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In this paper, we present a simple model which relates security returns to three components: an 
expected return. a bid-ask error. and white noise. The relative importance of the various 
components is empirically assessed, and the model’s ability to explain the various time-series 
properties of individual security and portfolio returns is tested. Time-varying expected returns 
and bid-ask errors are found to explain substantial proportions (up to 24%) of the variance of 
security returns. We also reconcile the typically negative autocorrelation in security returns with 
the strong positive autocorrelation in portfolio returns. 

1. Introduction 

Recent research into the time-series behavior of short-horizon returns to 
individual securities and portfolios has revealed some intriguing properties. 
Conrad and Kaul (1988, 1989), Lo and Ma&inlay (1988), and Mech (1990) 
show that weekly and monthly portfolio returns are strongly positively auto- 
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correlated, and that the extent of positive autocorrelation is inversely related 
to firm size. The strong positive autocorrelation in portfolio returns implies 
that returns are predictable which, in an efficient market, simply reflects time 
variation in expected returns. However, an interesting aspect of the pre- 
dictability of stock returns is that it is asymmetric: Lo and Ma&inlay (1990) 
and Mech (1990) show that the stock returns of large firms can be used to 
predict returns of smaller stocks, but not vice versa. This phenomenon cannot 
be explained by nonsynchronous trading [see Lo and Ma&inlay (1990) and 
Conrad and Kaul (199111, and hence should be consistent with any model of 
security returns. 

In contrast to the positive autocorrelation in portfolio returns, Fama (1965, 
1976), French and Roll (19861, and Lo and MacKinlay (1988, 1990) find that 
short-horizon individual security returns tend to be negatively autocorrelated, 
although the negative autocorrelation is generally much weaker than the 
positive autocorrelation in portfolio returns. Moreover, the returns of most 
securities are negatively autocorrelated, but larger firms’ stocks tend 
to exhibit weak positive autocorrelation. For example, French and Roll 
(1986) show that the first-order autocorrelations of the returns of the larg- 
est three quintiles of NYSE and Amex stocks are positive [see also Kaul 
and Nimalendran (1990)]. 

In an attempt to reconcile the different time-series properties of portfolio 
and individual security returns, some researchers [notably Lo and Ma&inlay 
(19SS)l suggest that security returns are made up of a positively autocorre- 
lated common component, a negatively autocorrelated idiosyncratic compo- 
nent related to market microstructure effects, and a white-noise component. 
The tendency of individual security returns to exhibit negative autocovari- 
ante suggests that the market microstructure effects dominate the positive 
autocovariance induced by the common component. On the other hand, 
idiosyncratic market microstructure effects are diversified away in portfolios, 
producing strong positive autocorrelation in portfolio returns. 

However, no study has investigated the ability of a particular model of 
security returns to explain the contrasting time-series behavior of security 
and portfolio returns. Moreover, there is little evidence regarding the relative 
importance of specific components of returns. In this paper, we present a 
simple model of returns based on the assumption that an individual security’s 
transaction return (R,) is made up of three independent components: a 
positively autocorrelated expected return component (E,), a negatively auto- 
correlated bid-ask error component (B,), and a white-noise component (r/I. 
We introduce a methodology to extract the ‘unobservable’ components of 
security returns, and then empirically assess the relative importance of the 
various components as well as test the model’s ability to explain the various 
time-series properties of asset returns. 
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Using a sample of NASDAQ weekly returns, we show that time-varying 
expected returns and bid-ask errors together explain substantial proportions 
(up to 24%) of the variance of security returns. Our simple model also 
captures most of the important time-series characteristics of short-horizon 
security returns. In particular, we reconcile the negative autocorrelation in 
security returns with the positive autocorrelation displayed by portfolio 
returns, and show that our measures of the expected return component of 
large and small firms reflect the asymmetric lagged cross-correlations uncov- 
ered by Lo and MacKinlay (1990) and Mech (1990). Finally, our bid-ask 
measure displays appropriate time-series properties, and can explain most of 
the negative autocovariance displayed by security returns. 

In section 2 we describe our model for security returns, introduce our 
measures of the expected return and bid-ask components, and analyze their 
time-series properties. In section 3 we present estimates of the proportions of 
variation in security returns due to the expected return, bid-ask error, and 
white-noise components, and reconcile the different time-series properties of 
security and portfolio returns. Section 4 concludes with a brief summary. 

