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Structural modification of existing antifolates may create 
new agents with altered therapeutic effects [l]. For 
example, substitution of an amino acid analog for L- 
glutamate (Glu) in classical antifolates may alter enzyme 
inhibition, transport properties, or the ability to form poly- 
y-glutamate metabolites [l]. Often, the amino acid analog 
chosen is only or most readily available as the D,L-racemate. 
Thus, the D,L-racemate may be used to synthesize the 
analog first; if interesting biological results are obtained, 
the analog containing the L-enantiomer may be prepared. 
It is generally assumed in studies using a D.L-racemate that 
the D-enantiomer-containing analog is inactive and does 
not interfere with effects of the L-enantiomer-containing 
species. In the case of methotrexate (MTX*), this 
assumption has been validated only for D-MTX compared 
to L-MTX [2]. 

We previously studied D,L-e,t-y-fluoroMTX (4-amino- 
lo-methyIptero$-D,L-erythro,thred-4-fluoroGhi; D,L-e,f- 
FMTX). an MTX analog in which L-Glu is replaced 
by D,L-erythro,t/rreo-4-fluoroGlu, and its constituent 
diastereomers D,L-e-FMTX and o,L-t-FMTX [3-51. Based 
on published studies of D-MTX 121. we assumed that the . >. 
o-enantiomer-containing species were essentially inactive. 
However, we remained concerned about the remote 
possibility thatfluorinesubstitutionmight alterenantiomeric 
specificity in our test systems. To address this concern, we 
enzymatically prepared D-e,t-FMTX and studied its activity. 
We included D-MTX in these studies to expand the data 
base on this contaminant found in clinical MTX preparations 
PI. 
Materials and Methods 

L-MTX was a gift of Lederle (Pearl River, NY). D,L- 
and D-MTX were from Aldrich Chemicals (Milwaukee, 
WI). 4-Amino-lO-methylpteroyl[y-(l~-tetrazolyl- 5-yl)-L- 
o-amino butyric acid] [6] was a gift of Dr. T. Kalman 
(SUNY, Buffalo, NY). 4-Amino-IO-methylpteroyl-D,L-(3- 
hydroxy-Glu) and 4-amino-lo-methylpteroyl-D,L-(4- 
methylene-Glu) [7] were gifts of Dr. M. G. Nair (Univer- 
sity of South Alabama, Mobile). Other chemicals were 
reagent grade or higher. 

D-e.t-FMTX was prepared by exhaustive digestion of 
D,L-e,t-FMTX (31 with carboxypeptidase G2 (CPG2). which 

* Abbreviations: MTX. methotrexate; D,L-e,t-y-fluoro- 
MTX (D,L-e,t-FMTX), 4-amino-lO-methylpteroyl-D,L- 
erythro,threo-4-fluoroGlu; CPG2, carboxypeptidase G,: 
DHFR, dihydrofolate reductase; and dTMP. thymidylate. 

specifically releases L-amino acids from pteroates (vide 
infra). D,L-e,t-FMTX (20 pmol) was hydrolyzed (37”) by 
40 I.U. of CPG2 in 25 mM Tris-Cl, pH 7.3 and 0.1 mM 
ZnCl, (200mL). After no further absorbance change at 
320nmwasobserved (t = 15 min), incubation wascontinued 
for 30 min. Based on AA,,, and the E320,pH7 3 for production 
of 4-amino-lo-methylpteroate [8], 49% of the substrate was 
hydrolyzed. The resulting solution was chromatographed in 
two portions on DE-52 (0.7 x 21 cm; Whatman, Clifton, 
NJ) equilibrated at 4“ with 50mM NH4HC0s, pH 8.0. 
After loading and washing with 70 mL of initial buffer, 
each column was eluted with a linear gradient (500 mL 
total) from 50 to 200mM NH.,HCOs, pH 8.0. 4-Amino- 
IO-methylpteroate, identified by its UV spectrum at pH 13 
and HPLC retention time [9],-was well resolved from D- 
e.t-FMTX. Fractions containine material with a UV 
spectrum and HPLC retention”time similar to D,L-e,t- 
FMTX were lyophilized. Exhaustive CPG2 digestion of this 
material showed it contained <4% of the L-isomer (D-e,t- 
FMTX does not inhibit CPG,; vide infra). 

