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Shape and topology optimization of a linearly elastic structure is discussed using a modification of 
the homogenization method introduced by Bendsoe and Kikuchi together with various examples which 
may justify validity and strength of the present approach for plane structures. 

1. Introduction 

Structural optimization has recently received wide range attention in computer aided 
design. One of the reasons is rapid development of so vhisticated but inexpensive engineering 
workstations with graphic capabilities, multi-windows and fast computation. The other reason 
is acceptance by people in industry of various computer aided engineering systems including 
reliable analysis capability such as finite element, finite difference and boundary element 
methods which are supported by geometric modeling capability with automatic mesh genera- 
tion methods. The notion of structural optimization was widely discussed by structural 
engineers in the early 70s right after the rapid development of finite element methods. 
However, it could not provide practical means to design structures except in aeronautical 
engineering, because of lack of flexible geometric modeling and handy interactive graphic 
display capabilities at that time. Since most of structural design of machine parts involves 
heavily their geometric representation, in other words, their shape, structural design must deal 
with shape optimization, while most of aeronautical applications are based on frame structures 
with shell reinforcements which need only the concept of sizing optimization dealing with, for 
example, the sizes of the cross section of frames as well as the thickness of shells. It is clear 
that geometric representation of the structural configuration is not required in sizing optimiza- 
tion, and thus, its development may not be bounded by the capability of geometric modeling. 

A modern theory of structural optimization based on mathematical programmings and 
sensitivity analysis was developed by Schmit [1] and Fox [2] in the early 60s, although the 
concept of fully stressed design was widely applied in design practice without solid mathemati- 
cal justification but the engineers' intuition. Prager and Taylor [3] made justification of the 
fully stressed design for a class of structural optimization problems by deriving their optimality 
criteria, whose direct use in constructing optimization algorithms leads the so-called optimality 
criteria method in contrast to the mathematical programming method, using variational 
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methods such as Lagrange multipliers and calculus of variations. The structural optimization in 
the 60s was restricted mostly to sizing problems of frame structures, despite that layout 
problems were also solved by Prager [4] for a very restricted class of structures as an extension 
of the concept of Micheil trusses [5]. A layout problem may be formulated by finding the best 
possible layout of frames in a design domain to transmit applied forces to given supports by 
minimizing an objective function while the design constraints are satisfied. In general, the sizes 
of the cross section of frames are fixed in layout problems, while the location of joints and the 
length of frames are design variables. On the other hand, the sizes of the cross section become 
design variables in sizing problems, while the location of joints and the length of frames are 
fixed. There have been few computational works using finite element methods related to 
layout problems. Such a problem is solved by Svanverg [6] using mathematical programming 
and finite element methods for the limited case that the topology of a frame structure is fixed 
while the location of joints is the design variable. Most of the layout problems of frames have 
been solved analytically based on Prager's approach. Thus the range of covered area must be 
very restricted. To overcome this limitation, Rozvany [7] has made extensive exploration of 
various approaches to solve such problems. 

Sizing problems for static frames can be solved straightforward at present by using 
sensitivity analysis and an appropriate mathematical programming method for optimization, 
since a strong tie to geometric modeling with automatic mesh generation is not required when 
finite element methods are applied to obtain displacements and stresses. For the fixed 
geometry, i.e., for the fixed nodal location and element connectivity, finite element analysis 
must be performed repeatedly only by varying the cross-sectional properties of frames to reach 
the optimum. Thus, research on sizing problems has been concentrated to optimization 
algorithms and methods to compute sensitivity, see, for example, [8-10], while Grierson [11] 
works with a mixed discrete problem that deals with discrete design variables as well as 
continuous design variables. Another direction of research is to improve sensitivity informa- 
tion by computing the second order sensitivity, see [12]. Sizing problems for frames in the 
context of eigenvalue problems, are solved by Olhoff [13] who solved the case that repeated 
eigenvalues are generated in design process, and then sensitivity may loose its sense. Once 
sizing problems are extended to plates/shells, the nature of the optimum becomes far from 
clear as Cheng and Olhoff [14] pointed out. Unless the gradient of the thickness distribution is 
restricted to be bounded, infinitely many and thin iibs appear in the optimal structure which 
must be appropriately modeled to solve displacements and stresses using an anisotropic 
plate/shell model which may be obtained by applying the homogenization method. 

Shape optimization problems are solved by Zienkiewicz and Campbell [15] in 1973, and 
extensive works have been published since then. Details of such publications are well surveyed 
in [16]. The difficulty of shape problems arises from the fact that the geometry of a structure is 
the design variable. This means that a finite element model associated to a structure must be 
changed in a process of optimization. If such a change is sufficiently small, the problem can be 
solved easily by applying sensitivity analysis and an appropriate optimization method, since 
such a change of the location of control points of the boundary shape or nodal points on the 
design boundary can be proportionally transferred to internal nodes of the finite element 
model so that convexity of each finite element is well preserved. However, if the design 
change becomes large, it becomes difficult to vary the finite element model without intro- 
ducing excessively distorted elements which imply a large amount of approximation error in 
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computation of stress. Generating well 'designed' finite element models by varying location of 
nodal points is, in general, a too demanding task if an automatic remeshing capability is not 
embedded in a shape optimization program. In this sense, the approach taken by Botkin and 
Bennett [17] is a natural choice, that is, an automatic mesh generation method is combined in 
the shape optimization program in order to deal with any amount of design change despite the 
additional cost in computation. 

Most shape optimization problems are restricted in the case that topology of the design 
domain is maintained in an optimization process. In other words, the initial topology of a 
structure is equal to the final one. However, there are many cases that internal holes can be 
introduced to reduce the weight of a structure without violating design constraints. Automatic 
generation of holes in a design domain is, at this moment, impossible although automatic 
remeshing capabilities are embedded, because such capabilities cannot manage automatic 
topological changes of the domain yet. Thus, if the topology of the design domain would be 
changed to make internal holes, it is necessary to terminate the optimization process and then 
to restart after modifying the finite element model by generating holes. This means that 
varying the shape of the domain is insufficient for optimization involving topology. To 
overcome this limitation, an intuitive approach may be considered using a 'fixed' finite 
element model in which less stressed finite elements are assigned artificially very soft material 
so that holes can be approximately realized. This approach, however, possesses difficulties to 
be justified. For example, algorithms to identify less stressed elements which are 'removed' 
from the design are not uniquely defined and their convergence may strongly depend on the 
finite element models applied. That is, there is too much ambiguity in this intuitive approach. 
To sophisticate this naive idea, BendsCe and Kikuchi [18] introduced a homogenization 
method that utilizes infinitely many microscale holes in a design domain rather than removing 
the whole of a finite element based on the Cheng and Olhoff's approach in sizing problems for 
plates/shells. Recent work by BendsCe [19] also uses this technique. Also Rozvany [20] and 
coworkers' [20, 21] work of layout optimization by continuum-based optimality criteria 
methods is noteworthy. 