2. A simple model for security returns 

Our model is based on the assumption that observed, or transaction, prices 
are determined from ‘true’ prices by adjusting for the bid-ask spread. We 
use the following notation in describing the model: 

Pj’ = logarithm of observed/transaction price of a security at time t. 
Q, = unobservable indicator for the bid-ask classification of “?;I. Q, = + 1 if 

transaction at time t is at the ask and Q, = - 1 if it is at the bid, 
P, =‘true’ price of a security which reflects all publicly availabie information 

at time t, 
E, = expected return for the period r - 1 to t based on all public information 

up to time r - 1, 
U( = adjustment in ‘true’ prices due to the arrival of public information 

between period t - 1 and t, 
s = bid-ask spread quoted by the market maker (assumed to be constant at 

least over short intervals). 

Our model for transaction prices can then be written as 

P;=P,+ ;Q,, 

P,=E,i-P,_,+U,. 

(1) 

(2) 
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Let R, be the continuously compounded transaction return from period 
t - 1 to t. From (1) and (2), it follows that 

R,=E,+B,+U,, (3) 

where 

Hence, an individual security’s transaction return, R,, is made up of three 
components: E,, which is an expected return component based on all 
information up to time t - 1, B,, which is an error component induced by the 
bid-ask spread, and U,, which is a white-noise component due to information 
released between time t - 1 and t. 

2.1. The expected 7eturn component 

The particular process assumed for expected returns is not of critical 
importance: we only require that the expected return of security i, Eir, 
follows a positively autocorrelated stationary process. Of course, we cannot 
observe Ei,. However, the expected return of a portfolio of securities, Epl, is 
readily extractable [see Conrad and Kaul (1988)]. Since E,, exhibits substan- 
tial variation through time, it is a natural candidate for extracting Ei, from 
security returns. Accordingly, we estimate a regression of the form 

(4) 

where EPr is the expected return of an equal-weighted size-based portfolio to 
which security i belongs and qir is the disturbance term. 

Our methodology to extract the expected return of an individual security is 
similar in spirit to the procedure used by Gibbons and Ferson (1983, who 
provide some evidence that even individual securities contain a predictable 
component. The only assumptions required for least-squares estimators GiP 
and pi, to be consistent are that: (1) EPf be uncorrelated with the bid-ask 
error and the noise components, that is, cov( Eit, B,,) = cov(Ei,, U,,,) = 0, and 
(2) the bid-ask error components of security returns are cross-sectionally 
uncorrelated, that is, cov(Bifr Bj,) = 0. Given these assumptions, the pi, of 
each security in (4) will be primarily determined by the average covariance of 
security i’s expected return with the expected returns of the remaining 
securities in portfolio p. Since the expected returns of all securities in a 
particular portfolio (size-based in our case> are likely to be positively corre- 
lated, that is, cov(&, E,,) > 0, EPr will extract an estimate of the expected 
return of a particular security. 
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Since EPr is a proxy for E,,, the R’ obtained from estimates of (4) will 
provide a lower bound on the degree of variation in security returns due to 
time-varying expected returns. The R’ (denoted by p&> will measure the 
‘true’ degree of variation in E,, only under the unlikely condition that the 
expected returns of all securities are perfectly positively correlated [see 
Conrad, Kaul, and Nimalendran (1990)]. However, caution must be exercised 
in interpreting the R”s because they may suffer from an upward data-snoop- 
ing bias, since systematic patterns in portfolio returns are assumed to arise 
solely due to time-varying expected returns. 

2.2. The ecidence 

Since the analysis of the components of transaction returns relies on the 
availability of transaction and bid/ask prices, we primarily use the CRSP 
daily return files for NASDAQ stocks for the 1983-1987 period. Following 
French and Roll (1986) we divide the five years into ten six-month subperi- 
ods. The weekly return of each security is calculated as the return from 
Wednesday closing price to the following Wednesday’s close. For each week, 
only the securities that have trade and bid/ask prices available for both 
Wednesdays are sorted into three portfolios based on market value at the 
beginning of each six-month subperiod. Weekly holding period returns of 
securities within each portfolio are equally-weighted to form three series of 
portfolio returns. Finally, our tests require returns of individual securities 
which belong to the size-based portfolios for each subperiod. To ensure @at 
we have an unbroken series of returns available for each security in each 
subperiod, we only retain securities which have trade and bid/ask prices 
available for all Wednesdays within a particular subperiod. Consequently, the 
number of firms in each portfolio varies over the ten six-month subperiods. 

The descriptive statistics of our NASDAQ sample indicate that our aver- 
age firms is comparable to the representative firm on the NYSE and Amex. 
For example, the median market value of firms in our sample is approxi- 
mately $180 million, compared to a market value of approximately $175 
million for the median firm on the NYSE and Amex. The average spread of 
firms in our sample is 2.91%, compared to an average spread of 2.82% for 
NYSE and Amex firms.’ Hence, although our sample contains neither very 
large (like the Dow Jones 30) nor very small firms, our analysis presumably 
extends to the representative firm in the stock market. 

