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In this paper, we present a simple model which relates security returns to three components: an
expected return, a bid-ask error, and white noise. The relative importance of the various
components is empirically assessed, and the model’s ability to explain the various time-series
properties of individual security and portfolio returns is tested. Time-varying expected returns
and bid-ask errors are found to explain substantial proportions (up to 24%) of the variance of
security returns. We also reconcile the typically negative autocorrelation in security returns with
the strong positive autocorrelation in portfolio returns.

1. Introduction

Recent research into the time-series behavior of short-horizon returns to
individual securities and portfolios has revealed some intriguing properties.
Conrad and Kaul (1988, 1989), Lo and MacKinlay (1988), and Mech (1990)
show that weekly and monthly portfolio returns are strongly positively auto-
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correlated, and that the extent of positive autocorrelation is inversely related
to firm size. The strong positive autocorrelation in portfolio returns implies
that returns are predictable which, in an efficient market, simply reflects time
variation in expected returns. However, an interesting aspect of the pre-
dictability of stock returns is that it is asymmetric: Lo and MacKinlay (1990)
and Mech (1990) show that the stock returns of large firms can be used to
predict returns of smaller stocks, but not vice versa. This phenomenon cannot
be explained by nonsynchronous trading [see Lo and MacKinlay (1990) and
Conrad and Kaul (1991)], and hence should be consistent with any mode! of
security returns.

In contrast to the positive autocorrelation in portfolio returns, Fama (1963,
1976), French and Roll (1986), and Lo and MacKinlay (1988, 1990) find that
short-horizon individual security returns tend to be negatively autocorrelated,
although the negative autocorrelation is generally much weaker than the
positive autocorrelation in portfolio returns. Moreover, the returns of most
securities are negatively autocorrelated, but larger firms' stocks tend
to exhibit weak positive autocorrelation. For example, French and Roll
(1986) show that the first-order autocorrelations of the returns of the larg-
est three quintiles of NYSE and Amex stocks are positive [see also Kaul
and Nimalendran (1990)].

In an attempt to reconcile the different time-series properties of portfolio
and individual security returns, some researchers [notably Lo and MacKinlay
(1988)] suggest that security returns are made up of a positively autocorre-
lated common component, a negatively autocorrelated idiosyncratic compo-
nent related to market microstructure effects, and a white-noise component.
The tendency of individual security returns to exhibit negative autocovari-
ance suggests that the market microstructure effects dominate the positive
autocovariance induced by the common component. On the other hand,
idiosyncratic market microstructure effects are diversified away in portfolios,
producing strong positive autocorrelation in portfolio returns.

However, no study has investigated the ability of a particular model of
security returns to explain the contrasting time-series behavior of security
and portfolio returns. Moreover, there is little evidence regarding the relative
importance of specific components of returns. In this paper, we present a
simple model of returns based on the assumption that an individual security’s
transaction return (R,) is made up of three independent components: a
positively autocorrelated expected return component (E,), a negatively auto-
correlated bid-ask error component (B,), and a white-noise component (U,).
We introduce a methodology to extract the ‘unobservable’ components of
security returns, and then empirically assess the relative importance of the
various components as well as test the model’s ability to explain the various
time-series properties of asset returns.
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Using a sample of NASDAQ weekly returns, we show that time-varying
expected returns and bid—ask errors together explain substantial proportions
(up to 24%) of the variance of security returns. Qur simple model also
captures most of the important time-series characteristics of short-horizon
security returns. In particular, we reconcile the negative autocorrelation in
security returns with the positive autocorrelation displayed by portfolio
returns, and show that our measures of the expected return component of
large and small firms reflect the asymmetric lagged cross-correlations uncov-
ered by Lo and MacKinlay (1990) and Mech (1990). Finally, our bid-ask
measure displays appropriate time-series properties, and can explain most of
the negative autocovariance displayed by security returns.

In section 2 we describe our model for security returns, introduce our
measures of the expected return and bid—ask components, and analyze their
time-series properties. In section 3 we present estimates of the proportions of
variation in security returns due to the expected return, bid—ask error, and
white-noise components, and reconcile the different time-series properties of
security and portfolio returns. Section 4 concludes with a brief summary.