In the present work, we shall examine the previous approach taken in [18] and we shall 
extend this based on the works by Pedersen [22] and Gibiansky and Chercaev [23] where 
classes of problems of optimal microstructures for 'fiber reinforced' composite materials were 
solved. Various example problems are solved to justify the present approach, while conver- 
gence and mesh dependence of finite element discretization are carefully examined using a 
certain type of example problems. By solving this variety of problems, it is shown that the 
present method can not only solve shape optimization problems but also topology optimiza- 
tion problems for linearly elastic structures using a fixed finite element model. In other words, 
layout problems in a generalized sense can be solved computationally for any type of linearly 
elastic structures. 

2. Generalized layout problem bya homogenization method 

As mentioned in the introduction, the main idea of solving a class of shape optimization 
problems involving varying topology, which is called a generalized layout problem in the 
present paper, is that infinitely many microscate voids (holes) are introduced to form a 
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possibly porous medium that yields a linearly elastic structure in some sense. An optimization 
problem for the generalized layout problem is defined by solving the optimal porosity of the 
medium identified with a design domain. If a portion of porous medium consists of only voids, 
structure is not placed over there. On the other hand, if no porosity is realized at another 
portion, a 'solid' structure must be placed over there. If porosity is not the limit values, porous 
medium is generated. In this sense, 'solid' material consisting of a structure is optimally 
distributed in a specified region so that a certain objective function is minimized under a set of 
constraints. Mathematically, such an optimal distribution problem of microscale voids (or 
'solid' material) can be defined as 

o r  

Minimize the objective function such as the mean compliance 
subject to 

equilibrium equations, 
void volume, 
stress/displacement constraints, 

Minimize the objective function such as the volume of voids 
subject to 

equilibrium equations, 
mean compliance, 
stress/displacement constraints. 

In this paper, we shall consider the simplest case of the optimization problem since the main 
purpose here is to examine whether the new approach introduced can provide meaningful 
solutions to the generalized layout problem. If the optimal shape as well as the optimal 
topology of a structure can be identified by the present method, sophistication of optimization 
problems should be considered as the next step. 

Suppose that the volume of microscale voids is specified in a given design domain/2, that is, 
the volume O~ of 'solid' material distributed in the design domain is specified. For simplicity, 
the design domain is plane so that plane stress analysis is sufficient to compute displacements 
and stresses, while the shape of microscale voids is assumed to be rectangular as shown in 
Fig. 1. 

Rectangular holes are chosen because they can realize the complete void (a = b = 1) and 

T 1 

Fig. 1. A unit cell describing the microstructure with a rectangular hole. 
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solid (a = b = 0) as well as generalized porous medium (0 < a < 1, 0 < b < 1). If circular holes 
are assumed, they cannot reach to the complete void, and then they are not appropriate to our 
purpose. It is noted that there are other choices to represent microscale voids such as using a 
generalized ellipse defined by (y , /a )"  + (y2 /b)  "= 1, where a and b are the principal radii of 
the ellipse and n is the power defining the shape. However, in order to develop the complete 
void in the unit cell, both a and b must be 1 as well as n goes to infinity for the generalized 
ellipse, while a and b need be 1 if the rectangular hole is applied. Also note that there is a 
possibility of using the first order microstructure in one direction and the second order 
microstructure in the other direction, see [24]. It can be shown that in case of low density, 
first/second order microstructure gives better microstructure. However, this type of micro- 
structure is rather hard to derive material constants either analytically or numerically when 
Poisson's ratio is not zero. On the other hand, the first]first order microstructure numerical 
solution is possible for any Poisson's ratio. 

Since holes are rectangular in the unit cell that characterize the microstructure of a 
generalized porous medium for the layout problem, their orientation is important in the 
macroscopic problem for stress analysis. Indeed the anisotropic elasticity tensor in the 
macroscopic problem strongly depends on the orientation of microscale holes. Thus, the sizes 
a and b and the orientation 0 of the microscale rectangular holes are the design variables of 
the generalized layout problem. 

Suppose that a, b and 0 are functions of the position x of an arbitrary point of a macroscale 
domain of a linearly elastic 'porous' structure ,O in the two-dimensional Euclidean space R2: 
a = a(x), b = b(x) and 0 = O(x). Functions a, b and 0 may not be so smooth, i.e., it could be 
true that a • L~(~Q), b E L~(~2) and 0 maintains smoothness equivalent to the angle 0p of the 
principal coordinates of the stress tensor o'(x), i.e., 0 may be continuous in ~ except at a finite 
number of points. However, we shall assume that they are sufficiently smooth, for example, 
a, b, 0 E H 1(~). Assuming that a periodic microstructure characterized by a(x), b(x) and O(x) 
exists i,n a small neighborhood of an arbitrary point x in n ,  and assuming that such a 
microstructure at x need not be the same with the one at a different point x*, see Fig. 2 which 
shows a schematic setting of varying microstructures, a homogenized elasticity tensor En(x) is 
computed in order to solve a macroscopic stress analysis problem of a 'porous' structure. 

The homogenized elasticity tensor is computed by solving the problem defined in the unit 
cell in which a rectangular hole is placed: 

Fig. 2. Assumption of 'continuous' change of microstructures. 
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Find the characteristic deformations X (kt) , (st) = ~X. , X~z kt)} E V v satisfying 

f,, o,,, o,,, Z Eqmn d Y =  E Eijkl d Y  V v  E Vy ,  
i,j,m.,,=, Oy,, Oy i i,/= 1 Oyj 

where 

V v = {v E H i ( Y )  [ v is Y-periodic in the unit cell Y},  k, 1 = I, 2.  