Average estimates of the parameters of (4) for NASDAQ firms in the three 
portfolios are reported in table 1. Estimates of Epl used in (4) are obtained 
by constructing parsimonious time-series models for portfolio realized re- 

‘The descriptive statistics of NYSE and Amex firms are based on December 1988 values 
provided very kindly by Donald Keim [see also Keim (198911. 
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turns, R,,. For the three NASDAQ portfolios, a stationary AR(l) model is 
well-specified: the residuals of the estimated models exhibit no significant 
autocorrelations. We use the Kalman filter approach [see Conrad and Kaul 
(1988)] and the Box-Jenkins technique to estimate the time-series models. 
The conditional forecasts obtained from both techniques use only past 
information, and hence estimates of E,, are equivalent to ex ante expected 
returns. We also include a dummy variable for the first week in January in 
the forecasting function of E,, to take into account the turn-of-the-year 
effect [see Keim (1983)]. Both the Kalman filter and the Box-Jenkins tech- 
niques provide virtually identical estimates of Ept; we report the results 
based on the Box-Jenkins estimates, 

The numbers in table 1 are calculated by averaging estimates across all 
stocks in each subperiod, and then averaging the subperiod averages. The 
numbers in parentheses below the grand averages are their standard errors 
which are based on the distribution of the subperiod averages, under the 
assumption that these averages are independent and identically distributed. 
We also report the grand averages of ci, (that is, the R”s) for each portfolio 
and their average cross-sectional standard deviations (in brackets). The 
cross-sectional standard deviations are provided simply as a measure of the 
cross-sectional variation in the b&-s. 

There are several interesting aspects of the results in table 1. First, 
individual security returns have a significant positive .relation with E,,. The 
average values of the aiP’s and pip’s are not statistically different from zero 
and one, respectively, for each portfolio. However, these are not testable 
restrictions implied by our model. but arise (by construction) due to fixed- 
weight portfolio returns used in the tests. Second, and perhaps more impor- 
tantly, security returns also contain a positively autocorrelated expected 
return component that explains statistically significant proportions of their 
variance. The grand averages of bj, exceed 5% for firms in all three 
portfolios. Also, the cross-sectional standard deviations of bi, (which all 
exceed 6.5%) indicate that most of the ,i$,‘s fall between 0% and 18%. 

Since the turn-of-the-year effect may reflect an anomaly rather than 
movements in equilibrium expected returns, we reestimate (4) using Epr’s 
which do not include the January dummy variable. The results are virtually 
identical to those reported in table 1: the average R”s for the three 
portfolios are 5.2%, 5.2%, and 5.1’72, compared to the reported 5.4%, 5.3%, 
and 5.3%. The small impact of the January effect on our results may be due 
to two factors: (1) small firms which experience a large January effect are not 
included in our sample, and (2) we have only five turn-of-the-years in our 
sample. Therefore, the evidence in table 1 suggests that although security 
returns are typically negatively autocorrelated, over 5% of their variation can 
be attributed to a positively autocorrelated expected return component. This 
analysis is similar in spirit to the one presented by Nelson and Schwert 
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(1977), who show that although realized real returns on Treasury bills exhibit 
small autocorrelation coefficients, they can contain a highly autocorrelated 
expected return component. 

Finally, the autocorrelations of the expected returns of firms in each 
portfolio are presented in the last six columns of table 1. Each autocorrela- 
tion estimate is corrected for small-sample bias by adding l/CT- l), where T 
is the number of observations in a particular subperiod. This correction is 
exact under the hypothesis that expected returns are serially independent 
[see Moran (1948)]. The evidence shows that the expected returns of all firms, 
regardless of market value, are typically positively autocorrelated at all lags. 
Particularly noteworthy is the strong positive autocorrelation at lag 1. Of 
course, these autocorrelations simply reflect the autocorrelations of portfolio 
expected returns, but are reported to demonstrate the likely time-series 
behavior of the expected returns of individual securities. 

We also estimate (4) for securities on the NYSE and Amex. This sample is 
important because it covers a much longer period, 1962-1985, and therefore 
we can also estimate monthly regressions. The weekly &‘s range between 
2.5% and 4.8%, with the 1970s exhibiting almost twice the degree of variation 
in Ei,‘s compared to the 1960s and 1980s. More importantly, the monthly 

** @$‘s are substantially higher: the average ppe ‘s for small firms is 8.4% for the 
1962-1985 period and as high as 17.7% during the 1970s. 

