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Abstract

A linear stability analysis of multilayer flow of viscoelastic liquids through
long, converging dies is performed by a rigorous two-dimensional analysis
(2-D), as well as by a simplified one-dimensional analysis (1-D) on selected
cross-sections along the die. The rheological behavior of liquids is repre-
sented by a modified Oldroyd-B model with a shear-rate dependent viscos-
ity, described by the Carreau viscosity function. In the 2-D analysis, a
streamlined Galerkin / finite-element method is used to discretize the do-
main. The resulting asymmetric generalized eigenvalue problem is large (of
the order of 3000-8000), sparse, and banded, with a singular mass matrix.
The leading eigenvalues of this complex problem are computed by using an
iterative Arnoldi’s algorithm, modified by Schur—Weilandt deflation, com-
plex shift, and exponential preconditioning. With these series of modifica-
tions, the algorithm is now sufficiently flexible to solve any application that
belongs to a generic class of large hydrodynamic stability problems.

The effect of the die geometry on the neutral stability curves is investi-
gated for various operating conditions and rheological parameters. In all the
investigated cases, the critical flow-rate ratios in long converging channels
are found to be independent of the shapes, and of the ratios of the
thicknesses at the inlet to the outlet of the die. These results agree well with
the approximate, simplified 1-D analysis, indicating that the most dangerous
instability is at the inlet of the die. Thus, the analysis of the entire
two-dimensional flow domain is unnecessary, at least for long channels,
except for validating the 1-D analysis. The results also indicate that mesh-in-

* Author for correspondence. Current address: Scientific Research Laboratory, Ford Motor
Company, Mail Drop 3198, Dearborn, MI 48121-2053 (U.S.A))

0377-0257/91 /303.50 © 1991 — Elsevier Science Publishers B.V. All rights reserved



2
dependent eigensolutions cannot be obtained using the 2-D analysis when
leading eigensolutions exist at large wavenumbers.

Keywords: coextrusion; converging dies; multi-layer flow; Oldroyd-B model; viscoelastic
liquids

1. Introduction

A wide range of desired properties can be achieved in plastic films by
constructing a layerwise composite structure of polymers, in which each of
these layers provides a specific end-use property, such as oxygen and
moisture barrier, and thermoformability. These multilayer films are manu-
factured by coextrusion through converging dies, and are used in applica-
tions ranging from food-packaging to paper-lamination. At certain operating
conditions, interfacial instability in the form of wavy interfaces is observed,
which is detrimental to the product quality (see Fig. 1).

Interfacial instability in multilayer plane Poiseuille flow of Newtonian
liquids was investigated using a linear stability analysis [1-4]. The re-
searchers found that the onset of instability occurs even at vanishingly small
Reynolds number in the presence of viscosity stratification. A similar
analysis of multilayer extrusion of viscoelastic liquids indicated, however,
that elasticity provides a stabilizing effect, such that operating windows of
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Fig. 1. Interfacial instability in multilayer extrusion.



3

stable conditions at all wavelengths could be constructed [5~7]. Khomami
[8] investigated interface deformation when two immiscible liquids merge
together in a converging channel, in which he predicted that the normal
stresses play a major role in interfacial stability. A limited number of
experimental studies were also performed [9,10]. However, they were inade-
quate to establish any general criteria of interfacial instability. The experi-
ments by Han and Shetty [9] had insufficient rheological data, whereas Kao
and Park [10] investigated shear-mode instability rather than interfacial-mode
instability.

A typical industrial die has dimensions of 3—-5 cm length, 30—-40 cm width
and 0.2-0.3 cm depth at the inlet [11], and has a converging shape from the
inlet to the outlet. The effect of this shape on the stability of multilayer flow
has not been addressed in the literature, even for Newtonian liquids. In this
paper, we will investigate the effects of the shape of converging dies, and the
ratios of their depth at the inlet to the outlet on the stability of multilayer
flows of viscoelastic liquids.

Since typical industrial dies are by an order-of-magnitude longer than
their depth, two approaches are possible. In one approach, the steady-state
flow is a two-dimensional converging flow (2-D) with the variation in
velocity along the depth and the length, whereas in another approach, the
flow is assumed to be one-dimensional channel flow locally at various
cross-sections of the die (1-D). Two-dimensional linear stability analyses are

TABLE 1

Differences between the numerical schemes in the 1-D and the 2-D approaches

1-D approach 2-D approach

(1) 1-D steady-state flow locally at

various cross-sections 2-D steady-state flow

(2) Applicable only to long dies Applicable to any die

(3) Pseudospectral discretization Streamlined Galerkin /finite-element method
(4) Shooting technique for predicting A modified Arnoldi’s algorithm for
eigenvalues predicting eigenvalues

(5) Disturbance: Disturbance:

f(x, y, 1) =1*(y) exp(iax) exp(ct) f(x, y, )y=1*(x, y) exp(ct)

(6) A standard numerical technique A novel numerical technique with a wide range

of applications.

The variable f represents the flow variables, a the real wavenumber, ¢ the complex
wavespeed, x the direction along the flow, y the direction along the depth of the die, and ¢
the time.
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carried out for both approaches. However, a convenient Fourier normal-
mode decomposition of disturbances along the direction of flow can only be
incorporated in the 1-D analysis. The linear stability analysis in the 1-D
approach, which is similar to the analysis of the channel flow reported by
Anturkar et al. [6,7], is performed at various cross-sections of the die to
determine the most unstable mode. In this paper, only the 2-D approach is
described in detail. However, the essential differences between the numerical
schemes of the two approaches are summarized in Table 1. Note that the
2-D analysis is computationally expensive. Besides, for the case in which the
leading eigenvalues exist at large wavenumbers, the results are mesh-depen-
dent (see Section 5). In these cases, the 2-D analysis is ineffective.