(1) 

Here H~ (Y) is the Sobolev space in which an arbitrary element v is square integrable in the 
unit cell Y = ( -  ½, ½ ) x ( -  ½, ½ ) in the y = { y . ,  Y2} coordinate system as well as its generalized 
first derivatives. The elasticity tensor IF is chosen either for the plane stress or for the plane 
strain problem depending on the macroscopic 'porous' structure to be designed. The elasticity 
tensor n: is zero ify is located in the hole, and coincides with the one of the 'solid' material that 
is utilized to form a structure if y is outside of the hole. It is noted that Young's modulus does 
not affect the generalized layout problem while Poisson's ratio may imply change to the 
optimal layout. After obtaining the characteristic deformations X (k°, the homogenized elastici- 
ty tensor IF H is computed by 

2 ~ ~ (k l ) l  
E~!k'= • Jv ( e u ~ t -  Eu,,,,, OXm i O y , , ) d Y .  

m , l l  = I 
(2) 

Since the sizes {a, b} of rectangular holes are functions of the position x, the homogenized 
elasticity tensor E H varies in O. This means that the characteristic deformations must be 
obtained everywhere in the design domain O. Solving the unit cell problem (1) everywhere is 
unrealistic. Thus, we shall solve (1) for several sampling points {ai, bj [ i, j = 1 , . . . ,  n} of the 
sizes {a, b} of rectangular holes, where 0 ~< a i ~< 1 and 0 <~ bj ~< 1, and we shall form a function 
JEll = IE"(a, b) by an appropriate interpolation. The last step for the elasticity tensor for stress 
analysis of the macroscopic 'porous' structure is rotation of IF H by the angle 0. Defining the 
rotation matrix R by 

R(O) : [cos 0 - s in  O] 
LsmO c o s O J '  

the elasticity tensor IF ~ for stress analysis is computed by 

Eij%t(x) = ~_~ E~KL(a(x), b(x))Ri,(O(x))Rj,(O(x))Rkx(O(x))Ru.(O(x)) (3) 
I.J,K,L=I 

for i,/ ' ,  k, 1 = 1, 2, at an arbitrary point x in O. It is clear the II :6 is a function of the sizes 
{a, b} and the rotation 0 of microscale rectangular holes. 

Stress analysis of the 'porous' structure is defined as follows: 

Solve the displacement u = {u,, u2} E V D satisfying 

G OU k OV~ 
Eqkt(x ) dO = Z Lvi d a  + Z 

i,j,k,l=l OX! ~Xj /=1  i=1 "T 
t i v; dF  '¢v ~ V o . (4) 
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Here V D = { v E H ' ( a ) l v  , = gi on F D, i=  1,2}, Vo= {vElt'(a)lv, =0 on F D, i =  1 , 2 } , f i s  
the applied body force in ,O, t is the applied traction on a portion of the boundary F T and g is 
the specified displacement at the support of the body Ft, which is the compliment of F T. It is 
noted that (4) is the expression of the principal of virtual displacement of the 'porous' 
structure which is a weak form of equilibrium equations and traction boundary conditions on 
F T. The inertia term is neglected in (4) for simplicity. V o is a closed subset of the Sobolev 
space H~(/2) of square integrable functions on the domain O, the generalized first derivatives 
of which are also square integrable. The specified displacement g and the applied traction t are 
sufficiently smooth functions defined on the boundary F of the domain/2, say, they belong to, 
for example, H3/2(FD) and HU2(FT), respectively. If the homogenized elasticity tensor II :C 
after rotation is smooth enough, for example, if it is in Hl(/~), then the displacement field u 
satisfying the principle of virtual displacement (4) can belong to H2(/2) if the boundary F is 
sufficiently smooth. If n :6 is in IL~(.O), u may belong t o  H3/2([]). If the solution u of (4) is 
smoother than functions in H~(n) ,  regular finite element approximations of (4) possess 
convergence properties, i.e., regular finite element approximations Uh, which are the solutions 
of a finite element approximation of (4), converge to the solution u of the original problem 
(4), see [25,26]. 

Now, let us define an optimization problem for the generalized layout that involves shape 
and topology of a structure. Since the purpose of the present paper is the examination of the 
homogenization method, we shall define the problem using the simplest objective function, 
the mean compliance of the structure, without any other side constraints: 

Minimize 
a,b and 0 

subject to (4) 
and 

J'[l ( l - ab )  d/~ <~.qs 

e L 2 L Z f,u, d a  + Y'. t,u, d r .  (5) 
i=1 i=1 

Here u is the solution of the principle of virtual displacement (4) and a s is the total volume 
of 'solid' material forming the 'porous' structure. In general, ~2~ is smaller than O that is the 
domain of the structure containing the design domain O d, i.e., O, < O d. 

If the essential boundary condition u = g  on Fr, in (4) is resolved by applying the exterior 
penalty method, the solution u of (4) is approximately obtained by solving the penalty 
formulation of (4): 

Find u^ = {uAi, u^2} • V satisfying 

2 f .  O 0UAk t~ /  E EOkt(X ) 0 n  + A(u~i - gi)v~ dF  
i,j,k,l=l OX i OXj i=l 

=E f  da+E tiv, d r  V v e V .  
i=1 i=1 

(6) 

Here V = H I ( n )  and A is a 'sufficiently' large penalty parameter. It is noted that u A 
converges to u as A goes to infinity. If the optimization problem (5) is defined by using this 
penalty approximation u A, (5) can be written by 
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where 

Maximize Minimize H a(v),  
a,b and O v~V 
subject t o  

~gl (I -ab) d/7<~gI s 

1 2 fa  O l P k O l ' P i  l ~ f r o  11.(v) = g ,.;.k.,=tZ EO%' Ox, Ox; dO + ~ i = 1  

- Z  f~v, d a -  Z t,u, dY 
i=1 i=1 

A(Pi  - -  gi) 2 dF 

(7) 

(8) 

is the total potential energy which is penalized to satisfy the essential boundary condition 
u = g  on the boundary/-~. It is noted that the design variables a and b are restricted by 

0 <- a(x) <~ 1 and 0 ~< b(x) ~< 1 in x • O a . (9) 