2.3. Asymmetry in the predictability of returns 

Our sample of NASDAQ stocks also reflects the asymmetry in the 
predictability of the returns of different size firms uncovered by Lo and 
Ma&inlay (1990) and Mech (1990). Table 2, panel A, contains the first-order 
lagged cross-correlations for the three NASDAQ portfolios. The i, jth ele- 
ment of the correlation matrix is the correlation between Ri.r_, and Rj,t. 
Note that the elements below the diagonal are larger than those above the 
diagonal, with the asymmetry being more significant for the largest versus 
smallest firms. 

An appealing property of our methodology for extracting the expected 
return component is that it is consistent with this intriguing asymmetry 
displayed by stock returns. Recall that we do not impose an equilibrium 
model on the expected returns of individual securities. For example, we do 
not assume a one-factor model [see Lo and Ma&inlay (1990)] and, conse- 
quently, do not use the expected return on the market portfolio to extract 
Ei,‘s of individual securities, without regard to their market values. This 
procedure would cause expected returns of all securities to be perfectly 
positively correlated, and all lagged cross-correlations to be symmetric. In- 
stead, we used expected returns of different size-based portfolios to extract 
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Table 2 

Weekly estimates of first-order lagged cross-correlations between (1) the transaction returns of 
three equally-weighted portfolios of NASDAQ stocks (panel A) and (2) the residuals of the 
transaction returns from models in which returns follow a stationary AR(l) process (panel BJ, 
January 1983 to December 1987. The three portfolios are formed by rankings of market value of 
equity outstanding at the beginning of each six-month subperiod. Under the hypothesis that the 
true cross-correlations are zero, the standard error of the estimated cross-correlations is about 

0.062. 

Variable (x) 

Panel A: Return cross-correlationsa 

RI, RZl R;, 

RI.,-I 0.322 0.235 0.176 
R.?.1--1 0.324 0.262 0.196 
RI.,- I 0.324 0.273 0.217 

Panel B: Residual cross-correlations b 

Variable (x) 

. 
~I.,-, 0.031 0.025 0.020 
ELI-1 0.050 0.023 0.01-I 
E3.1-I 0.067 0.043 0.024 

‘R,,, i = 1,2,3. are weekly portfolio transaction returns in week t of the three (smallest to 
iat&est) portfolios of NASDAQ stocks. 

cir, i = 1,2,3. are residuals from weekly estimates of AR(l) models for the transaction returns 
in week t of the three (smallest to largest) portfolios of NASDAQ stocks. 

the expected returns of securities of different market value. This procedure, 
in turn, takes into account the asymmetric cross-correlations. 

Panel B in table 2 reports first-order lagged cross-correlations between the 
residuals, Elt, from the time-series models for the portfolio returns. Note that 
the asymmetry is rendered insignificant. This occurs because conditional on a 
particular (small) portfolio’s own past history of returns, the large portfolio’s 
return contains little additional information about its future returns. In other 
words, by construction our portfolio expected returns exhibit the asymmetric 
lagged cross-correlations witnessed in realized returns. Or course, our proce- 
dure does not take into account any asymmetric lagged cross-correlations 
that may exist between securities within a particular size-based portfolio. 
However, a more complete model for expected returns of individual securi- 
ties is beyond the scope of this paper. 

2.4. The bid-ask error component 

Based on our model for security prices in (1) and (21, the bid and ask 
prices, BPi, and APit, of security i may be written as 

BPi, = Pi, - ;Qit 
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The average of the bid and ask prices will, therefore, reflect the ‘true’ price 
of security i, P,!. Consequently, returns calculated using the average of bid 
and ask quotes, R;!, will reflect changes in the true value of a security 
(without the bid-ask bounce), so that 

R:, = Ei, -t U,,. (6) 

A comparison of transaction returns and ‘true’ returns [see (3) and (611 
shows that the difference between them, DR,,, will be a direct measure of the 
bid-ask error component, 

w, = Rr (7) 

Most models of the bid-ask spread assume that bid-ask errors in transac- 
tion prices are independent and identically distributed [see, for example, 
Blume and Stambaugh (1983) and Roll (19&I)]. This implies that 

cov( Bit B;.r_k) = -s2/4 if ’ = ‘, 
0 otherwise, 

(84 

var( Bj,) = $/2, (8b) 

and 

pBk = k th-order autocorrelation of Bit = 
i 

- t 
if k=l, 

0 otherwise. 
(8~) 

From (8a)-(Sc) it can be seen that Bi, will follow an MA(l) process. Given 
that we have a direct measure of bid-ask errors, DR,,, we can test whether 
actual bid-ask errors satisfy the above conditions. 