2. A simple model for security returns

Our model is based on the assumption that observed, or transaction, prices
are determined from ‘true’ prices by adjusting for the bid—ask spread. We
use the following notation in describing the model:

P = logarithm of observed /transaction price of a security at time ¢,
Q, = unobservable indicator for the bid-ask classification of P°, Q, = +1 if

transaction at time ¢ is at the ask and Q, = — 1 if it is at the bid,
P, =‘true’ price of a security which reflects all publicly available information
at time ¢,

E, = expected return for the period ¢ — | to ¢t based on all public information
up to time ¢ — 1, i
U, = adjustment in ‘true’ prices due to the arrival of public information
" between period t — 1 and ¢,
s = bid-ask spread quoted by the market maker (assumed to be constant at
least over short intervals).

Our model for transaction prices can then be written as
0 s
Pt = Pr + ;Qt ’ (1)

P=E+P_ +U. (2)
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Let R, be the continuously compounded transaction return from period
t~1to t. From (1) and (2), it follows that

R,=E +B,+U, (3)
where

Br= [Q!—Ql—l]‘

[N R

Hence, an individual security’s transaction return, R,, is made up of three
components: E,, which is an expected return component based on all
information up to time ¢t — 1, B,, which is an error component induced by the
bid-ask spread, and U,, which is a white-noise component due to information
released between time ¢ — 1 and ¢.

2.1. The expected-return component

The particular process assumed for expected returns is not of critical
importance: we only require that the expected return of security i, E,,
follows a positively autocorrelated stationary process. Of course, we cannot
observe E;,. However, the expected return of a portfolio of securities, £ ber 18
readily extractable {see Conrad and Kaul (1988)]. Since E . exhibits substan-
tial variation through time, it is a natural candidate for extracting E,, from
security returns. Accordingly, we estimate a regression of the form

Ril=aip+B[pEpt+nin “ (4)

where £, is the expected return of an equal-weighted size-based portfolio to
which security / belongs and 7, is the disturbance term.

Our methodology to extract the expected return of an individual security is
similar in spirit to the procedure used by Gibbons and Ferson (1983), who
provide some evidence that even individual securities contain a predictable
component. The only assumptions required for least-squares estimators &,
and B;, to be consistent are that: (1) E,, be uncorrelated with the bid-ask
error and the noise components, that is, cov(E,,, B,,) = cov(E,, U,,) =0, and
(2) the bid-ask error components of security returns are cross-sectionally
uncorrelated, that is, coW(B,,, B;,) = 0. Given these assumptions, the B,, of
each security in (4) will be primarily determined by the average covariance of
security i's expected return with the expected returns of the remaining
securities in portfolio p. Since the expected returns of all securities in a
particular portfolio (size-based in our case) are likely to be positively corre-
lated, that is, coW(E,,, E;,) > 0, E,, will extract an estimate of the expected
return of a particular security.



J. Conrad et al., Components of short-horizon security returns 369

Since E,, is a proxy for E,, the R? obtained from estimates of (4) will
provide a lower bound on the degree of variation in security returns due to
time-varying expected returns. The R (denoted by p2.) will measure the
‘true’ degree of variation in E,, only under the unlikely condition that the
expected returns of all securities are perfectly positively correlated [see
Conrad, Kaul, and Nimalendran (1990)]. However, caution must be exercised
in interpreting the R*’s because they may suffer from an upward data-snoop-
ing bias, since systematic patterns in portfolio returns are assumed to arise
solely due to time-varying expected returns.

2.2. The evidence

Since the analysis of the components of transaction returns relies on the
availability of transaction and bid/ask prices, we primarily use the CRSP
daily return files for NASDAQ stocks for the 1983-1987 period. Following
French and Roll (1986) we divide the five years into ten six-month subperi-
ods. The weekly return of each security is calculated as the return from
Wednesday closing price to the following Wednesday’s close. For each week,
only the securities that have trade and bid/ask prices available for both
Wednesdays are sorted into three portfolios based on market value at the
beginning of each six-month subperiod. Weekly holding period returns of
securities within each portfolio are equally-weighted to form three series of
portfolio returns. Finally, our tests require returns of individual securities
which belong to the size-based portfolios for each subperiod. To ensure that
we have an unbroken series of returns available for each security in each
subperiod, we only retain securities which have trade and bid/ask prices
available for all Wednesdays within a particular subperiod. Consequently, the
number of firms in each portfolio varies over the ten six-month subperiods.

The descriptive statistics of our NASDAQ sample indicate that our aver-
age firms is comparable to the representative firm on the NYSE and Amex.
For example, the median market value of firms in our sample is approxi-
mately $180 million, compared to a market value of approximately $175
million for the median firm on the NYSE and Amex. The average spread of
firms in our sample is 2.91%, compared to an average spread of 2.82% for
NYSE and Amex firms.! Hence, although our sample contains neither very
large (like the Dow Jones 30) nor very small firms, our analysis presumably
extends to the representative firm in the stock market.