The steady-state-analysis in the 2-D approach, carried out by means of
the streamlined Galerkin/ finite-element method with Newton’s iteration is
described in Section 2. The formulation of the linear stability analysis with
finite elements is described in Section 3. The discretization of the two-di-
mensional flow domain gives rise to a large, asymmetric generalized eigen-
value problem. Computations of the leading eigenvalues of such a complex
problem using a modified Arnoldi’s algorithm are discussed in Section 4.
The results obtained from both the approaches are presented and compared
in Section 5, and the conclusions are summarized in Section 6.

2. Steady-state analysis

A schematic flow geometry and the coordinates of the two-dimensional
flow in a converging channel are shown in Fig. 2. Although a two-layer flow
is shown here, the algorithm is developed for I-layer flow, where the number
of layers / is arbitrary. The dimensionless equations of change are
Continuity equation:

v -0=0, j=1,2,...,1L 1)

J

No shp at the wall

v, =
Layer 2 . .
Flow = "Free” boundary
Fully . —= H
developed L ow
flow ;
y Layer 1 \_— At the interface
No slip at the wall (1) force balance
vV, =0 (2) continuity of
| X ! velocity
I L |
L>>H,

Fig. 2. A schematic diagram of the flow geometry, coordinate axes and boundary conditions.



Conservation of momentum equation:

ay,
Rej[a_tj+t,j.vq]=—pjv-l+v-f|} j=1,2,..., L (2)

where, the subscript j denotes the jth layer. The variable 1, is the stress
tensor, v, the velocity vector, p; the pressure, Re, the Reynolds number, and
I is the unit tensor. The equations are made dimensionless by the total
average velocity V, the total thickness H,, of the die at the inlet, and by the
zero shear-rate viscosity 7, of the first layer. Henceforth, all equations are
for j=1,2,...,/, unless otherwise specified.

A modified Oldroyd-B model with shear-dependent viscosity is chosen as
a constitutive equation to relate the stress tensor 7, to the rate-of-strain
tensor ,. The viscosity 7 is a function of the magnitude (= [}v: ¥]'/?) of
the rate-of-strain tensor, and is given by the Carreau viscosity function [12].
The constitutive equation in its dimensionless form is

7 + Al/T(l)J = I‘J(Y.J)[?J + AZJ?(Z)]] > (3)

where T,(7,) = «,[1+ A%, 771?77 is the dimensionless Carreau viscosity
function, k, =1,,/7, s the zero-shear-rate viscosity ratio, n, the power-law
exponent, and A, is the time constant in the viscosity function. The
dimensionless time constants A;, and A,, in the Oldroyd-B model are the
relaxation and retardation times respectively. The convected derivatives of
the stress tensor 7, ,, and the rate-of-deformation tensor ¥,,, are

aT
"<1>f=a_f+%'V’5‘[TJ'Vta+(ij)“5~], (4)
o : . o
?<2>,=.87’+vj.vyj—[yj.vvj+(v,,j) ‘Yj]- (5)

At low shear rate, the dimensionless viscosity l‘l( Y;) approaches k s and at
high shear rates, it exhibits power-law behavior. The power-law model
predicts unrealistically high viscosity at low shear rates. Therefore, for
pressure-driven flows involving regions of low shear rates, the Carreau
viscosity function is an appropriate choice rather than the power-law model.
In general, fluid particles experience extensional flow in the converging
channel. The Oldroyd-B model is unsuitable for extensional flows, because
of its unrealistic prediction of an infinite extensional viscosity at a finite
extension rate [12]. However, shear flow dominates over extensional flow in
long dies, and the extension rate never approaches the value at which the
elongational viscosity is unrealistically high.



The modified Oldroyd-B model can also be written as [13,14],

T,=T, +'rej,

Ty + Aty =T (1) 45
Tej= rej(Yj)..Yj’ (6)
I‘](‘Yj) = I‘e'j("Yj) + I‘vj(‘?j)’

A=A ——-r”(_Yf).

J J 1'*] (Yj)
The above rearrangement of the constitutive equation can be considered to
be a model of a viscoelastic liquid with relaxation time A;; and viscosity
function T,;(¥,) in a shear-thinning, inelastic solvent with viscosity function
[, ;(¥,)- The subscripts e and v correspond to the inelastic and viscoelastic
components respectively. It is assumed that I}(¥,), T, ;(¥,), and T,,(¥,) have
the same functional form with the same time constant A,; and the same
power-law exponent n; in the model. The only difference in these three
viscosity functions is their values at zero shear rate. The retardation time
A,, is assumed to be equal to A,,/9 in all the calculations. Equations (2),
(3) and (6) are then rearranged such that,

Conservation of momentum equation:

9y, Agi s
Re)| 57 +97 vy |=v | —pl+5,+ 1011, (7)
Constitutive equation:
AZ
ij+A11Tv(l)j= (1_ KT;I)I‘J(‘Y])YJ (8)

Since the relationship between I';(Y;), I,;(¥;) and T, (¥;) is known, the
above formulation does not introduce any additional unknowns. Hence-
forth, the subscript v is removed from 7,; for simplicity. This arrangement
of the governing equations is preferred for numerical stability in Galerkin/
finite-element analysis, and also for a better physical interpretation of the
constitutive equation.