The ecidence 

Our measure of the bid-ask error component, DR,,, will be the ‘true’ 
measure of bid-ask errors if bid/ask and transaction prices are measured 
synchronously. However, for the NASDAQ stocks the bid/ask (closing) 
quotes are measured after the (last) transaction price. This nonsynchron- 
ous measurement causes an errors-in-variables problem in DR,, and, 
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Table 3 

Average weekly estimates of autocorrelations of the bid-ask error component, DR,,, of individ- 
ual NASDAQ securities belonging to three portfolios formed by rankings of market value of 
equity outstanding at the beginning of each six-month subperiod. January 1983 to December 
1987. Each statistic is estimated for all firms during each of the ten six-month subperiods 
between 1983 and 1987. The individual firm statistics are averaged across firms within each 
portfolio to obtain subperiod averages. Since the number of firms in each portfolio varies over 
the ten subperiods, each reported estimate is the weighted grand average of the subperiod 

averages, where the weights are the number of firms in a portfolio in each subperiod. 

Lags 

Portfolio 1 2 3 4 5 6 

1 
(smallest) 

- 0.463” 
(0.003)b 
[O. 1521= 

2 - 0.467 
(0.002) 
IO. 1531 

3 
(largest) 

-0.472 
(0.003) 
LO.1461 

- 0.002 
(0.005) 
i0.2251 

- 0.003 
(0.003) 
[0.2301 

- 0.003 
(0.005) 
IO.2271 

- 0.003 
(0.004) 
[0.209] 

- 0.000 
(0.003) 
[0.2181 

0.001 
(0.004J 
LO.2 161 

-0.007 
(0.003) 
lo.21 11 

- 0.005 
(0.005) 
LO.21 11 
0.001 

(0.003) 
[0.2091 

0.002 
(0.003) 
[0.2021 

-0.003 
(0.004) 
[0.2001 

-0.004 
(0.002) 
[0.2041 

0.002 
(0.009 
lO.1931 

0.005 
(0.003) 
fO.1921 

-0.000 
(0.002, 
[@.2001 

aThe autocorrelation estimates are adjusted for small-sample bias using the following formulas 
[Kendall and Stuart (1976)]: 

E(p^,J=p, + &,I +/?,X4pf - 2p, - I), -. 

EC&) = - AU +2&J, + 2pfJ, 

E(sji) = - &I + 2p,), vj > 2, 

where p, = -0.50 [see (8~11, and T is the number of obsemations in a particular subperiod. 
bThe numbers in parentheses below the grand average estimates are their weighted standard 

errors based on the distribution of the subperiod averages. 
‘The numbers in brackets are the average cross-sectional standard deviations of the individ- 

ual-firm statistics. 

consequently, it will overstate the importance of bid-ask errors, that is, 
var(DRi,) > var(Bj,). However, under reasonable assumptions, the autocorre- 
lations of DR,, will provide unbiased estimates of the autocorrelations of the 
true bid-ask error component, II,, (see appendix). 

Table 3 contains average estimates of the weekly autocorrelations (up to 
lag 6) of DR,, for firms in each portfolio. The autocorrelation estimates are 
adjusted for small-sample bias under the assumption that the ‘true’ bid-ask 
error component, Bit, follows an MA(l) process with a first-order autocorre- 
latidn coefficient, pt, of -0.50 [see (SC)]. The exact corrections are based on 
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the following equations [Kendall and Stuart (197611: 

E(6,) =PI + &Cl +p1)(4pi? - 2P, - I>, (9a) 

E(&) = -L( 
T-2 

1+ 2p, + 2p3, (9b) 

E(b,) = - ‘dj>3. 

The estimated autocorrelations in table 3 are generally consistent with the 
model and assumptions for Bi,. The average first-order autocorrelations of 
DRi, are similar across all portfolios, and range between - 0.463 and - 0.472. 
All higher-order autocorrelations are small in magnitude. There is some 
evidence that bid-ask errors in transaction prices may not be independently 
distributed; the first-order autocorrelations are statistically less than 0.50 in 
absolute magnitude, and higher-order autocorrelations are occasionally sig- 
nificantly different from zero. However, the correlation in bid-ask errors in 
transaction prices appears to be small, and DRi, closely approximates an 
MA(l) process. 

3. Properties of individual security returns 

In this section, we present estimates of the degree of variation in 
NASDAQ weekly security returns that can be attributed to the three uncor- 
related components: Eir, B,,, and Ui,. We also present evidence that recon- 
ciles the contrasting time-series behavior of short-horizon security and 
portfolio returns. 