RadiochemicakL-[3’,5’,7’,-‘H]MTi (i0 Ci/mmol) and 
15-3HldUrd (22 Ci/mmol) were from Moravek Biochemicals 
[Brea, CA): The’ purity of L-[‘H]MTX was assessed by 
HPLC [4]. 

Enzymes and assays. CPG, was purified [lo] from 
Escherichia coli harboring a plasmid containing the 
Pseudomonas CPG, cDNA [ll] and assayed as described 
[8], except that 100pM L-MTX was used. Dihydrofolate 
reductase (DHFR; EC 1.5.1.3) was partially purified from 
CCRF-CEM cells and assayed as described [6]. Drug 
concentrations inhibiting DHFR activity (1.6 x 10e3 I.U.) 
by 50% (tcso) were determined as described [6]. L-[~H]- 
MTX uptake by CCRF-CEM cells was measured as 
described (41. 

Cell culture. Human T-lymphoblastic CCRF-CEM [ 121 
and sublines MTX resistant via decreased transport [ 131 or 
DHFR increase [ 141 were cultured in RPM1 1640 containing 
10% horse serum (GIBCO) and additions as indicated [4]. 
Cell outgrowth inhibition and drug concentration inhibiting 
cell growth by 50% (E&) were determined as described 
[6]. CCRF-CEM cells used as a DHFR source and to 
determine ~csr, were Mycoplasma free (Gen-Probe Inc., 
San Diego, CA). Studies on thymidylate (dTMP) 
biosynthesis and inhibition of [3H]MTX uptake were 
completed within 11 days and 2 months, respectively, of 
this negative test; testing 10 months later showed 
contamination in all lines. o-e,t-FMTX was depleted prior 
to this discovery so the studies could not be repeated. 
However, since cells grew normally during the studies 
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Table 1. Inhibition of CCRF-CEM DHFR and cell outgrowth by MTX analogs 
containing enantiomers and analogs of L-Glu. 

DHFR inhibition 
Growth inhibition 

Compound ICW, (nM) Slope* WI (nM) 

L-MTX 0.62 2 0.06 1.49 2 0.16 
D,L-MTX 1.15 1.35 :96 
D-MTX 5.6 0.84 535 
D,L-e,t-Fh'fm 1.25 1.25 
D-t?,t-FMTX 5.2 0.96 6; 

Inhibition of DHFR was determined as described in Materials and Methods. 
Values are averages of duplicate determinations, except for L-MTX which is the 
mean 2 SD (N = 3). Inhibition of outgrowth of CCRF-CEM cells was measured 
over 120 hr; drug was present throughout the growth period. Results of the 
outgrowth studies are averages of duplicate values. 

* Slope of linear regression of a plot of log [u/(V,,,,, - u)] vs log [Inhibitor] for 
each concentration-inhibition curve: the slope quantitates the sigmoidicity of the 
curve [17]. 

presented and control values in each case were similar to 
those we previously reported with pure cultures [5,6], we 
believe the cells in the reported studies were not 
contaminated. 

Biosynthesis of dTMP. De nooo synthesis of dTMP was 
measured by incubating cells with [5-3H]dUrd and 
measuring release of 3H,0 as a function of time [6]. 