The velocities, stresses, pressure, and interfacial locations are determined
for steady-state flow by solving eqns. (1), (7) and (8) in the absence of
time-derivatives. The boundary conditions in terms of dimensional variables
are (see Fig. 2):

(1) no slip at the stationary walls: o,,; = 0;

(2) continuity of velocity at interfaces: v, =

(3) force balance at interfaces: n;-(
Ca,= 0;

+13

%Y -
=T tpal-pl)tn -H/



(4) kinematic boundary condition: n, - (v; — dh,/0t) =0,
where, h, is the distance of the jth mterface from the base level, n; the unit
normal vector and H the curvature vector, and the capillary number Ca, is
defined as V¢, /0, where o, is the interfacial tension between the jth and
the (j + Dth layers.

The assumption of fully developed flow at the inlet of the die, which is a
valid assumption for the multilayer extrusion process, specifies the boundary
conditions on stresses and velocities at the inlet of the die. These boundary
conditions are computed by solving the equations for one-dimensional
multilayer plane Poiseuille flow [6,7]. Since the flow rates are easily measura-
ble quantities compared to the thicknesses of the individual layers, they are
computed along with velocities and stresses for a given set of thicknesses of
all layers, and the results are reported in terms of the flow rates. At the
outlet of the die, a weak form of the governing equations in finite-element
analysis is extended to the outflow boundary. This “free” boundary condi-
tion has been proposed by Papanastasiou et al. [15], and has been tested for
several applications by Malamataris et al. [16].

The streamlined Galerkin/ finite-element method is used to solve the
steady-state equations, in which the elements align themselves along stream-
lines [17]. The locations of the nodes of the elements are unknown variables,

v, Ty hj, P vJv:\rJy hJ v, T;, h], P

v, T
v, T ) PV, T

o

v, T, hy, py v, T, hy v, T, hy, py

(a) Element 15 not on the interface

Vi+1, Tyel
Vi, T 0 °© O Vit Ty
(J+1)th layer
v, T, hJ, P vy, T, hlv Tysl vy, Ty hJ, P
T+l Prt1 T+, Pt
v, T
Vi, U 5 vy, B
Jth layer
& b

vy, T, hy, py v, T, by v, T, hy, py

(b) Element 1s on the interface

Fig. 3. The nodal unknowns (a) for an element in the flow domain not on the interface, and
(b) for an element just below the interface.
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which fall on the streamlines by satisfying the kinematic condition of no
mass penetration. Since the interfaces are along the streamlines, the interfa-
cial locations are simultaneously determined along with the nodal pressures,
velocities and stresses by solving the kinematic equation simultaneously with
the equations of change. In our analysis, the x-coordinates of all the nodes
are fixed, and the y-coordinates are left as unknowns. The formulation of
the Galerkin/ finite-element method is customary, and is described elsewhere
[18]. With this formulation, the degrees of freedom in a typical element away
from the interface, and in one adjacent to the interface are shown in Fig. 3.
Note that there are two unknown stress tensors and two unknown pressures
per interfacial node, corresponding to two adjacent layers.

The resulting nonlinear algebraic equations are solved by Newton’s itera-
tion

J(x*)[x*+ = x*] = —R(x¥), (9)

where J =9R/0x is the Jacobian matrix, x the vector of the unknowns v,
v, p; and h, and the superscript k represents the values evaluated at the
kth iteration. The set of linear equations in eqn. (9) is then solved by the
frontal routine developed by Hood [19,20] for asymmetric matrices.

3. Linear stability analysis

The methodology of the linear stability analysis is standard, and is
described in several books (e.g. Drazin and Reid [21]). However, implemen-
tation of the stability analysis of the two-dimensional steady-state flow is
rarely reported in the literature. In these flows, conventional Fourier nor-
mal-mode decomposition of disturbances cannot be implemented, and the
resulting linear equations are two-dimensional.

The superposition of a small perturbation on a steady base flow can be
represented as

£(x, po ) =F,(x, y)+f(x, y, 1), (10)

where the variable f represents the velocities, stresses, and pressure, the
subscript s denotes the steady-state variable, and the overcap represents the
perturbed variable. The locations of the streamlines, which are unknowns in
the streamlined finite elements, are also perturbed and represented as

h(x, 1) =h,,(x)+h (x, ). (11)

Equations (10) and (11) are substituted in eqns. (1), (7) and (8), and only the
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linear terms in the disturbances are retained for infinitesimally small dis-
turbances. The resulting equations are

ai‘;j o n n Azj s ™.
Re)| 5y 0, VG+6-Vo,;| =V | —pI+7+ A_U(FSJYJ+FJYSJ) (13)

AL A A = A2j T 5 f‘ .

T+ ATy, = 1- A_lj ( i+ JYSJ)’ (14)

where

. 9%, A

Ty, = TO VLTV,
~[1 V84 vo,+ (ve,) 4+ (v8) 1], (15)

= (=), ¥ (16)
- 2 &2 s .

J 1 —AUjYSj J Y

The steady-state quantities in these equations have already been determined
by the prior analysis in Section 2. Equations (10) and (11) are also sub-
stituted in the boundary conditions described in Section 2, and subsequently
linearized.

Since the governing equations and the boundary conditions are linear in
disturbances, the behavior of the disturbed variable with respect to time is
exponential. Then the finite-element expansions for the disturbances &, 7,
p, and h; are

(x, y, t)= ;@k¢k{xp9 ¥, } exp(ct),

2(x, y, )= %@kq)k{xp’ ¥y, } exp(ct),

b(x. 7, 1) = Ebutil x50 3,) explet). (17)
fzj(x, t)= zk:fzjk(pk{xp, y,=1lor — 1} exp(ct),

where ¢ = cg +icy is the complex velocity of disturbances, and ©,, %,, p,
and h, are the nodal coefficients of the amplitudes of the perturbations of
the respective variables. When ¢y > 0, the flow is temporally unstable; when
cg <0 the flow is temporally stable; and when ci = 0, the flow is neutrally
stable. The imaginary part ¢; is the temporal oscillation rate.