3. Condition of the optimality criteria 

Defining a Lagrangian 

L(u, a. b, O) =11;(u) - A(£~,, ( 1 -  ab)dO - O.) 

to the volume constraint and its Lagrange multiplier A such that A ~<0, the condition of 
optimality criteria can be obtained by taking formal variation of the Lagrangian with respect 
to the state variable u and the design variables {a, b, 0} which are still restricted by (9): 

2f,  o. o( o., o., o . , )  ~L 2~ G = Eqk;(x ) 8u; + 8a + 8b + 80 dO ,.;,~.,=~ , ~ ~, ~ -ff - ~  

2 fr° ( ou, ou, ou, ) + Z A(ui - gi) gu, + ~a ga + - ~  gb + - ~  gO dF 
i=l 

2 fg] ( OU i OU i Obli ) - Y~ f,. ~u, + -~a ~a + - ~  Sb + - ~  80 da  
/=1 

2 frT ( Oui Ou i Oui ) - X ti 8u, + "~a Sa + - ~  gb + - ~  80 d r  
i=1 

f,{~,lOE,,%,ou~ou, } + 
~.j, ,=~ 2 Oa Ox t Oxj + Ab ga dO 

+ ~" 2 0b Ox-'-7 Oxj +Aa 8bdO i,j,k,t=l 

+ fo{ 10Eq%,Ou, Oui" ~ {fo } 
~.j.k.t=12 O0 Ox~ Oxj3 gOdO+ . ( 1 - a b )  d n - ~ s  gA, (lO) 
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where 8u is an arbitrary variation of u, 8a = a* - a for an arbitrary function a* satisfying the 
constraint 0<~a*~<l, 8 b = b * - b  for an arbitrary function b* satisfying the constraint 
0 ~< b* ~< 1, 80 is an arbitrary variation of 0 and 8A = A* - A for an arbitrary non-positive real 
number A*. Here,, a, b and 0 are extended to the whole domain ~ from /~d 'naturally' 
Assuming that 

Ou~ Ou~ Ou~ H~ v~=Su,+~a 8 a + - ~ S b + - ~ 8 0 f f .  ( f / ) ,  i = 1 , 2 ,  (11) 

the optimality criterion can be obtained as 

2fn au, or, o d• + ~, A(u i - g,)v, dr  Eqkt(x) ax I Oxj b i , ] , k , l = l  i = l  

: f.f, d + frTt, dr VvEV, 
i = l  i = 1  

fn{ ~ 10EiJ%tOUk OUi+Ab} 8ad~2>~O 
, ~ ~ 2 Oa Ox~ axj 

for every 8a = a* - a ,  0 ~ a* ~ 1 i n / ~ ,  

(12) 

(13) 

fn{ ~ loE~klOuk Ou' } 
i.i,kJ=~ 2 Ob Ox~ OXj + Aa 8bd~2>>-O 

for every 8b = b* - b ,  0 ~< b* <~ 1 i n / ~ ,  (14) 

fn[ ~,t ! #E~k'Ou* Oui}8Od~=O f o r e v e r y S 0 ,  (15) 
• ' .  ° m , j ~ 2 0 0  Ox t Oxj 

{In (1 -ab)da- f~s}  8A>-'O f o r S A = A * - A ,  A*<~O. (16) 
d 

Noting that it has been assumed that a, b, 0 E H!(~2), (11) may hold if Ou/Oa, Ou/Ob, 
Ou/O0 ~H~(,O). Since a small change of the microstructure yields a small change in the 
macroscopic homogenized elasticity tensor, and since its degree is much smaller than that of 
the microstructure itself, the effect on the displacement field of the 'porous' structure due to 
change of microstructure must be significantly small. That is, Ou/Oa and others could be as 
smooth as u itself, i.e., the assumption that Ou/Oa, Ou/Ob, Ou/O0 ~. H~(~2) may be realistic. 

Equation (12) is nothing but the form of the principle of virtual displacement. Inequality 
(13) can be equivalently expressed by 

a = M i n  Max 0, a - p a  ~ ~, - -  +Ab ,1 (17) 
i,j,k,I = 1 Oa Ox t Oxj 

for an arbitrary positive number Pa. The nonlinear equation (17) is obtained by using the fact 
that 
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Umi n ~ U ~ Umaxl (U - f ) ( v  - u ) ~ 0  Vv such that u,,i. ~< v<~ umax 

¢:~ u = Min(Max{Umi ., f},//max}. 

Similarly, (14) can be expressed by 

b =  Min{Max{0, b - Oh( 1 
2 O )}} OEo*t Ou k Oui 

I,],k,l=l Ob Ox t Ox~ + Aa ,1 (18) 

for an arbitrary positive number Pb. Equation (15) yields 

1 2 G ~ OEijkt OU k OU i 

i.j.kJ=! O0 OX t Ox/-O" 
(19) 

The Lagrange multiplier A to the volume constraint satisfies 

A= Min{O, A - pa(fad ( 1 -  ab)dO - Os)} (20) 

for an arbitrary positive number P4. 
It is clear that (17)-(20) suggest a solution method for the optimization problem (7). 

4. An optimality criteria method 

The condition of the optimality criteria derived in the previous section suggests a solution 
method of the optimization problem (7). More precisely, an iterative scheme is easily 
obtained as follows: 

Step 1. Assume appropriate initial values of a (°), b (°), 0 (°) and A (°), and set k = 0. 
k , - - k+ 1  
Step 2. Compute the rotated homogenized elasticity tensor [ Gtk). 
Step 3. Obtain the displacement field u (g) satisfying the principle of virtual displace- 

ment (4), i.e., one of the optimality criteria (12) for the elasticity tensor 
II :Gtk) computed in Step 2. 

Step 4. Update the values of a, b, 0 and A, i.e., obtain a ~k~, b tk), 0 tk) and A tk~ using 
u ~k) and the optimality criteria (17), (18), (19) and (20). 