Average estimates of the parameters of (4) for NASDAQ firms in the three
portfolios are reported in table 1. Estimates of E,, used in (4) are obtained
by constructing parsimonious time-series models for portfolio realized re-

"The descriptive statistics of NYSE and Amex firms are based on December 1988 values
provided very kindly by Donald Keim [see also Keim (1989)].
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turns, R,,. For the three NASDAQ portfolios, a stationary AR(1) model is
well-specified; the residuals of the estimated models exhibit no significant
autocorrelations. We use the Kalman filter approach [see Conrad and Kaul
(1988)] and the Box-Jenkins technique to estimate the time-series models.
The conditional forecasts obtained from both techniques use only past
information, and hence estimates of £, are equivalent to ex ante expected
returns. We also include a dummy variable for the first week in January in
the forecasting function of £, to take into account the turn-of-the-year
effect [see Keim (1983)]. Both the Kalman filter and the Box-Jenkins tech-
niques provide virtually identical estimates of E,; we report the results
based on the Box-Jenkins estimates.

The numbers in table 1 are calculated by averaging estimates across all
stocks in each subperiod, and then averaging the subperiod averages. The
numbers in parentheses below the grand averages are their standard errors
which are based on the distribution of the subperiod averages, under the
assumption that these averages are independent and identically distributed.
We also report the grand averages of ﬁf,g (that is, the R*’s) for each portfolio
and their average cross-sectional standard deviations (in brackets). The
cross-sectional standard deviations are provided simply as a measure of the
cross-sectional variation in the g;,’s.

There are several interesting aspects of the results in table 1. First,
individual security returns have a significant positive relation with E,,. The
average values of the a;,’s and B,,’s are not statistically different from zero
and one, respectively, for each portfolio. However, these are not testable
restrictions implied by our model, but arise (by construction) due to fixed-
weight portfolio returns used in the tests. Second, and perhaps more impor-
tantly, security returns also contain a positively autocorrelated expected
return component that explains statistically significant proportions of their
variance. The grand averages of ﬁje exceed 5% for firms in all three
portfolios. Also, the cross-sectional standard deviations of ﬁf,e (which all
exceed 6.5%) indicate that most of the p2’s fall between 0% and 18%.

Since the turn-of-the-year effect may reflect an anomaly rather than
movements in equilibrium expected returns, we reestimate (4) using £,’s
which do not include the January dummy variable. The results are virtually
identical to those reported in table 1: the average R*’s for the three
portfolios are 5.2%, 5.2%, and 5.19%, compared to the reported 5.4%, 5.3%,
and 5.3%. The small impact of the January effect on our results may be due
to two factors: (1) small firms which experience a large January effect are not
included in our sample, and (2) we have only five turn-of-the-vears in our
sample. Therefore, the evidence in table 1 suggests that although security
returns are typically negatively autocorrelated, over 5% of their variation can
be attributed to a positively autocorrelated expected return component. This
analysis is similar in spirit to the one presented by Nelson and Schwert
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(1977), who show that although realized real returns on Treasury bills exhibit
small autocorrelation coefficients, they can contain a highly autocorrelated
expected return component.

Finally, the autocorrelations of the expected returns of firms in each
portfolio are presented in the last six columns of table 1. Each autocorrela-
tion estimate is corrected for smali-sample bias by adding 1 /(T — 1), where T
is the number of observations in a particular subperiod. This correction is
exact under the hypothesis that expected returns are serially independent
{see Moran (1948)]. The evidence shows that the expected returns of all firms,
regardless of market value, are typically positively autocorrefated at all lags.
Particularly noteworthy is the strong positive autocorrelation at lag [. Of
course, these autocorrelations simply reflect the autocorrelations of portfolio
expected returns, but are reported to demonstrate the likely time-series
behavior of the expected returns of individual securities.

We also estimate (4) for securities on the NYSE and Amex. This sample is
important because it covers a much longer period, 1962-1983, and therefore

we can also estimate monthly regressions. The weekly ﬁf,e’s range between
2.5% and 4.8%, with the 1970s exhibiting almost twice the degree of variation
in E,’s compared to the 1960s and 1980s. More importantly, the monthly
- A s

p2,’s are substantially higher: the average p,.’s for small firms is 8.4% for the
1962-1985 period and as high as 17.7% during the 1970s.