A correction is required in the acceleration terms due to the deformation
of elements with time. These terms, such as d6,/9¢], , and 0% /3¢], ,, are
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with respect to the laboratory coordinates, and should be expressed in
isoparametric coordinates used in the Galerkin/ finite-element formulation.
The correlation is,

off  _¥| Ldr¥
0t |x,.y, O dr 9y’ (18)

where d y/dt is the velocity of a node in the isoparametric coordinates. The
variable f represents the velocity vector in the momentum equation or the
stress tensor in the constitutive equation. No correction in eqn. (18) is
required for the acceleration term 0k ,/d¢ in the kinematic condition. Note
that in our finite-element analysis, only the y-coordinate of the nodal
location varies with time, and therefore, the velocity of the nodal point is
only along the y-direction.

The nodal locations themselves are the superposition of the steady-state
and the disturbed coordinates. Consequently, the gradients and the Jacobian
of the isoparametric transformation depend on the perturbation of the nodal
coordinates. Therefore, additional linearization of the residuals is necessary
to obtain the equations that are linear not only in disturbed velocities,
stresses and pressures, but are also linear in the disturbed nodal locations
[22].

When Galerkin/ finite-element residuals are defined and boundary condi-
tions are imposed, the resulting set of equations forms an asymmetric
generalized eigenproblem with the vector of unknown disturbance coeffi-
cients £ as an eigenfunction, and with the complex wave propagation speed
¢ as an eigenvalue. This eigenproblem is represented as

JE = cM%, (19)

where J=0R/d% is the Jacobian matrix, M =09R/(dx/0t)|, , is the
mass matrix, and

x,y

A_ A A A A A A A A A ’Al ﬁ
X = --wvj], 0129---7vjkn9 ley 1-]2,'-'a'rjkn, pjly P129-~-’pﬂn, 119 ]2,---’
fl t

where kn is the number of velocity or stress nodes, /n the number of
pressure nodes, and mn is the number of unknown nodal locations. The
Jacobian in eqn. (19) is identical to the Jacobian in eqn. (9). The only
non-zero contributions in the mass matrix are due to acceleration terms, and
hence it is singular.

4. Numerical algorithm

In hydrodynamic stability analysis, one is interested only in leading
eigenvalues, i.e. the eigenvalues having the largest real parts. Besides, in the
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generalized eigenvalue problem under consideration, both J and M are
asymmetric, large (typically of the order of 3000-8000), sparse and banded,
and M is singular. These features rule out most of the widely used methods,
such as the QR algorithm [23-25], that compute all the eigenvalues or
require full matrix storage. Newton’s method, which is much simpler to
implement than other alternatives, is used in the 1-D approach [6,7]. For the
unknown eigenvector and eigenvalue, eqn. (19) and an additional constraint
of any convenient normalization of the eigenvector are required. However,
complex arithmetic and a dependence of the converged solution on the
initial estimate make it unsuitable for large matrices in eqn. (19).

There are three other basic algorithms for solving large asymmetric
eigenproblems Ax = cx. They are: (1) subspace iteration [25]; (2) Lanczos’
algorithm for asymmetric matrices [26]; and (3) Arnoldi’s algorithm [27]. All
three methods are based on oblique or orthogonal projections of 4 onto
subspaces, such that 4 reduces to matrices, for which eigenvalues can be
easily and quickly computed. They utilize a capability of premultiplying a
vector by A, thereby conserving the banded structure. However, the most
dominant eigenvalues (with the largest absolute value), which are often not
the leading ones, are computed. Besides, if M is perturbed slightly so that it
is no longer singular, then some very large eigenvalues appear that grow
unboundedly as the perturbation is reduced to zero [28]. To suppress these
artificial eigenvalues, and to map the dominant eigenvalues to the leading
eigenvalues, a transformation of the domain is required. In subspace itera-
tion, the convergence is slower than that in other methods, whereas in
Lanczos’ algorithm, two orthogonal subspaces are needed, which increase
the computational cost. Therefore, we have chosen Arnoldi’s algorithm in
our investigation. It is modified by Saad [29] and Christodoulou and Scriven
[30] so that it can be efficiently used for hydrodynamic stability analysis.
The additional modifications are incorporated in this paper to make the
algorithm suitable even for stiff systems.

In the original Arnoldi’s algorithm, the orthogonal projection of 4 onto a
subspace Q,,, spanned by the Krylov vectors {q,, Aq,, 4%q;,..., A™ g}
approximates the eigenpair {¢, x} of 4 by a pair {c,, x,}, such that x,
belongs to @,,, and the residual of (4 — ¢, I)x,, is orthogonal to each
column of @,,, i.e.

Q' (4—-c,I)x,=0, (20)

where ¢, is an arbitrary unit vector. In practice, rather than building Q,,
sequentially using Krylov vectors, the algorithm produces an orthogonal
basis of Q,,. The projection of 4 on Q,, in the new orthogonal basis is
represented by an upper Hessenberg matrix H,, = Q] AQ,,. The procedure
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to build H,, is

!
1. g,.1=4q,— Z hii9es I=1,2,...,m, with h;, = QkA‘II,
k=1
- 1172
2. h1+1,1=[ﬂ+1'41+1] ’ (21)

3. 941= q_1+1/h1+1,/’

where h,, is the (k, /)th element of H,,. The eigenpairs of the much smaller
system (of the order m) of the Hessenberg matrix H,, are solved routinely
by using EISPACK software. The eigenpairs of H,, are the Galerkin approxi-
mations of the eigenpairs of 4. Several modifications are, however, required
before the above algorithm can be used.

