. Also, contact between crack faces introduces coupling between applied shear stress and 
normal displacement, but it is significant only when the ratio of the magnitudes of the shear and 
normal stresses exceeds two. 

1. I N T R O D U C T I O N  

The widespread use of composite materials in structural applications has generated 
renewed interest in problems involving interfaces between dissimilar media, including the 
classical problem of the interface crack [1, 2]. Modern composites, particularly those 
involving ceramics l3], frequently consist of brittle fibers in a brittle matrix and they 
therefore rely for their ductility on frictional dissipation at the fiber/matrix interface. When 
such composites are loaded monotonically, their behavior remains linear until cracks begin 
to develop, usually either in the matrix material or at the fiber/matrix interface. These 
cracks reduce the incremental stiffness of the composite, resulting in a concave downward 
stress-strain curve. 

Conversely, when a brittle composite exhibits such a stress-strain curve, it is an 
indication of the generation of cracks within the structure, and in principle it should be 
possible to estimate the crack density from the incremental stiffness of the bulk material. 

The additional compliance of a composite specimen due to a system of cracks will depend 
on the typical crack size and spacing and on whether the cracks occur in the matrix or at the 
fiber/matrix interface. In the case of interface cracks, a further complication is introduced 
through the tendency of the cracks to close when the far-field stresses involve a significant 
shear component 14-1. This closure introduces a measure of coupling between the effects of 
normal and shear loading and also leads to a nonlinear effective constitutive law, since the 
normal displacements associated with shear will have the same sign for both directions of 
shear loading. 

In the present paper, we investigate these effects by determining the additional com- 
pliance of an infinite body of two bonded dissimilar materials due to a periodic array of 
cracks at the interface. The results are obtained by extending the solution due to Schmueser 
and Comninou [6], in which the perturbed elastic field is expressed in terms of a 
distribution of edge dislocations along the cracks. The additional compliance is obtained 
from these dislocation distributions using Betti's reciprocal theorem. Numerical results are 
given for various ratios of tension to shear stress in the far-field. 

2. F O R M U L A T I O N  

The geometry and formulation arc the same as in [6]. However, in the interests of 
convenience and continuity, we repeat the essential steps of the analysis. 
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FIG. 1. T h e  periodic a r ray  of interface cracks.  
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Consider a periodic array of interface cracks with period 2h, lying at the interface between 
two elastic solids characterized by shear moduli Pl, #2, and Poisson's ratios vl, Vz, as shown 
in Fig. 1. Under the action of uniform shear stress S and tension T applied at infinity, a 
representative crack of length 2L opens over an interval ( - a, b); its two faces are in 
frictionless contact at the crack tips over the intervals ( - L, - a) and (b, L). The para- 
meters a and b are to be determined from the traction boundary conditions, which require 
that shear tractions vanish over the entire length of each crack and that normal tractions 
vanish over the open part of each crack. The conditions are enforced by using the known 
stress fields for edge dislocations. 

Periodic dislocation distributions B,,(x) and By(x) are defined over the entire length and 
over the open part of each crack, respectively. The boundary conditions at the interface are 
given in terms of the applied field and a corrective field determined by the dislocation 
distributions: 

E l s + c  =o,  

over the entire length of each crack, and 

over the open part of each crack, where 

2/~(1 + a) 
C =  

(x, + 1)(1 - f 1 2 ) '  

#2(xl + 1) --/-q(x2 + 1) 
fl2(/¢1 + 1) + ~Al(/¢ 2 + 1)' 

/~2(xl - 1 ) -  #1(x2 - 1) 
/~2(x 1 + 1) + Pl(x2 + 1)" 

Taking periodicity into account, equations (1) and (2) become: 

_ 1 L S+C{flBy(x) ~-h f _ L B x ( 0 c o t I - n ( ~ h  x ' . ] d , } - . 0 ,  

T-C(flBx(x)-~--hf: B,(Ocotlx(~hX']d'}=O, 

(1) 

(2) 

- L < x < L (3 )  

- -  a < x < b. ( 4 )  
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To ensure single-valued displacements, the following conditions are applied: 

f~  B~(~)d~=0,L (5) 

f [  Br(~)d~=O.o (6) 

The known displacement fields of the dislocation distributions given in [-6] can be used to 
determine the relative displacements between the solids; however, the process is cumber- 
some. Therefore, Betti's reciprocal theorem 17] is employed to obtain the expressions for the 
relative displacements. The theorem states that, for a linear elastic body subjected to two 
different loadings, the work done by the first loading acting through the displacements 
produced by the second loading, equals the work done by the second loading acting 
through the displacements produced by the first loading. That is, 

fs ,X)ul2)dS + fvFl% 2'dV= fs '2' "' fv '2' "dV  Ti ui dS + Ft ui - (7) 

where ~k) stands for surface traction, F~ k) for body force, and ul k) for the displacement 
produced by the corresponding loading condition; the superscripts identify the quantities of 
a given loading, and the subscripts identify the quantities in the xi direction. 