2.3. Asymmetry in the predictability of returns

Our sample of NASDAQ stocks aiso reflects the asymmetry in the
predictability of the returns of different size firms uncovered by Lo and
MacKinlay (1990) and Mech (1990). Table 2, panel A, contains the first-order
lagged cross-correlations for the three NASDAQ portfolios. The i, jth ele-
ment of the correlation matrix is the correlation between R;,_, and R;,.
Note that the elements below the diagonal are larger than those above the
diagonal, with the asymmetry being more significant for the largest versus
smallest firms.

An appealing property of our methodology for extracting the expected
return component is that it is consistent with this intriguing asymmetry
displayed by stock returns. Recall that we do not impose an equilibrium
model on the expected returns of individual securities. For example, we do
not assume a one-factor model [see Lo and MacKiniay (1990)] and, conse-
quently, do not use the expected return on the market portfolio to extract
E.’s of individual securities, without regard to their market values. This
procedure would cause expected returns of all securities to be perfectly
positively correlated, and all lagged cross-correlations to be symmetric. In-
stead, we used expected returns of different size-based portfolios to extract
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Table 2

Weekly estimates of first-order lagged cross-correlations between (1) the transaction returns of

three equally-weighted portfolios of NASDAQ stocks (panel A) and (2) the residuals of the

transaction returns from models in which returns follow a stationary AR(1) process (panel B),

January 1983 to December 1987. The three portfolios are formed by rankings of market value of

equity outstanding at the beginning of each six-month subperiod. Under the hypothesis that the

true cross-correlations are zero, the standard error of the estimated cross-correlations is about
0.062.

Panel A: Return cross-correlations®

Variable (x) Ry, R,, R,
Ry,._1 0.322 0.235 0.176
Ry 0.324 0.262 0.196
Ry, 0.324 0.273 0.217
Panel B: Residual cross-correlations®
Variable (x) £y, £y, €3,
€1 4-1 0.031 0.025 0.020
£y ,-1 0.050 0.023 0.014
85,4 0.067 0.043 0.024

*R,, i=1,2,3. are weekly portfolio transaction returns in week ¢ of the three (smallest to
largest) portfolios of NASDAQ stocks.

58, i = 1,2,3. are residuals from weekly estimates of AR(1) models for the transaction returns
in week ¢ of the three (smallest to largest) portfolios of NASDAQ stocks.

the expected returns of securities of different market value. This procedure,
in turn, takes into account the asymmetric cross-correlations.

Panel B in table 2 reports first-order lagged cross-correlations between the
residuals, £,, from the time-series models for the portfolio returns. Note that
the asymmetry is rendered insignificant. This occurs because conditional on a
particular (small) portfolio’s own past history of returns, the large portfolio’s
return contains little additional information about its future returns. In other
words, by construction our portfolio expected returns exhibit the asymmetric
lagged cross-correlations witnessed in realized returns. Or course, our proce-
dure does not take into account any asymmetric lagged cross-correlations
that may exist between securities within a particular size-based portfolio.
However, a more complete model for expected returns of individual securi-
ties is beyond the scope of this paper.

2.4. The bid-ask error component

Based on our model for security prices in (1) and (2), the bid and ask
prices, BP, and AP, of security { may be written as

S
BP[: = Pir - ;'Qiz (Sa)
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and

i
AP:‘: = Pit + —Z_Qi[' (Sb)

The average of the bid and ask prices will, therefore, reflect the ‘true’ price
of security i, P,,. Consequently, returns calculated using the average of bid
and ask quotes, R?, will reflect changes in the true value of a security

(without the bid-ask bounce), so that
Ry =E,+U,. (6) -

A comparison of transaction returns and ‘true’ returns [see (3) and (6)]
shows that the difference between them, DR,,, will be a direct measure of the
bid-ask error component,

DR, =R,

~R*=B =

i o

[Qit_Qi.r—l]' (7)

|

Most models of the bid—ask spread assume that bid-ask errors in transac-
tion prices are independent and identically distributed [see, for example,
Blume and Stambaugh (1983) and Roli (1984)]. This implies that

2 : -
cov(B,-,B,-t_k>={‘sf/4 wok=l (8a)
' 0 otherwise,
var( B,) =s7/2, (8b)
and
. -1 if k=1
pgi = kth-order autocorrelation of B;, = : o (8¢c)
0 otherwise.

From (8a)-(8c) it can be seen that B,, will follow an MA(1) process. Given
that we have a direct measure of bid-ask errors, DR,,, we can test whether
actual bid-ask errors satisfy the above conditions.