(21) 

As mentioned above, the homogenized elasticity tensor [H is obtained for a set of discrete 
values of a and b, and it is assumed by an appropriate interpolation function to obtain a form 
of continuous function of a and b. This makes it possible to avoid solving the homogenization 
problem for arbitrary values of a and b 'everywhere' in the design domain ,O d. In other words, 
the homogenization problem is solved for certain sizes of holes prior to the optimization 
problem. Using the interpolated homogenized elasticity tensor IF a and the rotation 0, the 
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rotated homogenized elasticity tensor n :6 is computed. It is noted that the homogenization 
problem (1) is solved by applying a finite element method. In the present work, four-node 
quadrilateral isoparametric elements are used. The principle of virtual displacement (14) is 
similarly discretized using four-node quadrilateral isoparametric elements, and finite element 
approximations of the displacement field u are obtained. Since a very standard finite element 
method is applied to solve these problems, it is unnecessary to provide its details. 

There are many ways to update the design variables a, b and 0, which are discretized by 
using a finite element model for solving the principle of virtual displacement, and the 
Lagrange multiplier A. Although the design variables can be discretized at the Gaussian 
integration points to form the stiffness matrix, we shall discretize these using the values at the 
center of each finite element, i.e., a, b and 0 are approximated by piecewise constant 
functions, since the discretization at Gaussian points brings inaccuracy in computing the 
element stiffness matrices. That is, while discretization at each Gaussian point has the 
advantage that it can handle 4 times more design variables with the same finite element m:.'sh, 
the element whose material property is not uniform cannot integrate accurately by a Gaussian 
integration and causes instability in convergence. Since we shall discretize the design domain 
in which a structure is placed using very refined finite elements, the number of discrete design 
variables becomes very large. Because of this, we are solving the optimization problem using 
the optimality criteria method rather than applying a mathematical programming method 
available in standard codes for optimization. 

The simplest updating scheme of a, b, 0 and A is obtained by direct application of the 
expression of the optimality criteria, (17), (18), (19) and (20). More precisely, 

{ _(*)[ 1 2 
a (k) = Min Max 0, a (* - l )  - / . , .  \~  ~ 

i.j.k,i= 1 

o ~ G ( k )  _ (k )  - ( k )  
~i]kt dUk dUi 

Oa Ox~ Ox i 

Min ~[Max [[0, b v'- 1)__ IIb-tk)[l\2 ~,2 "'-'ii*,ar;'~t*) Ou~ *) Ou,'(k) bt*) = 
i,i,k,~=~ Ob Ox I Oxj 

1 2 a~'o(k) Out**)OU[k) v ~'ijkl 
O(k) = O(k-~) _ p~k) 2 ,. j.. . ~ aO aX, axj 

+ At*-~)b(k-~))}, 1}, 

+ A(*-~)at*))}, 1}, 

(22) 

for arbitrary but appropriate positive numbers v.-(k), ptbk) ' p~k) and p~k). It is expected that for 
sufficiently small numbers, the above iterative scheme is convergent as k goes to infinity, but it 
could be very slow. Thus, some modifications must be implemented to be practical. 

The first modification is for the design variables a and b as well as the Lagrange multiplier 
A. Defining 

2 a ~ , G ( k )  _ ( k )  - (k )  

o(k) f _ (A( , )b ( ,_ l ) )_  , ~ 1 vL"i]kl [JU k OUi 
-- a i,/,kJ=~ 2 Oa ax t Ox/ ' 

(23) 

the design variable a is updated by 
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a (k) = 

Max{(1 - ~')a (k-l), O} 

a(k-')(D]k)) '~ 
Min{(1 + ~')a (k-I), 1} 

if a(k-l)(Do)<~(k) n max{(1 - ~ ) a  (k-l) ,  0} , 

~) (k) .7 Min{(1 + 1}, if Max{(1 - sr)a (~-I), 0} <~ a u'- (D,. ) <~ ~)a (k-l), 

if Min{(l + ~')a (k-L), 1} ~< a(k-~)(D(,,k)) "~ , 

(24) 

where ~" is a move limit and 7/ is a weighing factor. The iteration scheme (24) is a slight 
modification of the simple iterative method (22) for the special case that 

p~k) = a(k-,)/A(k)b(k-,) . 

Here the Lagrange multiplier Atk) to the volume constraint must be known to update the 
design variable a. As such, the value of the Lagrange multiplier A is computed by the 
bisection method in an inner loop: 

where 

Substep 1. 

m * - - m + 1  
Substep 2. 
Substep 3. 

A (k'°) - l"~(k)(A (k'°)'l < ~'~s Set up ----rain SO that - - s  x - m i n  , 

and A ( k ' ° )  ff](k)tA(k'O)'~ ---max so that - > Os - - s  x - - m a x  ] 

m = O  

A ( k , m - l ) )  1- [ A (k'm-1) "F - - m a x  A(k'm) 2 k-elmin 
A (k'm) = A (k'm) if _12s(k)(A(k,,,.))>/2 s 
- - r a i n  

- .  (k)  (k m) A (k'm) A (k'm) if -/2~ (A ' ) < ,0~ 
~ m a x  

O~k)(A) = fn.j (1 - a(k)(A)b(k)(A)) dO.  

(25) 

(26) 

The design variable b is updated in exactly the same way as a. 
The second modification is for the angle of rotation 0 of the unit cell. To this end, we recall 

that the original goal is to maximize the total potential energy by finding appropriate rotation 
of the microstructure characterized by rectangular holes. In other words, we intend to find the 
angle of rotation 0 satisfying the necessary condition Ol-la/O0 = 0. Noting that 

12  L HA(u ) 2 ~ G 1 = CqkKrktOrq dO + 
i,j,k.l=l 

2 f r D - ~ g~%n~ d F ,  
i . j = l  

hj,k = 1 

1 
frD "A crqnj crjknk dF  

(27) 

where o" is the stress tensor at equilibrium and C 6 is the rotated homogenized compliance 
tensor, it is possible to find 0 satisfying the necessary condition using the right-hand side of 
(27). Since the penalty parameter A and the constrained displacement g are independent to 
the microstructure, its dependence on/9 must vanish. Thus, the appropriate O can be obtained 
by examining the first term on the right-hand side of (27). Following Pedersen [22] and also 



K. Suzuki, N. Kikuchi, A homogenization method 303 

Gibiansky and Chercaev [23], such a 0 can be identified with the principal direction of the 
stress tensor o" for the case of 'shear weak type materials'. Thus, computing the principal 
stresses as well as the angle of the principal direction using the displacement field u tk~, an 
updating scheme of the angle of rotation 0 Ck~ is obtained. 