3.1. Components of security returns 

Table 4 contains estimates of the proportions of variance of NASDAQ 
weekly security returns explained by the adjusted bid-error component, the 
expected return component, and the noise component. The contribution of 
the bid-ask error component, Bit, to return volatility is calculated as 
var(DR,>/var(R,,>, and is denoted by c$.’ The proportion of return vari- 

pph overstates the importance of bid-ask errors in transaction returns because bid/ask 
quotes are measured after transaction prices. However, since the denominator of this ratio 
measures the variance of weekly transaction returns, the upward bias in si, is likely to be small 

[see appendix]. Also, bz, is calculated under the assumption that all trades occur either at the 

bid or the ask quote. If trades occur within the spread, var(DR,,). and hence G$,, will overstate 
the importance of bid-ask errors. However, according to NASD dealers, trades within the 
quoted spread are infrequent and form only a small percentage of total trades in NASDAQ 
stocks. 
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Table 4 

Average weekly estimates of the proportions of variance of NASDAQ individual security 
transaction returns explained by the bid-ask error component, P$,, the expected return 
component. pi,, and the noise component. pi,,. January 1983 to December 1987. The average 
estimates are of securities belonging to three portfolios formed by rankings of market value at 
the beginning of each six-month subperiod. Each statistic is estimated for all firms during each of 
the ten &u-month subperiods between 1983 and 1987. The individual-firm statistics are averaged 
across firms within each portfolio to obtain subperiod averages. Since the number of firms in 
each portfolio varies over the ten subperiods. each reported estimate is the weighted grand 
average of the subperiod averages, where the weights are the number of firms in a portfolio in 

each subperiod.” 

1 0.190 0.054 0.756 
(smallest) (0.014)” to.004, (0.016) 

[O. 1761’ [0.067] [O. 1701 

2 0.114 0.053 0.833 
(0.007) (0.005) (0.009) 
[0.1161 [0.068] [0.132] 

3 0.058 0.053 0.889 
(largest) (0.003) (0.004) (0.005) 

[0.083] [0.0661 [O. 1081 

‘b$, = var(DR,,)/var(R,,) = proportion of variation in realized security returns due to the 
bid-ask error component; bfr = R’ (of regression in table 1) = proportion of variation in 
realized returns due to the expected return component: and p^z,, = 1 - bzC - fi$, = proportion of 
variation in realized returns caused by the noise component. 

‘The numbers in parentheses below the grand average estimates are their weighted standard 
errors based on the distribution of the subperiod averages. 

‘The number in brackets are the averaged cross-sectional standard deviations of the individ- 
ual-firm statistics. 

ante explained by the expected return component, bie, is simply the R2 from 
estimates of (4). Finally, we obtain an estimate of the degree of variation in 
returns due to the noise component as Gi,, = 1 -&, -b$,. 

Table 4 shows that bid-ask errors induce a large degree of spurious 
volatility in weekly transaction returns. Average estimates of & range 
between 5.8% for large firms and 19.0% for small firms. The average 
cross-sectional standard deviations are also large, ranging between 8.3% and 
17.6%. Hence, for the small firms in our sample, between 0% and 54.2% of 
return volatility can typically be explained by the bid-ask error component. 
The proportions of return variance explained by B,, are also significantly 
larger than the proportions (of about 5%) induced by time-varying expected 
returns, especially for small firms. Finally, the predominant source of varia- 
tion in security returns is the arrival of new information. Estimates of the 
proportion of return variance explained by the rational information compo- 
nent range between 75.6% and 88.9 %. These larger proportions support the 
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evidence in French and Roll (1986) and Barclay, Litzenberger, and Warner 
(1990). 

The relative importance of the three components of most (except the very 
small and very large) NYSE and Amex security returns is likely to be similar 
to the estimates in table 4. As noted earlier, the average quoted bid-ask 
spread of all firms in our sample is 2.914%, which compares favorably with 
the average spread of 2.817% for NYSE and Amex firms at the end of 1988. 
Since the spurious volatility generated by the bid-ask error component is 
directly related to the square of the spread [see (8b)], the importance of the 
bid-ask error component for the average NYSE and Amex firm is also likely 
to be nontrivial. 

3.2. Reconciliation of the time-series behacior of indicidual security and 
portfolio returns 

Given our model for security returns in (3) and the properties of the three 
components, reconciling the negative autocorrelation in security returns with 
the positive autocorrelation in portfolio returns is fairly straightforward. 
Without loss of generality, consider, for example, the first-order autocorrela- 
tion, pi, of an individual security’s transaction return 

‘OVtEflqEi,t-,) +CoV(BittB,.r-I) 
P, = 

W R,,) 
( 10) 

From (IO) it follows that the sign of the first-order autocorrelation depends 
on the relative magnitudes of the autocovariances generated by the expected 
return and the bid-ask error components. respectively. In particular, 

p,$O iff /COV(Eit~Ei,r-~)[$[CoV(Bir~Bi,,-,)(’ (11) 

The fact that the positive autocovariance generated by the expected return 
component is not typically discernible in the case of short-horizon security 
returns implies that it is contaminated by the larger negative autocovariance 
induced by the bid-ask error components. Of course, this need not be the 
case for every security. For example, the daily first-order autocorrelations of 
larger firms tend to be positive, though small in magnitude [Fama (1965) and 
French and Roll (1986)]. These findings are also consistent with our mode1 
because the autocovariance generated by bid-ask errors is likely to be 
smaller for larger firms, since such firms have smaller spreads [see (Sa>]. 