The evidence

Our measure of the bid-ask error component, DR,,, will be the ‘true’
measure of bid~ask errors if bid/ask and transaction prices are measured
synchronously. However, for the NASDAQ stocks the bid/ask (closing)
quotes are measured after the (last) transaction price. This nonsynchron-
ous measurement causes an errors-in-variables problem in DR, and,
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Table 3

Average weekly estimates of autocorrefations of the bid-ask error component, DR,,, of individ-
ual NASDAQ securities belonging to three portfolios formed by rankings of market value of
equity outstanding at the beginning of each six-month subperiod. January 1983 to December
1987. Each statistic is estimated for all firms during each of the ten six-month subperiods
between 1983 and 1987. The individual firm statistics are averaged across firms within each
portfolio to obtain subperiod averages. Since the number of firms in each portfolio varies over
the ten subperiods, each reported estimate is the weighted grand average of the subperiod

averages, where the weights are the number of firms in a portfolio in each subperiod.

Lags
Portfolio 1 2 3 4 5 6
1 —~0.463? —-0.002 -0.003 -0.007 0.002 0.002
(smallest) (0.003)® (0.005) (0.004) (0.003) (0.003) (0.005)
[0.152])¢ [0.225] [0.209] [0.211] [0.202] [0.193]
2 —0.467 -0.003 —0.000 -0.003 -0.003 0.005
(0.002) (0.003) (0.003) (0.005) (0.004) (0.003)
[0.153] [0.230] [0.218] [0.211] [0.200] [0.192]
3 -0.472 —-0.003 0.001 0.001 —0.004 —-0.000
(largest) (0.003) (0.005) (0.004) (0.003) (0.002) (0.002)
[0.146] [0.227] [0.216] [0.209] [0.204] [0.200]

*The autocorrelation estimates are adjusted for small-sample bias using the following formulas
[Kendall and Stuart (1976)}:

1
E(p)=p,+ ?_—1—(1+p1)(4p%—2p[—1). »

E(p;)=— 7o 2(1 +2py +2p7),
A l .
E(pj): - T__](I +2p1), V]>2,
where p; = —0.50 [see (8¢)], and T is the number of observations in a particular subperiod.

The numbers in parentheses below the grand average estimates are their weighted standard
errors based on the distribution of the subperiod averages.
°The numbers in brackets are the average cross-sectional standard deviations of the individ-
ual-firm statistics.

consequently, it will overstate the importance of bid—ask errors, that is,
var(DR;,) > var(B,,). However, under reasonable assumptions, the autocorre-
lations of DR, will provide unbiased estimates of the autocorrelations of the
true bid~ask error component, B,, (see appendix).

Table 3 contains average estimates of the weekly autocorrelations (up to
lag 6) of DR;, for firms in each portfolio. The autocorrelation estimates are
adjusted for small-sample bias under the assumption that the ‘true’ bid-ask
error component, B,,, follows an MA(1) process with a first-order autocorre-
lation coéfficient, p;, of —0.50 [see (8c)]. The exact corrections are based on



376 J. Conrad er al., Components of short-horizon security returns

the following equations [Kendall and Stuart (1976)}:

1
E(Pl)=P1+§.‘j‘f(1+pz)(4pf—2m—1), (9a)
E(p,) = - T3 (1+2p,+2p7), (9b)
~ 1 -
E(3,)= -—-—-——T_j_(l+2p1), vj > 2. (9¢)

The estimated autocorrelations in table 3 are generally consistent with the
model and assumptions for B;,. The average first-order autocorrelations of
DR, are similar across all portfolios, and range between ~0.463 and —0.472.
All higher-order autocorrelations are small in magnitude. There is some
evidence that bid-ask errors in transaction prices may not be independently
distributed; the first-order autocorrelations are statistically less than 0.50 in
absolute magnitude, and higher-order autocorrelations are occasionally sig-
nificantly different from zero. However, the correlation in bid-ask errors in
transaction prices appears to be small, and DR;, closely approximates an
MA(1) process.

3. Properties of individual security returns

In this section, we present estimates of the degree of variation in
NASDAQ weekly security returns that can be attributed to the three uncor-
related components: E,,, B;,, and U,. We also present evidence that recon-
ciles the contrasting time-series behavior of short-horizon security and
portfolio returns.