(1) Iterative procedure. The number of Arnoldi steps, m, required to
ensure convergence of desired eigenvalues is equal to N'/? [31], where N is
the order of the system. Therefore, an iterative procedure is used for large
systems, in which the process is restarted after every m steps. The initial
vector of each successive iteration is a linearized combination of the normal-
ized approximate eigenvectors computed in the previous iteration.

(2) Gram-Schmidt reorthogonalization. Computation of ¢,,, by the pro-
cedure described in eqn. (21) usually involves large errors due to the
subtraction of large numbers of approximately equal magnitude. The result-
ing set of columns can be far from orthonormal. Saad [31] employed a
modified Gram-Schmidt reorthogonalization process to correct the loss of
orthogonality only when important cancellations occur, thereby saving con-
siderable amounts of computation time.

(3) Schur—Weilandt deflation. When more than a few eigenvalues are
sought, successive iterations through Arnoldi’s algorithm fail to improve or
maintain the accuracy of the eigenvalues converged in the previous itera-
tions. Therefore, the converged eigenvalues are eliminated from the subse-
quent iterations by the Schur—Weilandt deflation process [29]. If p eigenvec-

tors x;, X,,..., x, corresponding to the eigenvalues ¢;, ¢,,...,c, of 4 are
known, the deflated matrix is

,=A4—X Z , (22)
where X, ={x;, x5,...,x,}, X, = diag{ 05, 63,...,0,}, and A, has eigen-

values Ck = ¢, — o, for k <p and ¢, =c¢; for k> p. The elgenvectors of 4,
are identical to those of A. Saad did not form the deflated matrix A
explicitly, because it is a full matrix even when A is sparse. Instead, 4, 1s
computed in a factored form, in which a new Hessenberg matrix is con-
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structed, such that
t . t 40t
X,AX, : X,A0,,
Hp+m=[Xp:Qm] A[Xp'Qm] = . * (23)
olax, @ o@lag,

The matrix A4 can also be represented in an orthogonal subspace spanned
by U= {u,, u,,...,u,,}, such that R = U4 U, where R is an m X m upper
quasi-triangular matrix. The subspace U is called Schur subspace following
Schur’s theorem [32]. When the basic algorithm and the modifications are
carried out in terms of Schur vectors, the Hessenberg matrix H,,,, can be
written as

. t
R - U4,

P
pr+mz , (24)
0 : H,
where the diagonal 2 X 2 submatrices of the upper quasi-triangular matrix
R, provide the real and imaginary parts of the computed p eigenvalues, and
H,, has the remaining eigenvalues of H,,, .

As mentioned earlier, a transformation P(J, M) is needed that maps the
leading eigenvalues to the outermost part of the eigenspectrum of P(J, M).
The transformation is chosen here such that eigenvalues A of P are exponen-
tially related to the eigenvalues ¢ of the eigenproblem Jx =cMx by A=
exp(ct), where t is a positive real parameter. Such a transformation, called
pre-conditioning, clearly maps the leading eigenvalues of Jx = cMx to the
dominant eigenvalues of P. For computational purposes, the exponential
transformation is approximated by a polynomial [30] that can be expressed
as,

J(1-6): Jot ¥
— % T] :
The transformation is analogous to a finite-difference integration of a
transient problem Mw = Jw using the §-method. The solution after k& time
steps would be represented as w(t) = P(J, M, 0, t, k)q,, where w(t=0) =
¢,.- The analogy is useful in providing suitable values for the parameters ¢, 8,
and k. When Ar=1t/k is large, the convergence is accelerated, but not
necessarily to the leading eigenmodes. When At is small, the exponentials of
the eigenvalues are computed accurately, and the leading modes are pro-
jected out. However, for small Az, the eigenvalues of P tend to cluster near
unity, and more steps k are, therefore, required to separate them, which
increases the computational cost.

—k[M+ (25)

P(J, M, 0,1 k)= [M—
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In the interfacial modes of instability in multilayer extrusion, the growth
factor is smaller by four to five orders of magnitude than the oscillation
speed [6,7]. Therefore, Az needs to be smaller by at least four to five orders
of magnitude compared to the time required to observe any significant
growth in disturbances. In other words, small Az and large k are needed for
accurate mapping of the leading modes to the dominant modes. The above
stiff problem is resolved by the following two additional modifications.

(1) Acceleration. Instead of using an arbitrary initial unit vector ¢,
integration is performed before passing the new ¢* to Arnoldi’s algorithm,
where

gf=P(J, M, 0=0, At, k)q,.

The acceleration filters out very large artificial eigenvalues arising due to the
singular M, and also projects out leading components of the initial vector
[33]).

(2) Complex shift. To separate the leading eigenvalues of a stiff problem
that cluster near unity in the exponential transformation, the eigenproblem
is shifted such that,

P(J, M, 0,0, At, k)=[M—B(1-6) Ar] “[M+ B6 Ar]", (26)

where B=(J—oM), and o is the complex shift. The transformation favors
the leading eigenvalues that are closest to o. Therefore, when the computa-
tions are done by changing parameters marginally, ¢ can be chosen to be the
leading eigenvalue of the previous calculations.