In the absence of body forces, the above equation becomes: 

fs .~ ~2~ fs ~2~ .~ Ti ui dS (8) = T :  u~ dS. 

To obtain the relative normal displacement for the current problem, consider the stress 
state of uniform tension ao throughout the solid, and the auxiliary stress state defined by the 
corrective solution of the current problem. For the state of the uniform stress the 
displacements at the crack faces are zero, while for the auxiliary state the stress components 
at infinity are zero. Thus, Betti's reciprocal theorem gives the following equation: 

f f_ f_ 2 1 a o U~ dx - ao U~ dx - a o ur (x, O)dx + ao ur (x, O)dx = 0 (9) 
h - h  a a 

1 and z where U~ and U~ are the normal displacements at infinity, uy uy are the normal 
displacements along the crack faces produced by the dislocation distribution along the 
cracks. The superscripts 1 and 2 stand for solids 1 and 2, respectively. Because of the 
periodicity, only the work done on one crack needs to be considered. 

Denoting the average relative normal displacement at infinity by 6, 

we obtain from equation (9): 

where 

6, = -~ 9(x)dx (10) 
- - a  

g(x) = u (x, o) - u (x, o), 
is the crack opening displacement related to the component of the Burgers vector By(x) by 

d0(x) 
By(x) = dx " 

Therefore, the average normal displacement at infinity is equal to the average crack 
opening at the crack faces, and 

l B,(¢)d~dx. (11) 
~"= -2--h ~ 
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Similarly, to obtain the relative tangential displacement, consider the state of simple shear 
stress a o throughout the solid, and the auxiliary state of stress given by the corrective 
solution. Equation (8) then gives: 

ao Ulxdx - a o U ~ d x  - ao u2(x, 0)dx + a o ulx(x, 0)dx = 0 (12) 
h - h  - L  - L  

where the subscript x indicates the quantities in the tangential direction. 
Therefore, the average relative tangential displacement, 6t, is obtained as: 

= (el - V~)dx 
6t 2-h - h  

h ( x ) d x  (13) 

where 
h(x) = u2(x, O) -- u~(x, O) 

is the relative slip between the two solids at the crack faces related to the dislocation 
component Bx(x)  by 

dh(x) 
B x ( X )  = - - -  

d x  

Thus, the average shear displacement at infinity is equal to the average relative slip 
between two solids at the crack faces, and 

1 
6,- 2h fLL f[LBx(OdCdx. (14) 

To calculate the displacements 6. and 6. we need to recalculate the dislocation 
components Bx(x),  By(x), and the contact zones a and b from the integral equations (3)-(6). 
Equations (3) and (4) can be transformed to equations with explicit Cauchy kernels by 
means of the following changes of variables as in [6]: 

x = L x ' ,  ¢ = L ~ '  

tan \ - ~ - j  = ud, tan \ - - ~ - j  = sd 

where 

d =  tan (7[~-h) 

1 ( 7 1 o )  1 (7[b) 
~'i= - ~ t a n  ~ , ~2=~ tan  

and the same symbols were retained in the new variables for functions Bx and By. 
The relative displacements in the new variables are: 

2d2h f , 2 1  fs 
(~n = 7[ 2 l + d2,'s 2 ~b(u)du 

Yl Yl 

where 

6 t  ~ - -  - -  7[2 1 + d2s 2 ~k(u)du 
1 1 

Bx(u) 
d/(u) = 1 + dZu ~ '  

B,(u) 
(b(u) = 1 + deu  2" 

Details of determination of ~, ~b, 71 and Y2 are given in [6]. 

(15) 

(16) 

(17) 

(18) 
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3. R E S U L T S  A N D  D I S C U S S I O N  

Most of the numerical results were generated for/~ = 0.5 because this case corresponds to 
one material being rigid and has the biggest effect on the compliances. Some results are also 
given for fl = 0, 0.3 for comparison. The results are presented for various values of the 
dimensionless loading parameter T/S and the crack configuration parameter h/L. Both 
tensile and compressive loading conditions were analysed. 