3.1. Components of security returns

Table 4 contains estimates of the proportions of variance of NASDAQ
weekly security returns explained by the adjusted bid-error component, the
expected return component, and the noise component. The contribution of
the bid-ask error component, B,,, to return volatility is calculated as
var(DR;,)/var(R,,), and is denoted by ﬁ:;b.z The proportion of return vari-

Zﬁf,b overstates the importance of bid-ask errors in transaction returns because bid/ask
quotes are measured after transaction prices. However, since the denominator of this ratio
measures the variance of weekly transaction returns, the upward bias in ﬁf,b is likely to be small
[see appendix]. Also, ﬁf,b is calculated under the assumption that all trades occur either at the
bid or the ask quote. If trades occur within the spread, var(DR,,), and hence 47, will overstate
the importance of bid-ask errors. However, according to NASD dealers, trades within the
quoted spread are infrequent and form only a small percentage of total trades in NASDAQ
stocks.
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Table 4

Average weekly estimates of the proportions of variance of NASDAQ individual security
transaction returns explained by the bid- ask error component, ppb, the expected return
component, ppe, and the noise component, pp“ January 1983 to December 1987. The average
estimates are of securities belonging to three portfolios formed by rankings of market value at
the beginning of each six-month subperiod. Each statistic is estimated for all firms during each of
the ten six-month subperiods between 1983 and 1987. The individual-firm statistics are averaged
across firms within each portfolio to obtain subperiod averages. Since the number of firms in
each portfolio varies over the ten subperiods, each reported estimate is the weighted grand
average of the subperiod averages, where the weights are the number of firms in a portfolio in
each subperiod.”

Portfolio B2, Pre Pra

1 0.190 0.054 0.756
(smallest) (0.014)° (0.004) (0.016)
[0.176]° [0.067] [0.170)

2 0.114 0.053 0.833
(0.007) (0.005) (0.009)

[0.116] [0.068] : [0.132]

3 0.058 0.053 0.889
(largest) (0.003) (0.004) (0.005)
~ [0.083] [0.066] [0.108]

pp,, -var(DR,,)/var(R,,)-— proportlon of variation in realized security returns due to the
bid-ask error component; p;, =R? (of regression in table D= propomon of variation in
realized returns due to the expected return component: and pp“ =]- ppe pp,, proportion of
varlatlon in realized returns caused by the noise component.

"The numbers in parentheses below the grand average estimates are their weighted standard
errors based on the distribution of the subperiod averages.

“The number in brackets are the averaged cross-sectional standard deviations of the individ-
ual-firm statistics.

ance explained by the expected return component, ﬁ;e, is simply the R? from
estimates of (4). Finally, we obtain an estimate of the degree of variation in
returns due to the noise component as g2, = 1 - B2, —ﬁf,b.

Table 4 shows that bid-ask errors induce a large degree of spurious
volatility in weekly transaction returns. Average estimates of pf,b range
between 5.8% for large firms and 19.0% for small firms. The average
cross-sectional standard deviations are also large, ranging between 8.3% and
17.6%. Hence, for the small firms in our sample, between 0% and 54.2% of
return volatility can typically be explained by the bid-ask error component.
The proportions of return variance explained by B,, are also significantly
larger than the proportions (of about 5%) induced by time-varying expected
returns, especially for small firms. Finally, the predominant source of varia-
tion in security returns is the arrival of new information. Estimates of the
proportion of return variance explained by the rational information compo-
nent range between 75.6% and 88.9%%. These larger proportions support the



378 J. Conrad et al., Components of short-horizon security returns

evidence in French and Roll (1986) and Barclay, Litzenberger, and Warner
(1990).

The relative importance of the three components of most (except the very
small and very large) NYSE and Amex security returns is likely to be similar
to the estimates in table 4. As noted earlier, the average quoted bid-ask
spread of all firms in our sample is 2.914%, which compares favorably with
the average spread of 2.817% for NYSE and Amex firms at the end of 1988.
Since the spurious volatility generated by the bid-ask error component is
directly related to the square of the spread [see (8b)}, the importance of the
bid-ask error component for the average NYSE and Amex firm is also likely
to be nontrivial.