In the acceleration or in the pre-conditioning, ¢,.. = ¢x., should be
computed by solving (refer to eqn. (25)),

[M—-B(1-6) At]q""' =M+ B6 At]q’, 1=1,2,...,k, (27)
sequentially. Equation (27) can also be written as
[M—B(1-6) At](¢"*" + aq’) = (a + 1) Mg/, (28)

where a=460/(1 —8). The matrix—vector product Mg’ is approximately
equal to the residual vector —R(x=x,, *=4q') [30]. Thus, an expensive
matrix—vector multiplication can be avoided by evaluating the residual
vector R(x=x,, x=4q'). The LU decomposition of [M — B(1 — ) At] is
carried out once, and at each subsequent step, the right-hand side of eqn.
(28) is evaluated and backward substitution is performed. The sparseness is
maintained, and the frontal solver can be elegantly incorporated [19,20].
Once the most dominant eigenvalues of the transformed problem are
calculated by Arnoldi’s algorithm, the leading eigenvalues of the original
problem are then estimated by using the fact that the eigenvectors are
identical in both the problems. A less expensive, though probably less
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accurate way of evaluating the eigenvalues is to pick only one component of
Jx = cMx, containing non-zero time-derivatives, to calculate c¢. Then, for
real x,

> Juxi =X Myx, (29a)
7 !
is solved, and for complex x,

ZJklle = CRZMklxRI - CIZMkaII’ (29b)
J I !

and

Z‘Iklxll = CREMkaIl + CIZMklle (29C)
J ) !

are solved simultaneously.

In summary, the steps to be followed for the calculations of the leading
eigenvalues are:

(1) selection of various parameters required in the algorithm;

(2) acceleration;

(3) iterative Arnoldi’s algorithm with pre-conditioning, deflation, com-
plex shift and reorthogonalization;

(4) computation of leading eigenvalues using eqn. (29).
If the computed eigenvalues do not appear in a sequence of decreasing real
parts and increasing residual norms, Az is decreased, k is increased, more
steps are used in acceleration and in pre-conditioning, and the whole process
is repeated.

S. Results

The steady-state variables are first calculated at certain operating and
rheological parameters, and then the leading eigenvalues are estimated to
determine the stability of the flow. The analysis is carried out at several
different conditions by gradually changing the parameters. First-order con-
tinuation is used to predict the new initial estimates, and the previously
estimated leading eigenvalues are used as the complex shift. All the calcula-
tions are performed on an IBM3090/600E mainframe computer, either at
the University of Michigan, or at the Cornell Supercomputer Center.

The ratios of steady-state thicknesses of individual layers remain the same
across the length of the converging die at all operating conditions. This
result is as expected for long dies with small variations in the total depth
along the length, and for the flows at small Reynolds numbers (10~ < Re j
< 0.5) encountered in coextrusion. Thus, the results of the steady-state
analysis are trivial, and will not be presented here.
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The dimension m of Krylov subspaces in Arnoldi’s algorithm was set to
either 30 or 60 depending on the accuracy of the initial estimates of the
leading eigenspectrum, and on the number r of the leading eigenmodes
sought in the analysis. On most occasions, it was sufficient to compute the
first 18 leading modes. On a few occasions, however, the computed modes
did not reveal all the first 18 leading modes. In those cases, it was necessary
to increase the number of wanted modes to 30 or 35 with a suitable increase
in m. The implicitness factor § was always set to zero in all the cases for
both preconditioning and acceleration. The imaginary part of the leading
eigenvalues is larger by four orders of magnitude compared to the real part.
Therefore, the number of steps k in both pre-conditioning and acceleration
was at least equal to 25. The complex shift parameter o was set to A4, the
best current approximation to the leading eigenvalue. The only criterion
used in determining a suitable value of Ar was a possibility of the existence
of any leading mode outside the computed leading eigenspectrum.

A refinement in the tessellation of the finite element flow domain is a
very crucial factor in the linear stability analysis. The discretization gives
rise to spurious eigenvalues that are not close to any eigenvalues of the
continuous problem [18]. These eigenvalues are very sensitive to the tessella-
tion, and disappear with refinement. In addition, for L > H, the amplitude
of the disturbances for a given eigenmode is spatially approximately periodic
along the direction of flow. Therefore, the eigenvalues associated with the
disturbances of very small periods (or of large wavenumbers) are suppressed
in coarser discretizations, even though they are the leading ones. As a finer
and finer tessellation is used, these eigenvalues start appearing in the leading
eigenspectrum. Therefore, if the leading eigenvalues are associated with high
wavenumbers for a given set of parameters, a very fine tessellation is
necessary.

Although the complex shift was implemented, real arithmetic was used in
the algorithm for real M and J. Therefore, the computational cost should
be no more than twice the cost of calculations using the real shift. However,
there are several other factors that increase the computational cost enor-
mously. These factors are:

(1) the large values of the numerical parameters, such as the dimension m
of Krylov subspace, the total number r of desired leading eigenvalues, and
the parameter k, compared to a similar analysis of coating flows by
Christodoulou and Scriven [30],

(2) the large number of elements due to a finer tessellation, and due to
multiple flow domains in our analysis;

(3) the large number of unknowns in the analysis of viscoelastic flows,
where the components of stress tensor are also unknowns along with velocity
vector, pressure and streamline locations.
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Fig. 4. Neutral stability curves for two-layer flow in the a-¢, /¢, plane for k, = 5.0 by the
1-D approach. The other parameters are Re; =5.0, Ca; =00 and St=0.0. The hatched
regions are unstable and the unhatched regions are stable.

Therefore, the number
analysis is carried out fo
two layers.