Figures 2 and 3 show the variation of the dimensionless normal displacement 6,C/SL 
with ratios of crack length L to spacing h, for tension/shear loading and compression/shear 
loading, respectively. From these figures it is seen that 6,C/SL is proportional to L/h for L/h 
less than 0.25, and it then increases rapidly with increasing L/h. This indicates that there is 
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F]o. 2. The relative normal displacement at far field vs ratio of crack length to spacing for various 
tensile/shear loads (/~ = 0.5). 
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no significant interaction between the cracks when the periodic spacing is greater than 
about four times the crack length, and the results are as those obtained from a single crack. 

Because of the linearity of the average displacement 3,,C/SL with respect to small L/h, the 
quantity 3,,Ch/SL 2 must be constant for L/h less than 0.25 at any given ratio of normal to 
shear stress T/S. This quantity is plotted against T/S for various L/h in Fig. 4. As expected, 
all curves coincide for h/L > 4. The curves are different for h/L < 4 because of crack 
interaction. We also notice from Fig. 4 the linearity of ~5,Ch/SL 2 for T/S greater than about 
0.5; the curves become straight lines passing through the origin (T/S = 0). This is because 
the right contact zone reduces rapidly as T/S increases, and it is nearly zero for T/S > 2 so 
that its effect on the global fields is negligible. Therefore, 3, will be proportional to the 
normal stress Tas in the homogeneous case, where there is no coupling between tension and 
shear. Notice, however, that the normal displacement is not zero for T/S less or equal to 
zero because of the effect of contact pressure. 

1.5- 

N 
. J  

0 
,<3 

1- 

0.5- 

/1=0.5 

h/b~ , 
.~ .  !..~" 

. . . . . . .  ~ . . . .  - 2 j  

! 

- '  -0 .5  

l / j '  I t 
/ 

/ 
/ 

,l'* • / 

o~s 
Vs 

FIG. 4. Normalized relative normal displacement tS.Ch/SL 2 vs ratio of tension to shear T/S for 
h/L > 4, h/L = 2 and h/L = 1.25 (fl = 0.5). 
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Figure 4 also implies that 6,Ch/TL 2 must be constant for large T/S at any given h/L. 
Therefore we plot this quantity against L/h in Fig. 5. For S/T < 2 all curves coincide as 
expected. Deviations from this curve are the result of the existence of the contact zone and 
hence of the coupling between shear and tension. 

The effect of the parameter fl is shown in Fig. 6 for h/L > 4. For tension/shear 
combinations the quantity 6,Ch/SL 2 deviates very little from the homogeneous case. 

Figure 7 shows the relative tangential displacement 6tC/SL with respect to L/h for 
various combinations of normal and shear stresses. Comparing these figures with Figs 2 and 
3, it is seen that the effect of tension on tangential displacement or shear compliance is much 
smaller than that of shear on normal displacement or normal compliance. Similarly, the 
shear compliance is linear for small L/h; 6tCh/SL 2 is constant for L/h less than 0.25 at any 
given T/S. For h/L > 4 all curves coincide in Fig. 8, and for h/L < 4 the effect of the 
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FIG. 6. Normalized relative normal displacement 6,Ch/SL 2 vs ratio of tension to shear T/S for 
h/L > 4 and fl = 0.5, ~ = 0.3, fl = 0. 
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existence of the contact zone results in deviations from this curve. It is also seen from Fig. 8 
that for both large tension/shear and compression/shear loads, the curves level out. This is 
because for large tensile loads the crack is almost fully open, and the small contact zones 
will not have much effect on displacement. For large compressive loads, the crack is almost 
fully dosed and a further increase in the normal load will not affect the displacement. 

The effect of the parameter/ / is  shown in Fig. 9 for h/L > 4. For compression/shear 
combinations the effect of fl on the quantity 3tCh/SL 2 is negligible. 

In general, it can be concluded that interface cracks have significant interaction only 
when the spacing between the cracks is less than about four times the crack length. The 
interaction is negligible when the spacing is greater than four times the crack length. The 
effects of contact zones, and therefore the coupling between tension and shear which 
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contributes to the nonlinearity of the problem, are significant only when the normal load is 
small compared with the shear load. 
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