Roll (1984) and Amihud and Mendelson (1987) conjecture similar explana- 
tions for their unrealistically low spread estimates based on the first-order 



J. Conrud et ul., Componer~s of short-hori:on security returns 379 

autoco;/ariance of transaction returns. Both studies assume that the expected 
return of a security is constant, and find that the negative first-order autoco- 
variance is much smaller (in absolute magnitude) than that implied by the 
bid-ask bounce, that is, Icov(Ri,, R,,, t _ i )I < s3/4 [see (8a>l. Roll conjectures 
that a positively autocorrelated expected return process could be responsible 
for this result. Amihud and Mendelson argue that daily return autocovari- 
antes could be small because of partial price adjustments induced by smooth- 
ing effects by market makers. However, the effects of such adjustments are 
likely to be dissipated over intervals as Ion, 0 as a week (the measurement 
interval used in this paper) [see Amihud and Mendelson (1987)I. 

We use two related tests to gauge the ability of our model to explain the 
differing time-series properties of individual security and portfolio returns. 
The first test compares the autocovariances of transaction returns with the 
sum of the autocovariances of our proxies for expected returns and the 
bid-ask error component, that is, &(R,,, Ri.t_i)’ versus c8v(Ei,, E,,,_j) + 
c&(DR,,, DR,,,_;). If our model is the correct specification of the return 
generating process, these two estimates should be equal. However, caution 
must be exercised in making such comparisons since the cross-sectional 
averages of c&C&, Ei,!_, 1 are likely to be downward biased because they 
measure cov( Ept, E,,,_ , ), which is the average of cov( Ejt, E,,,_ , ), i # j. Also, 
it is likely that the average of the true autocovariances, cov(Eit, Ej,t_I), is 
larger than the average of cov(Eirt E,.,_ ,). Hence, we evaluate these esti- 
mates for general patterns, without placin g undue emphasis on the exact 
magnitudes of c&(R,,, R,,l_j) versus cME,,, Ei.t_j) + ciXDR,,, DR,,,_j). 

For brevity we do not report the results, but the evidence suggests that our 
model is broadly consistent with most of the time-series properties of security 
and portfolio returns. First, our model can explain the positive first-order 
autocorrelation of portfolio returns versus the typically negative first-order 
autocorrelation in security returns. The average first-order autocovariance 
generated by the bid-ask error component is always larger in (absolute) 
magnitude than the autocovariance generated by the expected return compo- 
nent. Second, although our measure of Ej, is an imperfect proxy, the 
patterns in its autocovariances are similar to those in the autocovariances of 
Ri,. For example, both R,, and E,, reflect significant autocovariances at lags 
5 and 6 but, consistent with our earlier conjecture, c&(E,,, Ei.r_j) < 
c6v(Ri,, Ri.r_il The only systematic characteristic of the time-series behavior 
of transaction returns that is inconsistent with our model are the statistically 
significant (but small) negative autocovariances at lag 2. 

The second test is a specification test which also helps us evaluate our 
model’s ability to explain the contrasting time-series behavior of security and 
portfolio transaction returns. Since we have proxies for both the expected 
return component, Ei,, and the bid-ask error component, B,,, we estimate 



380 J. Conrad et al.. Components of short-horizon security returns 

the following regression: 

R,t = ai + P,iEit + PziBit + tic. ( 12) 

The autocorrelations of the residuaIs of (1.2) provide a direct test of 
whether our model captures all of the components of security returns. If our 
model is a valid characterization of security returns, the residuals should 
behave like white noise, thus explaining the differing characteristics of 
security and portfolio returns. If bid/ask quotes and transaction prices are 
measured at the same time, DRi, would be a perfect measure of B,, and, by 
definition, pzi = 1 for each security. However, due to the nonsynchronous 
measurement of transaction and bid/ask prices, var( DRi,) > var( Bi, 1, and 
& will be asymptotically downward biased. We nevertheless estimate (12) to 
gauge the specification of our model. 