5. A verification of the present method 

We shall examine the present method to solve the optimization problem (7) by solving a 
simple problem whose solution may be obtained analytically using a simple structural model 
such as a truss or a beam. A two-bar frame structure as shown in Fig. 3 is considered. 

For the fixed values of the applied load P and the horizontal length L of the frames, the 
optimal height H is determined by minimizing the mean compliance. If the cross section of the 
frames is rectangular with the unit width, the optimal height H is obtained as H = 2L if the 
total volume of the frames is assumed to be constant, if this structure is assumed to be a truss. 
Defining a rectangular design domain ~d that is larger than the size L x 2L, where L = 10 cm, 
the generalized layout problem (7) is solved by discretizing n = ~d using 40 X 96 finite 
elements. The homogenized elasticity tensor E n applied here is computed at 6 x 6 sampling 
points in the design variables a and b, respectively, and is interpolated by the Bezier fu~lctions. 
The homogenization problem (1) is solved using 10 x 10 finite elements for the 'solid' isotropic 
material characterized by Young's modulus E = 100 GPa and Poisson's ratio 1, = 0.3. As 
shown in Fig. 4, the present method forms a two-bar frame structure as the amount of the 
'solid' material is decreased, and the solutions converge to the theoretical solution obtained by 
assuming beam bending and axial deformation. It is also noted that the present method can 
not only provide the basic two-bar frame structure but also the size of the cross section of 
bars, especially for the case of large volume of the 'solid' material. 

The same problem is also solved by using different finite elements, i.e., using three node 
triangular elements. As shown in Fig. 5, the optimal solution obtained is very similar to the 
one computed by using four-node quadrilateral elements. Thus, at least for this example, the 
choice of specific finite elements is not so critical. 

Fig. 3. A two-bar frame structure. 
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T 
2,4 

Domatn P :  

1 1 10 " ~  
Fig. 4. Optimal size and configuration of a two-bar frame structure. 

Fig. 5. Optimal configuration by triangular elements. 

6. Convergence property of the finite element approximation 

The next verification of the present method is whether the shape and topology, i.e., the 
configuration of the structure obtained as the optimum converges to the unique one as finite 
element meshes are uniformly refined, while other conditions are fixed. To check this 
convergence property, let us solve the optimization problem (7) for a short cantilever subject 
to the vertical force at the free end, see Fig. 6. For three different volumes 80, 60 and 40 of 

16 

Design domain 

¢ 

Fig. 6. Design domain for bending of a short cantilever. 
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Fig. 7. Convergence of the optimal configuration (~d = 40). 

Fig. 8. Convergence of the optimal configuration (~7~ = 60). 

Fig. 9. Convergence of the optimal configuration (~d = 80). 
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Fig. 10. Convergence of the mean compliance. 
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the 'solid' material, the generalized layout problem (7) is solved by using 32 x 20, 48 x 30, 
64 x 40 and 80 x 50 equal size finite elements covering a rectangular design domain ,O d. 
Applying the same homogenized elasticity tensor to the first example, the optimal configura- 
tions are obtained as shown in Figs. 7, 8 and 9. It is clear that the optimal configurations are 
convergent as the size of finite elements is reduced. Even every coarse mesh can provide a 
sufficient idea for the topology and shape of the optimal structure. If the present approach is 
used to find a rough idea of the optimal structure, it is not necessary to solve the problem 
using very refined meshes. After obtaining a rough configuration, it is possible to solve the 
problem using existing shape optimization codes which are commercially available and more 
capable to input various design constraints and to minimize other objective functions. 
Although the existing capability on the shape optimization is very limited for the topological 
change of the configuration of a structure, it can provide details of the shape of the structure. 

Figure 10 presents convergence of the mean compliance as the size of finite element goes to 
zero. Despite non-monotonic convergence is observed for the case of ~2 d = 80, the mean 
compliance is steadily decreased as the size of finite elements is decreased. 

Another interesting observation in the results obtained is that very truss-like frame 
structures are built if the amount of the 'solid' material is considerably smaller than that of the 
design domain. Each frame member is clearly straight. If the amount of the 'solid' material 
becomes large, the optimal design diverges from truss-like structures. Curved frames are 
generated, and more continuum-like shapes are formed. It is also noted that the topology of 
the optimal structure changes as the amount of the 'solid' material changes. Nine holes are 
generated for O s = 80, while four holes are formed for O.~ = 40 and 60. 

7. Construction of the Michell truss 

The third verification of the homogenization method for the generalized layout problem is 
whether it can reproduce the Michell truss (Fig. 11), which is already known as the optimal 
truss structure for bending and which is solved analytically as the most typical problem of 
structural layout, see [27]. To do this, the setting given in Fig. 12 is assumed. That is, a 
bending force P must be optimally transferred to the circular fixed support by constructing a 
truss-like structure. Using 110 x 80 uniform finite elements to discretize a rectangular design 
domain ,O = O d, the generalized layout problem (7) is solved by approximately setting the 

Fig. 11. Analytical solution of the Michell truss. 

Des~ Doa~ 

Fig. 12. Setting of the problem similar to the Michell 
truss. 
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circular rigid support using rectangular finite elements whose design variances are fixed as 
a = b = 0 = 0. The degrees of freedom on the boundary of the support are also fixed to have 
no deformation inside of the 'support'. The approximation made here to represent the circular 
support may be too crude in order to study details of layout near the support. However, our 
interest is to reproduce the Michell truss-like structure in the global sense that approximate 
configurations are examined. Figure 13 shows the optimal layout for various volumes of the 
'solid' material. It is clear that the present method can generate Michell truss-like structures, 
i.e., frames generated are mutually orthonormal in most of the domain. Note that the 'frames' 
are rigidly connected at each junction, while hinge joints are generally assumed in analytical 
study of the Michell truss. 