3.2. Reconciliation of the time-series behatior of individual security and
portfolio returns

Given our model for security returns in (3) and the properties of the three
components, reconciling the negative autocorrelation in security returns with
the positive autocorrelation in portfolio returns is fairly straightforward.
Without loss of generality, consider, for example, the first-order autocorrela-
tion, p;, of an individual security’s transaction return

cov(E, . E; ,_) +cov(B,,B; ,_y)
var( Ri!) -

pi= (10)

From (10) it follows that the sign of the first-order autocorrelation depends
on the relative magnitudes of the autocovariances generated by the expected
return and the bid—ask error components, respectively. In particular,

P20 iff [cov(E, E; 1) Z[cov( B B o). (1

The fact that the positive autocovariance generated by the expected return
component is not typically discernible in the case of short-horizon security
returns implies that it is contaminated by the larger negative autocovariance
induced by the bid-ask error components. Of course, this need not be the
case for every security. For example, the daily first-order autocorrelations of
larger firms tend to be positive, though small in magnitude [Fama (1965) and
French and Roll (1986)]. These findings are also consistent with our model
because the autocovariance generated by bid-ask errors is likely to be
smaller for larger firms, since such firms have smaller spreads [see (8a)].

Roll (1984) and Amihud and Mendelson (1987) conjecture similar explana-
tions for their unrealistically low spread estimates based on the first-order
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autocovariance of transaction returns. Both studies assume that the expected
return of a security is constant, and find that the negative first-order autoco-
variance is much smaller (in absolute magnitude) than that implied by the
bid-ask bounce, that is, lc6v(R,,, R,, ,_ )| <s7/4 [see (8a)]. Roll conjectures
that a positively autocorrelated expected return process could be responsible
for this result. Amihud and Mendelson argue that daily return autocovari-
ances could be small because of partial price adjustments induced by smooth-
ing effects by market makers. However, the effects of such adjustments are
likely to be dissipated over intervals as long as a week (the measurement
interval used in this paper) [see Amihud and Mendelson (1987)}.

We use two related tests to gauge the ability of our model to explain the
differing time-series properties of individual security and portfolio returns.
The first test compares the autocovariances of transaction returns with the
sum of the autocovariances of our proxies for expected returns and the
bid-ask error component, that is, coV(R,,, R; ,_;) versus coV(E,, E; )+
cOV(DR,,, DR, ,_;). If our model is the correct specification of the return
generating process, these two estimates should be equal. However, caution
must be exercised in making such comparisons since the cross-sectional
averages of cOV(E,, E; ,_,) are likely to be downward biased because they
measure cov(E,,, £, ,_,), which is the average of cov(E,, E; ,_ ), i #]. Also,
it is likely that the average of the true autocovariances, co(E,, E,,_,), is
larger than the average of cov(E,, E,,_,). Hence, we evaluate these esti-
mates for general patterns, without placing undue emphasis on the exact
magnitudes of cOW(R,,, R, ,_;) versus cOV(E,,, E; ,_;) + coV(DR,,, DR, ,_)).

For brevity we do not report the results, but the evidence suggests that our
model is broadly consistent with most of the time-series properties of security
and portfolio returns. First, our model can explain the positive first-order
autocorrelation of portfolio returns versus the typically negative first-order
autocorrelation in security returns. The average first-order autocovariance
generated by the bid—ask error component is always larger in (absolute)
magnitude than the autocovariance generated by the expected return compo-
nent. Second, although our measure of £, is an imperfect proxy, the
patterns in its autocovariances are similar to those in the autocovariances of
R;,. For example, both R,, and E,, reflect significant autocovariances at lags
5 and 6 but, consistent with our earlier conjecture, cdW(E,, E;,_ )<
cov(R;,, R, ,_;). The only systematic characteristic of the time-series behavior
of transaction returns that is inconsistent with our model are the statistically
significant (but small) negative autocovariances at lag 2.

The second test is a specification test which also helps us evaluate our
model’s ability to explain the contrasting time-series behavior of security and
portfolio transaction returns. Since we have proxies for both the expected
return component, £, and the bid-ask error component, B,,, we estimate

i’
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the following regression:
Riy=o;+BE;+ BB+ n. (12)

The autocorrelations of the residuals of (12) provide a direct test of
whether our model captures all of the components of security returns. If our
model is a valid characterization of security returns, the residuals should
behave like white noise, thus explaining the differing characteristics of
security and portfolio returns. If bid/ask quotes and transaction prices are
measured at the same time, DR;, would be a perfect measure of B;, and, by
definition, B,,=1 for each security. However, due to the nonsynchronous
measurement of transaction and bid/ask prices, var(DR,) > var(B, ), and
B,; will be asymptotically downward biased. We nevertheless estimate (12) to
gauge the specification of our model.