Results and Discussion 

CPG2 specificity . CPG, is believed to be similar to CPG , 
which specifically hydrolyzes C-terminal L-Glu, ~-Asp, and 
L-Gln from oligopeptides, N-acylated amino acids, folates, 
and folate analogs [2,8]. Stereospecificity of CPGz was 
verified by showing that, at 100 PM, D-MTX was hydrolyzed 
at ~0.2% the rate of L-MTX; the low rate measured may 
result from L-MTX contamination since limit digestion of 
D-MTX indicated the presence of ~2% L-MTX. Also, over 
10-50 PM L-MTX, the hydrolysis rate was the same for L- 
MTX or D,L-MTX and the E3z0 for the reaction with D,L- 
MTX was -50% that with L-MTX (3900 vs 766Ocm-’ 
M-l). Quantitation of 20yM L-MTX based on CPGr- 
catalyzed hydrolysis was unaffected by the presence of 
100 PM D-MTX or 40 PM D-e,t-FMTX. Thus, similar to 
CPG, [S], CPGz was specific for L-Glu and D-Glu did not 
inhibit its action [2]. 

4- Amino- lo- methylpteroyl[y-( lH- tetrazolyl- 5-yl)- L-W 
aminobutyric acid], 4-amino-lo-methylpteroyl-D,L-(3-hy- 
droxy-Glu), and 4-amino-lo-methylpteroyl-D,L-(4-methyl- 
ene-Glu) were hydrolyzed 100, 50, and 0%, respectively, 
by CPG2. These data (not shown) suggested that some Glu 
analogs could be released in an apparently L-enantiomer- 
specific manner, but demonstrated sensitivity of CPGz 
towards y-substituents. Thus if D,L-e,t-FMTX were a 
substrate, only the L-enantiomer might be hydrolyzed. 

D,L-e,t-FhlTX was resistant to CPGr digestion compared 
to D,L-MTX. At 2OOpM, D,L-e,t-FIvlTX was 7- to 9-fold 
less active than D,L-MTX (K,,,L_Mrx = 8 pM) as a substrate 
(not shown) suggesting a lower V,,,,, for CPGl with 4- 
RuoroGlu-containing species. Limit digestion was effected, 
however, by increasing the CPGz level; the E3*” for 
hydrolysis of D,L-e,t-FMTX was the same as for D,L-MTX 
and thus 50% of the starting material was hydrolyzed. This 
was consistent with L-erythro and L-three isomers both 
being hydrolyzed. The slower hydrolysis rate of D,L-C,t- 
FMTX by CPGz is reminiscent of the decreased sensitivity 
of other 4-BuoroGlu-containing antifolates to y-glutamyl 
hydrolase activity [15]; scissile peptide bonds in proximity 
to fluorine may thus generally be less susceptible to 
enzymatic hydrolysis. 

DHFR inhibition. DHFR is the primary target of MTX 
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Fig. 1. Inhibition of initial uptake and accumulation of 
[‘H]MTX in CCRF-CEM cells by MTX analogs containing 
enantiomers and analogs of L-Glu. Cells were added to 
incubation tubes ahead containing sufficient [3H]MTX 
(0.75 pCi/mL; 760 cpm r pmol) and compound of interest 
to give final concentrations of 1 PM [3H]MTX and: solvent 
control (A); 4 PM D,L-biTx (0); 20 PM D-MTX (0); 8 PM 
o,L-e,t-FMTX (B); or 40 PM D-e,t-FMTX (Cl). This 

experiment was repeated with similar results. 

and its analogs (161. All MTX analogs tested here inhibited 
CCRF-CEM DHFR (Table 1). The ICY for D,L-MTX was 
about twice that for L-MTX. D-MTX and D-e,t-Fm had 
ICSO values 4-fold higher than the corresponding D,L- 

mixtures. In addition to higher ICY values, slopes of linear 
transformations of the inhibition curves [17] were lowest 
for the D-enantiomers (Table l), further indicating weaker 
interaction with DHFR. Previous work also showed that 
D-MTX was weaker than L-MTX as an inhibitor of human 
and murine DHFR based on lcso values [2]. Slopes of 
inhibition curves were not reported in that study. 