An interesting observation is the similar structures are repeatedly utilized with different 
sizes to form the optimal structure. Since the structure must be built up for bending, the size 
of most of the outer members is the largest. If straight bar frames are assumed, it is possible to 
determine their optimal size by lumping the 'porous' structure to a solid one from the results 
obtained by the present method. It is also believed that 'porous' frames are generated because 
of the size restriction of finite element meshes. If much refined finite element discretization is 
applied, 'porous' frames would be eliminated and solid frames would be generated for this 
type of simple structures. In this sense, the present method can not only deal with classical 
layout problems of frames but also with sizing problems for frames at the same time. In this 
respect, the method proposed here can solve the generalized layout problem which involves 
topology, shape and sizes of a structure. 

Fig. 13. Optimal configurations for different volumes of the 'solid'. 
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It is also noteworthy that while an analytical solution of the Michell truss should have an 
infinite number of bars, our solutions have a finite number of bars. These results are because 
of rather concentrating tendency of our material constants. This tendency appears again in 
later examples, for example in Fig. 19 it becomes fiber-like rather than uniform distribution. 
Also in Figs. 32 and 33 the porous type area is checker-flag type material distribution rather 
than uniform. This tendency cannot appear if thickness is used as design variables in which 
material constants have a linear relation to design variables. Also this tendency does not 
appear if fiber density is used as design variables. 

8. Effect of the boundary condition 

Next we shall examine the effects of different boundary conditions using a short beam used 
in the example for convergence study. Instead of applying a transverse force that yields 
bending to the beam, a tensile traction is applied on the middle one-third portion of the free 
end of the beam as shown in Fig. 14. Using the same finite element model and the unit cell 
model used in Section 6, the generalized layout problem (7) is solved. 

The optimal layout is obtained as shown in Fig. 15. In this case, the fixed support condition 
is not extended along the whole left edge although the fixed boundary condition is assumed on 
the whole edge in stress analysis for the 'porous' structure. This means that the assumption of 
a larger boundary for the fixed support would not affect the optimal configuration, i.e., the 
optimal structure defines necessary range of the boundary for the fixed support ~ondition. As 
shown in Fig. 15, only a small portion of the left edge is used as the fixed condition, since the 
applied tensile force can be effectively supported by straight bars in which the axial 
deformation and stress are dominant. Two solid bars are formed in the left side to carry out 
the tensile force while porous medium is generated in the vicinity of the edge on which tensile 
traction is applied. Porous medium is generated in order to diverse stresses due to the applied 
traction. It is noted that if the support condition on the left edge is roller type instead of the 
fixed support, the optimal design would become an accumulation of many thin straight solid 
bars, the total volume of which is exactly equal to the given 'solid' material volume, as 
illustrated in Fig. 16. 

It is also noted that there are many interpretations of the porous medium generated. 

Fig. 14. 

Design Domain 

Design domain with a tensile traction applied. 

- m 

Fig;. 15. Optimal design for the fixed boundary con- 
dition. 
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r 

Fig. 16. Illustration of the optimal design for the 
roller support condition. 

Fig. 17. Possible equivalent design of the right end 
part. 

Although square micro scale voids are assumed in the present method, the computed result 
suggests that the designs given in Fig. 17 may be equally strong to transmit the applied traction 
since complete 'solid' and 'void' distributions are staggered. 

In order to show that the optimal structure strongly depends on the boundary condition, we 
shall consider the same design domain and the tensile traction of the right edge, but, instead 
of the fixed support condition, we shall apply the uniformly distributed traction on the left 
edge so that the structure can be equilibrium within rigid body motions as shown in Fig. 18. 

Assuming that the volume of 'solid' material is 25% of that of the design domain O d, the 
generalized layout problem (7) yields the optimal distribution of the 'solid' material as shown 
in Fig. 19. The optimal structure consists of very many smoothly curved thin porous bars 
which are 'knitted' by much thinner curved bars to reinforce in the transverse direction. 
Although they are not orthogonal, they are smoothly connected. Since linear elasticity is 
assumed in this program, the same result is expected for the compressible traction. In this 
case, it is necessary to consider the possibility of local buckling of thin bars in order to obtain 
the 'true' optimum structure. Figure 20 shows a net type frame structure suggested by the 
optimal solution given in Fig. 19. 

.<-- 

,<.- 

,<... 

• ~. 8 ) ,  

Design domain 

Fig. 18. Design domain without the support con- Fig. 19. Distribution of the 'solid" materials. 
dition. 
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Fig. 20. 'Idealized' net type framed structure. 

9. Effect of undesigned region 

The next application of the homogenization method in the generalized layout problem 
involves the fillet design to transfer a tensile force from the narrow right edge to the wider left 
edge as shown in Fig. 21. Two cases are considered to examine effect of the area of 
undesigned domain O - f~d" It is also noted that the first case of the present example differs 
from the study of the last problem in the previous example. Here, the traction is applied on 
the undesigned region, whereas it is directly applied on the edge of the design domain Dd in 
the previous example. Thus the result obtained should be different from that of the previous 
c a s e .  

The black portion in Fig. 21 is the undesigned domain, while the white portion is the design 
domain in which 'solid' material, i.e., equivalently microscale voids are distributed. Assigning 
three different 'solid' material volumes in each case, the optimal layout problem (7) is solved. 
As shown in Fig. 22, very discrete structures are placed in the design domains to transfer the 
applied tensile force except the case that a porous medium is generated for the largest volume 
with a thin undesigned domain. If the undesigned portion is thin, two symmetric bars are 
generated together with an reinforcement in the transverse direction with an extremely thin 
(or porous) bar. If the undesigned portion becomes thick enough, only one bar structure is 
formed. It should be noted that no matter how refined meshes are applied in the vicinity of the 
interface of the undesigned and designed domains for the case of thick undesigned region, 

Deslgn Domaln 

Deslgn Domain 

Fig. 21. Two different design domains for the fillet design. 
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Fig. 22. Optimal configurations for the fillet design. 

very smooth shape cannot be obtained from the formulation (7), since the mean compliance is 
used as the objective function which may not be able to deal with local values of stresses, i.e., 
rounding arcs are not generated at the corners as a typical optimal shape of the fillet problem. 
To obtain a similar result by the boundary variation method for the shape optimization 
problem, the objective function must be replaced by, for example, the maximum equivalent 
stress. We shall retain this extension for future works. Despite this limitation, the present 
approach using the mean compliance can determine an overall structural configuration. 