Before any computations are done for the flow in converging channels,
the results of the 2-D and 1-D approaches are compared for two-layer flow
of Newtonian and viscoelastic liquids in channels of constant depth to check
the validity of Arnoldi’s algorithm (see Table 1 for the comparison between
these two approaches). The die is ten times longer than the depth, and the

licide in all lavere are acenimad ta have tha came dencity in all furthar
LYUIUS 1l dll 1dyUis Alv aodSuilitlu W iAave uiv Salue UCLISILY 11l dil 1ul vl

calculations. For the Newtonian flow, the parameters are k, = 5.0, Re, = 5.0,
St = 0.0, and Ca; = oo. The neutral stability diagram of this flow at various
wavenumbers by the 1-D approach [4] 1s shown in Fig. 4, whereas the details
of the discretization in the 2-D approach are tabulated in Table 2. The
converged leading eigenspectrum changed with refinement, and a mesh-in-

a very 11rmted umber of cases in flows with only

TABLE 2

Discretization of the flow domain in the linear stability analysis of two-layer Newtonian flow
by the 2-D approach

Number of elements Number of

Along x Along y in Total unknowns
each layer

10 3 60 781

20 3 120 1521

40 4 320 3893

60 5 600 7145
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TABLE 3

Discretization of the flow domain in the linear stability analysis of two-layer viscoelastic
flows by the 2-D approach

Number of elements Number of CPU time
Along x Along y in Total unknowns ®
in each layer
10 3 60 1663 15
20 3 120 3243 40
40 4 320 8587 180

dependent leading eigensolution was never found for any ¢,/¢,. From Fig.
4, leading (stable or unstable) eigenvalues always exist at very large wave-
numbers in Newtonian flows, which start appearing in the leading eigen-
spectrum of the refined domain. Therefore, a mesh-independent leading
eigenspectrum cannot be computed. Although the lack of a mesh-indepen-
dent eigensolution indicates the existence of a leading eigensolution at large
wavenumbers, it does not necessarily indicate the lack of stability.

The details of the successive refinement and the approximate CPU time
required for one iteration for two-layer flow of viscoelastic liquids by the
2-D approach is listed in Table 3. The parameters are k, = 5.0, Re; = 0.1,
St=00, Ca; =00, A;;=0.001, A,/A;; =01, A, ,=A,=10, n,=n,,
and the values of the power-law exponents are in the range 0.9 to 0.3. No
new leading eigenvalues appeared when the mesh was refined from 120
elements to 320 elements, and all the spurious eigenvalues are suppressed.
Thus, refinement up to 120 elements is sufficient for these calculations. Note
that the total CPU time depends on the order of the system, the numerical
parameters r, m and k, and the number of iterations (which depends on the
accuracy of the initial estimate). However, once the LU decomposition is
performed, subsequent computations can be carried out by only modifying
the right-hand side vector. The order of the system and the values of the
numerical parameters are very large. Therefore, the total computational cost
of analyzing the stability of this stiff problem is excessive.

The neutral stability diagrams of the viscoelastic flow under considera-
tions are shown in Fig. 5 using the 1-D approach [6,7]. The critical flow-rate
ratios (¢,/4;) ainy 0 these diagrams are the flow rates beyond which the flow
is stable at all wavenumbers. Similar critical flow-rate ratios are also
computed using the 2-D approach. When g,/q, was gradually decreased
from a very high value to a very low value, the real part of the leading
eigenvalue crosses the imaginary axis, and becomes positive at the critical
flow-rate ratio (¢,/¢;)ein- These critical flow-rate ratios (¢,/q;)..q and
(¢>/9)) o are compared in Table 4. The imaginary part of the leading
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Fig. 5. Neutral stability curve for two-layer flow at various power-law exponents n, = n,. The
parameters are Re; = 0.1, x, = 5.0, A;; =0.001, A,, /A;;=0.1,and A, = A, =1.0. Hatched
regions are unstable and unhatched regions are stable.

TABLE 4

Comparison between the critical flow-rate ratios (¢, /¢;) . estimated by the 2-D approach,
and (4/4))enn computed by the 1-D approach at various power-law exponents n, for
two-layer flow in a channel of constant depth

ny=n; (92/ M) ene2 (%2/0)ena Clent2 Clentl
1.0 - 2.10 - -

0.7 291 2.97 10.10 10.54
0.5 410 4.48 8.91 9.84
0.3 8.80 10.05 7.23 9.70

The imaginary parts of the leading eigenvalues at the critical flow-rate ratios by these two
approaches are also compared. The other parameters are k,=5.0, Re;=0.1, Sr=0.0,
Ca; =00, Aj;=0.001, A, /A1 =01, A ;=A,,=1.0, and n,=n,.
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Fig. 6. Actual shapes of the converging channels drawn to the scale.

eigenvalue ¢, at the point where the real part crosses the zero line, is also
compared in Table 4 with its counterpart c;.;, in the 1-D approach. The
critical flow-rate ratio (¢,/¢,).:» and the imaginary part of the leading
eigenvalue c; ., compare well with (g,/¢,) .y and ¢y respectively, at all
values of n, and n,, except at n, = n, = 1.0, where (¢,/4;) .1ir» could not be
estimated. As n, and n, decrease, the accuracy of Arnoldi’s algorithm
decreases. However, the difference between (¢,/¢:) i and (42/¢1) crin 18
always less than 15%. At n,=n,=1.0, (92/91) e 1S determined by a
straight line of constant ¢,/q, (see Fig. 5(a)). In other words, there is a large
number of leading eigenvalues with a wide range of imaginary parts that can
become unstable at (g,/4,) .- Therefore, several leading eigenvalues cluster
together in the spectral transformation, which could not be resolved even by
using extremely high values of r, m, and k. In conclusion, the results
obtained by using Arnoldi’s algorithm (2-D) compare well with the results
obtained by the pseudospectral method (1-D) for two-layer channel flow of
viscoelastic liquids except at n, = n, =1.0. The detailed discussion on the
interpretation of the effects of the rheological and operating parameters on
the stability of the flow is beyond the scope of this work, and can be found
in refs. 4, 6 and 7.