[3H]MTX uptake inhibition. MTX and FMTX isomers 
share transport systems in H35 hepatoma [3] and CCRF- 
CEM cells [4]. Preliminary studies showed that 4 PM D,L- 

MTX was equivalent to 2 PM L-MTX in decreasing the 
initial velocity ( ui) of transport and accumulation at 30 min 
of 1 PM L-['H]MTX. D-MTX at GlO PM had no effect on 
u, and caused only a slight decrease in accumulation at 
30min (not shown); 20pM D-MTX affected both vi and 
accumulation at 30 min, but the effect was less than that 
of 4 VM D,L-MTX (Fig. 1). Effects of D-MTX on MTX 
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Fig. 2. Inhibition of thymidylate biosynthesis in CCRF-CEM cells by MTX analogs containing 
enantiomers and analogs of L-Glu. Cells were added to incubation tubes already containing [5-‘H]dUrd 
(1 &i/mL) to give a final concentration of 45 nM; the compound of interest was present simultaneously 
to give the final indicated concentration. [5-‘H]dUrd metabolism was measured as described in Materials 
and Methods. Panel A: Solvent control (0); 0.5 PM L-MTX (x); 1 pM L-MTX (Cl); 2pM D.L-MTX 
(W); or 10pM D-MTX (A). Panel B: Solvent control (0); 0.5 nM L-MTX (x); 2pM n,L-e,t-FMTX 
(D); 2.8 PM D-e,t-FMTX (A); or 10 PM D-e.f-FMTX (A). This experiment was repeated with similar 

results. 

transport were not examined previously [2]. D.L-e.r-FMTX 
at 8 PM inhibited L-[3H]MTX uptake; 40 PM o-e,r-FMTX 
was required to achieve the same level of inhibition (Fig. 
1). Thus, D-MTX and D-e.t-FMTX were much weaker than 
the corresponding L-enantiomers as inhibitors of L-[‘HI- 
MTX uptake. Assuming that inhibitory potency reflects 
affinity for the carrier and that other routes of transport 
are not used at higher efficiency, these data suggest that 
D-enantiomers are poorly transported. 

Uptake measurements. An attempt was made to use 
CPG, hydrolysis to assess the enantiomeric composition of 
intracellular radiolabel following exposure of CCRF-CEM 
cells to L-[3H]MTX or n,L-erythro-[3H]FMTX. L-[“H]MTX 
and D,L-eryrhro-[3H]FMTX [4] were hydrolyzed by CPG2 
to yield 296% and 45% [3H]4-amino-10-methylpteroate. 
respectively, indicating that the approach was feasible. The 
extensive sample processing required in cell studies, 
however, resulted in significant conversion of radiolabel to 
unidentifiable products even in control samples; thus 
intracellular drug could not be studied. 

Inhibition ofd734P biosynthesis. dTMP biosynthesis was 
measured by conversion of [5--‘H]dUrd to dTMP in intact 
cells. Inhibition by L-MTX was concentration-dependent 
and 2 ,uM D,L-MTX was equivalent to 1 PM L-MTX (Fig. 
2A). D-MTX at 10~M inhibited dTMP biosynthesis, but 
was less potent than 0.5 PM L-MTX; 2 yM D-MTX was no 
different from control (not shown). Inhibition of dTMP 
biosynthesis by D-MTX was not studied previously [2]. D,L- 
e,r-FMTX at 2~uM took longer to initiate inhibition of 
dTMP biosynthesis than did 0.5 yM L-MTX (Fig. 2B). D- 
e,t-FMTX at 2.8 uM was not different from control: 10 uM 
n-e,r-FMTX eventually caused inhibition but took much 
longer than 2 PM D,t,-e,t-FMTX. Thus, D-MTX and D-e+ 
FMTX were weaker inhibitors of dTMP biosynthesis than 
were the corresponding L-enantiomers. 