10. Restriction on the design domain 

This example is for the case that there is some area where 'solid' material cannot be placed 
because of plumbing, wiring, walls or other obstacles. The setting in Fig. 23 involves that the 

Undesigned 

design domain 

CASE 2 V CASE 1 

1 
10 

Fig. 23. Layout in an L-shaped domain for two different loadings. 
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Fig. 24. Optimal configuration for Case 1 ( ~ =  
20 em 2). 

Fig. 254. Optimal configuration for Case 2 (fl, = 
20era2). 

upper left corner portion is not usable for design. Two different loads are applied on the 
center portion of the top surface, and the left side of the L-shaped domain is fixed. The 'solid" 
material volume is 20 cm 2 while the volume of the design domain ~ is 75 cm 2. 

Figure 24 shows the optimal configuration of the structure for Case 1 in which the applied 
traction acts as a tensile force to form the optimal structure. Since the traction force is inclined 
45 °, the fundamental design is a bar structure in the 45 ° direction which is the best for axial 
tension. If there is no design restriction, such a tension bar can be formed. However, because 
of the restriction in the design domain, such a straight tension bar cannot be formed. Thus, at 
the corner point of the L-shaped domain, 'solid' material is distributed circularly. This then 
yields an arc beam to reinforce to sustain the bending load due to the 'bent' solid bar at the 
corner. Furthermore, thin bars appear to connect the arc beam to the main 'bent' solid bar, 
that is similar to a bicycle wheel. 

On the other hand, if the traction force is applied as in Case 2, it acts as a bending force to 
the domain. Thus, the optimal structure is formed to be the best for bending, especially in the 
lower portion of the L-shaped design domain as shown in Fig. 25. That is, the lower part of the 
optimal configuration should be similar to the case for pure bending as in the example solved 
in Section 6. Since the traction is distributed on the center one-third portion of the top surface 
of the L-shaped domain, porous medium is generated as in the case of the pure tensile case 
studied in Section 8. A bar inclined by 135" is formed to resist to the tensile traction in the 
upper portion of the domain, and it is supported by two thinner bars starting from the corner 
point of the L-shaped domain. Such a bar for tension is then connected to the lower portion 
along the right wall of the domain, and the tension force in the upper domain now becomes a 
bending force for the lower portion. It is noted that a rather solid medium is formed in the 
vicinity of the applied traction in Case 1, while porous medium is generated in Case 2. This 
could be explained as the solid medium must be placed since the arc reinforcement in Case 1 
starts from right under the loading portion, whereas a bar supporting the tension bar is 
connected far down from the loading portion in Case 2. 

11. Transition from shape to topology optimization 

So far only rectangular finite elements are applied to solve the optimal design problem (7). 
Now let us examine the capability to use non-rectangular quadrilateral 4-node elements. To 
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Fig. 26. Non-rectangular design domain. Fig. 27. Design domain for the optimization (1/6 
portion of the original domain). 

demonstrate it a 'triangular' design domain is considered as shown in Fig. 26. Applying the 
symmetry condition, only 1/6 part of the design domain is modeled by the finite element 
method. The boundary condition and physical dimensions are specified in Fig. 27. The domain 
is discretized by 40 x 40 meshes which are not orthogonal. Using this example, we shall also 
examine the transition from the shape optimization to the topology optimization that forms 
more or less truss-like structures. To do this, the volume of the 'solid' material is varied in a 
wide range from 50cm 2 to 180cm 2, while the area of the 1/6 of the original domain is 
317.5 cm 2 . 

As shown in Fig. 28, if there is a sufficient amount of 'solid' material, the optimal structure 
is singly connected without having holes inside the domain. The obtained shape is also very 
smooth, that is, of almost the same quality as the one obtained by the boundary variation 
method which is traditionally applied to solve the shape optimization problem. When the 
amount of 'solid' material volume is reduced, holes start appearing interior of the domain. It is 
also noted that the loading portion becomes porous when the amount of 'solid' material is 
really small in order to diverse the applied traction uniformly in all the directions equally, 
while the three compressed link bars in 30 °, 150 ° and 270 ° directions, are also porous. Thus, if 
these porous bars are replaced by solid bars maintaining the 'solid' material volume, the size 
of bars becomes very small. Thin solid bars which are in tension, are allocated in 90 ° , 210 ° and 
330 ° directions in the optimal structure. The outer frames are completely solid. 

Transition from the singly connected domain to the multi-connected domain occurs at 
~, = 130cm2-140cm 2. To examine details of the transition, larger but detailed material 
distribution is presented in Figs. 29 and 30 for ,(2, = 130 cm 2 and 140 cm 2, respectively. It is 
clear that very porous medium is generated in the portion where holes are generated in the 
later stage. 
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Fig. 28. Optimal configurations for various volumes of 'solid' material. 

Volumel40 

Fig. 29. Details of distribution of 'solid' material 
(f~o = 130 cm2). 

Fig. 30. Details of distribution of 'solid" material 
(fld = 140 cm2). 
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12. Multiple loading case 

As the last example shown in this work, we shall solve the optimal layout problem (7) for 
the case that several tractions arc applied at the boundary at the same time. As shown above, 
tension and bending forces provide very different optimal configurations. Thus, it may be 
interesting in studying the case that several tractions whose nature is different are applied on 
the boundary. To do this, a rectangular domain is discretized by 64 x 40 rectangular finite 
elements, and is subject to the applied tractions as shown in Fig. 31. Tension, bending and 
shear forces are applied, while the bottom surface is assumed to be free here. The ratio of the 
shear-like traction and bending traction applied on the side surfaces is assumed to be one in 
the example. 

Figures 32 and 33 show the optimal layout of the structure for n s = 15 c m  2 and 10 cm 2. A 
solid medium is generated on the top surface while a very porous medium is formed in the 
sides. Overall configuration is an arch-type that can be seen in bridge or building structures. It 
is noted that the solid medium is generated in the portion where the bending stress is 
dominant, while the porous medium is formed in the region where the tensile and shear 
stresses arc overwhelming. 

1.25 

t t t  t t t 
8 

5 
D~ign domaln 

Fig. 31. Design domain and the applied loads ( 'shear ' /bending= 1/1). 

Fig. 32. Distribution of 'solid' material (solid/ 
void = 3/5).  

Fig. 33. Distribution of 'solid' material (solid/ 
void = 1 / 3). 
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