The average estimates of the parameters of (12) in table 5 show the 
downward bias in p^, and, as expected (see appendix), the bias is larger for 
larger firms. The residual autocorrelations reveal ‘unexplained’ patterns that 
are virtually identical to the autocovariance analysis of Ril, Eit, and DRi, 
discussed above. After accounting for time-varying expected returns and 
bid-ask errors, there remains some significant negative autocorrelation at lag 
2 and significant positive autocorrelations at lags 1, 5, and 6. The positive 
autocorrelations at lags 1, 5, and 6 are perfectly consistent with our model, 
and are a consequence of using an imperfect proxy, Ept, to extract Ei,. On 
the other hand, as indicated earlier, the negative autocovariance/autocorre- 
lation at lag 2 is not consistent with our model, especially since the bid-ask 
error component closely approximates an MA(l) process. However, the 
average magnitudes of these autocorrelations are small, ranging between 
-0.025 and -0.047. Therefore, although our model does not capture all 
components which could potentially lead to negative autocorrelations in 
security returns (such as nonsynchronous trading, price discreteness, and/or 
market overreaction), it is unlikely that these components play an important 
role in the determination of ‘observed’ prices. Bid-ask errors appear to be 
the major source of negative autocorrelation in security returns. 

Having established that individual security returns (though usually 
negatively autocorrelated) do contain a positively autocorrelated common 
component, our model can be readily used to explain the strong positive 
autocorrelation in portfolio returns. The return of a portfolio containing a 
large number of securities wiIl exhibit strong positive autocovariance because 
bid-ask errors are cross-sectionally uncorrelated, and are diversified away in 
the portfolio formation process. Diversification also causes the variances of 
portfolio returns to be much smaller than the variances of security returns: 
for example, the variance of the returns of portfolio 1 is less than one-tenth 
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the average variance of the returns of its constituent securities. The combina- 
tion of these two factors leads to strong positive autocorrelation in portfolio 
returns. 

4. Summary and conclusions 

In this paper, we present a simple three-component model for security 
returns that appears to capture the important time-series characteristics of 
short-horizon returns. Specifically, an individual security’s return is assumed 
to be made up of three independent components: a positively autocorrelated 
expected return component, a negatively autocorrelated component induced 
by bid-ask errors, and a white-noise component. 

We introduce a methodology to extract the ‘unobsetvable’ expected return 
and bid-ask error components of individual security returns, and show that 
these components explain substantial proportions of the variance of transac- 
tion returns - between 11% and 24% of the degree of variation in weekly 
transaction returns. We also reconcile the negative autocorrelation in individ- 
ual security returns with the strong positive autocorrelation displayed by 
portfolio returns, and show that our measures of the expected return compo- 
nents of large versus small firms reflect the asymmetric lagged cross-correla- 
tions documented by Lo and Ma&inlay (1990) and Mech (1990). 

Appendix: Measurement errors in the bid-ask error variable 

Recall that our bid-ask error measure, DR,,, suffers from a nonsyn- 
chronous measurement problem because bid/ask quotes are typically mea- 
sured after the transaction price. Consequently, ‘measured’ DR,, can be 
written as 

DR;, = Ri, - R;l = Bit + L,,,_ , - Lit, (A-1) 

where Li, is the component of ‘true’ return (without the bid-ask error), that 
is, RF,, measured over the nontrading interval between the last transaction 
and market close on day t. 

Suppose Lit is identically distributed for a particular security [see Scholes 
and Williams (197711. From (A.11 it follows that DR,, will be a noisy measure 
of Bit since var( DR,,) = var(Bi,) + 2var(L,,) =x,2/2 + 2var(L,,) [see (8b>].3 
Hence, var(DR,,) will overstate the importance of bid-ask errors in transac- 
tion returns. Although 2var(L,,) will be small compared to the variance of 

‘The expression for var(DR,,) is derived under the additional assumption that L,,is indepen- 
dently distributed. This is a reasonable assumption because Lil’s are measured over small 
intervals that are one week apart. 
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‘true’ weekly returns, RLIL:, it may be large relative to var(B,,), which is given 
by sf/2, where si is the spread of security i. The average values of s”/2 for 
the three NASDAQ portfolios are (approximately) 0.00136, 0.00049, and 
0.00013. Hence, especially for large firms, measurement errors in DR,, could 
have potentially important implications for specification tests of our model. 

Given the assumptions about the ‘true’ bid-ask error component [see 
(XaMSc)], and the returns measured over the nontrading intervals, L,,, it can 
be shown that 

COV(~~ir,~~i,,_,) = -S2/4-var(Lit) if k=17 
0 otherwise, 

(A.?) 

and the k th-order autocorrelation of DR,,, pk, is 

if k=l, 

otherwise. 
(A.3) 

From (A.2) and (A.3) it follows that although the first-order autocovari- 
ante of DR,, will provide an upward-biased (in absolute magnitude) estimate 
of cov(B,,, B,.,_,), all its autocorrelations (including p,) will be unbiased 
estimates of the autocorrelations of the ‘true’ bid-ask error component, Bit. 
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