Ourgrowrh inhibition. Using a 120-hr exposure period, 
L-MTX was about 2- and 33-fold more effective than D,L- 
MTX and D-MTX, respectively, as an inhibitor of CCRF- 
CEM cell growth (Table 1). These results are similar to 
earlier studies on L1210 cells using unpurified D-MTX, but 
dissimilar to earlier results with CCRF-CEM cells where 
the EC,, for purified D-MTX was >lOOO nM [2]. It is 

doubtful that trace contamination of our D-MTX by L- 
MTX (~2%. above) accounts for the difference in potency 
found in the two studies. A likely source for the difference 
is the conditions used to assess growth inhibition. Earlier 
studies used initial densities of 5 x 10” cells/ml and allowed 
3 generations of growth [2], while our initial density was 
1 X lo4 cells/ml and allowed 5-6 generations. Slower 
uptake of D-MTX and weaker inhibition of DHFR may 
mean that a longer exposure time is required for the effects 
to be evident (cf. Fig. 2). D-e.t-FMTX was also a much 
less potent inhibitor than D,t_-e,r-FMTX of CCRF-CEM 
cell growth (Table 1). 

At 92-97% growth inhibition, effects of each compound 
could be reversed by the simultaneous presence of lo-’ M 
leucovorin (not shown). In addition, in one experiment, 
CCRF-CEM sublines resistant to MTX because of reduced 
transport or increased DHFR were cross-resistant to D- 
MTX and n-e,t-FMTX. These results indicate that each 
drug was acting as an antifolate. Similar protection and 
cross-resistance experiments were not reported previously 
with D-MTX 121. 

Data presented here indicate that MTX analogs 
containing D-Glu or o-eryfhro,threo-4-fluoroGlu exert 
growth inhibitory effects by mechanisms similar to MTX, 
but are markedly less potent. Decreased potency of both 
n-species appears to be a result of decreased uptake and 
weaker DHFR inhibition. Inability of n-enantiomer- 
containing analogs to form polyglutamate derivatives [18] 
probably contributed little to decreased potency here since 
polyglutamylation 

- _ 
is not essential under continuous 

exposure conditions 131. Previouslv 121. onlv weaker DHFR 
inhibition was recognized as a &t& in the decreased 
potency of D-MTX. The present results thus provide further 
evidence that D-MTX occurring (2) as a contaminant in 
MTX should not be of major concern in its clinical use. 
These results also validate the use of MTX analogs 
containing o,L-amino acids, Specifically, the results validate 
our earlier assumption that D-e,f-FMTX is essentially 
inactive compared to L-e,l-FMTX in the biological systems 
employed. Further. the results demonstrate that 4-fluoro- 
substitution in Glu does not alter stereospecificity in the 
folate-dependent systems examined. 
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These results are also of significance in terms of the 
future use of D,L-e,l-FMTX in vioo. Plasma clearance of 
D-MTX is as rapid as that of L-MTX [2]; thus, if D,L-MTX 
was used, plasma ratios of D-b&f?kL-m should not rise 
to a value where the D-isomer could interfere with the 
action of L-MTX. This observation and the similarity in 
properties of m and FMTX suggest that D-e,r-FMTX 
and L-e.f-FMTX should be cleared with similar kinetics. 
Thii, c&pled with the low potency of the D-isomers, 
indicates that use of mixed isomers D,L-e,f-FMTX in uiuo 
should not have significant therapeutic disadvantages. 

Insumma~,an~~gsofM~(4~amino-lO-methy1~teroyl- 
L-Glu) containing D-Glu (D-MTX) or D~~f~ro,f~~eo-4- 
fluoroGlu (o-e,t-FMTX) were characterized. D-MTX and 
D-e,t-FMTX were >98 and >96% enantiomerically pure, 
resoectivelv. bv enzvmatic assay. D-MTX and D-e,t-FMTX 
we;e less &teht inhibitors of *DHFR, [3H]MTX uptake, 
and folate-mediated dTMP biosynthesis than the L- 
enantiomer-~ntai~ng species. These properties were 
reflected in their decreased cytoxicity for CCRF-CEM cells 
compared to the L-enantio~er-containing species. These 
results indicate that MTX analoescontaining D-enantiomers 
of Glu or Glu analogs are less active than the L-enantiomer- 
containing counterparts at each key step in the mechanism 
of MTX and these decreased activities combine to produce 
lower overall biological activity. 
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