Two shapes of converging channels (see Fig. 6 for the diagrams of the
converging channels drawn to scale) are investigated for two values of the
ratio H,,,/H, of depth at the outlet to that at the inlet of the die. The die is
ten times longer than the depth at the inlet of the die. The calculations
discussed above are repeated for these flow domains. The numerical parame-
ters and discretization are the same as those in earlier calculations of
viscoelastic flows. The parameters are k, = 5.0, Re, = 0.1, St = 0.0, Ca, = oo,
A,;=0.001, Ap/A;,=01, A,=A,,=10, and n,=n, The critical
flow-rate ratio for both shapes of the converging channels and for two
values of H_,,/H, at various n; = n, are tabulated in Table 3.

When (q,/¢1) iz Of the channel flow (H,,,/H,=1.0) are compared to
those of the flow through converging channels ( H,,/H, # 1.0), no conclu-
sive variations in (¢,/q;) i With respect to the shapes of the die, or with
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TABLE 5

Critical flow-rate ratios for various values of power-law exponents n, and for various depth
ratios at the outlet to the inlet of the die in two-layer flow of viscoelastic liquids

ny, 1, Ho/Hy (92/91) cri2
Shape 1 Shape 2

0.7 1.00 2.91

0.75 2.88 2.80

0.50 2.93 2.96
0.5 1.00 4.10

0.75 428 420

0.50 416 422
0.3 1.00 8.80

0.75 8.20 9.60

0.50 10.30 11.20

The parameters are k, =5.0, Re;=0.1, St=00, Ca;=00, A;;=0001, A,/A;;=0.1,
AL'l = AL'Z =1.0, and ny=n,.

%

gy/0 Ao/
Fig. 7. Neutral stability curves for two-layer flow at various sections in the converging
channel (at various depths H, nondimensionalized with depth Hj at the inlet) for n, = n, =1.0.
The parameters are Re;=0.1, x, =50, A;;=0.001, A;,/A;;=01, and A, =A,,=10.
The hatched regions are unstable and the unhatched regions are stable.
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Fig. 8. Neutral stability curves for two-layer flow at various sections in the converging
channel (at various depths H, nondimensionalized with depth H, at the inlet) for n, = n, =
0.5. The parameters are Re; = 0.1, k, =5.0, A;;=0.001, A, /A;; =01, and A ;=A,,=1.0.
The hatched regions are unstable and the unhatched regions are stable.

respect to H,,/H, are observed in Table 5, indicating that the leading
eigenvalues are associated with the depth of the die at the inlet. Although no
particular trend in (¢,/q;) i 18 Observed at n; =n, = 0.3, the values of
(42/41) eniex differ for the two shapes and for two values of H,,/H, We
believe that the difference is due to the inaccuracy involved in computing
the unknowns for shear-thinning liquids, which is observed in other flows as
well [34].

Since the die is longer by an order of magnitude than its depth, the 1-D
approach can also be used to find the critical flow-rate ratio (¢,/¢;) criy- The
results in terms of the neutral stability diagrams for various sections are
shown in Figs. 7 and 8. The power-law exponents n, and n, are equal to 1.0
in Fig. 7, and are equal to 0.5 in Fig. 8. The other parameters are «, = 5.0,
Re, =01, St=0.0, Ca; = o0, A;; =0.001, A,/A;; =01, A, =A,,=10,
and n, = n,. The critical flow-rate ratio in both the figures is the highest for
the section with the maximum depth ( H = 1.0), which corresponds to the
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inlet of the die. Thus, both 2-D and 1-D approaches provide identical
critical flow-rate ratios, which correspond to the maximum depth of the
channel. Thus, computationally expensive 2-D analysis is not needed for
multilayer extrusion through long, converging dies. However, such conclu-
sions can be arrived at only after comparing the results from the 2-D and
1-D approaches. When the depth of the channel is decreased, the Reynolds
number does not change. However, the dimensionless relaxation time de-
creases. Since the relaxation time has a stabilizing effect on the stability of
multilayer extrusion [6,7], the maximum destabilizing effect is observed at
the maximum depth of the channel. Besides, as suggested by Khomami [8],
normal stresses generated by the converging channel provide a stabilizing
effect in multilayer flows.

6. Conclusions

A two-dimensional linear stability analysis of two-dimensional multilayer
flow of viscoelastic liquids through long, converging channels is conducted
(2-D). A modified Oldroyd-B model with shear-rate dependent viscosity,
represented by the Carreau viscosity function, is used as the constitutive
equation. Since the length of the channel is an order of magnitude larger
than its depth, a simplified analysis, in which one-dimensional channel flow
is assumed locally at various cross-sections of the die, is also performed
(1-Dy.

The resulting generalized eigenvalue problem in the 2-D approach is
sparse, banded, large (of the order of 3000-8000), and has a singular mass
matrix. The difficult task of computing the leading eigenvalues of such a
generalized eigenvalue problem is carried out using a sophisticated iterative
Arnoldi’s algorithm. Schur—Weilandt deflation, complex shift, acceleration
and exponential pre-conditioning are incorporated to map the leading
eigenvalues to the outer spectrum of the transformed problem, and to make
the algorithm sufficiently flexible to solve the stiff problem of interfacial
instability in multilayer extrusion, thereby establishing the applicability of
the algorithm for any large hydrodynamic stability problem.

The critical flow-rate ratios are estimated using Arnoldi’s algorithm for
two shapes of the converging die at two different ratios ( H,,,/H,) of depths
at the outlet to the inlet of the die. The critical flow-rate ratios are observed
to be independent of either the shapes or the ratios ( H,,,/H,). Thus, both
2-D and 1-D approaches provide identical critical parameters, which are
associated with the inlet of the die. Thus, the most important advantage of
comparing the results obtained from both the approaches is that the critical
parameters of interfacial instability in multilayer extrusion through long,
converging dies can be determined by a simplified and computationally
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inexpensive 1-D approach. However, a priori validation of the results from
the 1-D approach is necessary by means of the 2-D approach described in
this paper.
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