The average estimates of the parameters of (12) in table 5 show the
downward bias in 8, and, as expected (see appendix), the bias is larger for
larger firms. The residual autocorrelations reveal ‘unexplained’ patterns that
are virtually identical to the autocovariance analysis of R,,, E,,, and DR,
discussed above. After accounting for time-varying expected returns and
bid-ask errors, there remains some significant negative autocorrelation at lag
2 and significant positive autocorrelations at lags 1, 5, and 6. The positive
autocorrelations at lags 1, 5, and 6 are perfectly consistent with our model,
and are a consequence of using an imperfect proxy, E,,, to extract £;,. On
the other hand, as indicated earlier, the negative autocovariance /autocorre-
lation at lag 2 is not consistent with our model, especially since the bid-ask
error component closely approximates an MA(1) process. However, the
average magnitudes of these autocorrelations are small, ranging between
—0.025 and —0.047. Therefore, although our model does not capture all
components which could potentially lead to negative autocorrelations in
security returns (such as nonsynchronous trading, price discreteness, and /or
market overreaction), it is unlikely that these components play an important
role in the determination of ‘observed’ prices. Bid—ask errors appear to be
the major source of negative autocorrelation in security returns.

Having established that individual security returns (though usually
negatively autocorrelated) do contain a positively autocorrelated common
component, our model can be readily used to explain the strong positive
autocorrelation in portfolio returns. The return of a portfolio containing a
large number of securities will exhibit strong positive autocovariance because
bid-ask errors are cross-sectionally uncorrelated, and are diversified away in
the portfolio formation process. Diversification also causes the variances of
portfolio returns to be much smaller than the variances of security returns:
for example, the variance of the returns of portfolio 1 is less than one-tenth
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the average variance of the returns of its constituent securities. The combina-
tion of these two factors leads to strong positive autocorrelation in portfolio
returns.

4. Summary and conclusions

In this paper, we present a simple three-component model for security
returns that appears to capture the important time-series characteristics of
short-horizon returns. Specifically, an individual security’s return is assumed
to be made up of three independent components: a positively autocorrelated
expected return component, a negatively autocorrelated component induced
by bid-ask errors, and a white-noise component.

We introduce a methodology to extract the ‘unobservable’ expected return
and bid-ask error components of individual security returns, and show that
these components explain substantial proportions of the variance of transac-
tion returns -~ between 11% and 24% of the degree of variation in weekly
transaction returns. We also reconcile the negative autocorrelation in individ-
ual security returns with the strong positive autocorrelation displayed by
portfolio returns, and show that our measures of the expected return compo-
nents of large versus small firms reflect the asymmetric lagged cross-correla-
tions documented by Lo and MacKinlay (1990) and Mech (1990).

Appendix: Measurement errors in the bid—ask error variable

Recall that our bid-ask error measure, DR,,, suffers from a nonsyn-
chronous measurement problem because bid /ask quotes are typically mea-
sured after the transaction price. Consequently, ‘measured” DR, can be

written as
DRi1=Ri1_R?1=Bit+Li,t—l—Lit’ (Al)

where L,, is the component of ‘true’ return (without the bid—-ask error), that
is, R?,, measured over the nontrading interval between the last transaction
and market close on day .

Suppose L,, is identically distributed for a particular security [see Scholes
and Williams (1977)]. From (A.1) it follows that DR, will be a noisy measure
of B,, since var(DR,,) =var(B,,) + 2var(L,) =s?/2 + 2var(L,,) [see (8b)].
Hence, var(DR,,) will overstate the importance of bid-ask errors in transac-
tion returns. Although 2var(L,) will be small compared to the variance of

>The expression for var( DR,,) is derived under the additional assumption that L;,is indepen-
dently distributed. This is a reasonable assumption because L,’s are measured over small
intervals that are one week apart.
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‘true’ weekly returns, RD?, it may be large relative to var(B,,), which is given
by s7/2, where s, is the spread of security i. The average values of s?/2 for
the three NASDAQ portfolios are (approximately) 0.00136, 0.00049, and
0.00013. Hence, especially for large firms, measurement errors in DR, could
have potentially important implications for specification tests of our model.

Given the assumptions about the ‘true’ bid—ask error component [see
(8a)-(8¢)], and the returns measured over the nontrading intervals, L,,, it can

be shown that

cov( DR, DR, ,_) = { si/4—var(Ly) k=. b (A2)
' 0 otherwise,
and the kth-order autocorrelation of DR, p,. is
-1 if k=1, R
pe= { : _ (A3)
0 otherwise.

From (A.2) and (A.3) it follows that although the first-order autocovari-
ance of DR, will provide an upward-biased (in absolute magnitude) estimate
of cov(B,, B; ,_,), all its autocorrelations (including p,) will be unbiased
estimates of the autocorrelations of the ‘true’ bid-ask error component, B,,.
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