
Algorithmic aspects of 
alternating sum of volumes.  
Part 1: Data structure and 
difference operation 
K Tan q and T Woo 

In terms of basic theory, a unique conversion from a 
boundary representation to a CSG representation is of 
importance. In terms of application, the extraction of 
features by convex decomposition is of interest. The 
alternating sum of volumes ( ASV ) technique offers both. 
However, some algorithmic issues are still unresolved. 
The paper is the first section of a 2-part paper that 
addresses specialized set operations and the convergence 
of the ASV process. In "the first part, a fast difference 
operation for the ASV process and a data structure for 
pseudopolyhedra are introduced. 

A fast difference operation between an object and its 
convex hull is made possible by the crucial observation 
that it takes only linear time to distinguish them. 
However, it takes O(NlogN) time to construct a data 
structure with the proper tags. The data structure 
supporting the operation is a pseudopolyhedron, 
capturing the special relationship between an object and 
its convex hull. That the data structure is linear in space 
is also shown. 

feature extraction, representation conversion, convex hull, alternating 
sum, difference operation, manifold data structure 

The idea of the alternating sum of volumes (ASV) 
technique is to represent an object by a series of convex 
components  wi th alternating signs (for vo lume addit ion 
and subtraction). It is a technique to extract ' features' 
from the boundary representation of a 3D component  1. 
As an example, consider the object  shown in Figure 1 : 
a block with a slot and a hole. The ASV series of this 
object  is 

Ho - -  H1 + H2 - -  H3 

where the His are convex. 
Formally, the ASV series of an object  .Q is defined as 

.-Qo = ~ ( - I YHi 
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Figure "I. Alternating sum of volumes 

Ha H3 

where 

.Q0 = ,.Q 

I-I~ is the convex hull of ~ i ,  CH(~ i )  

~ i  is the deficiency, and is defined as the regularized 
set difference between H,_ 1 and ,Qi-1 

Figure 2 shows how the terms in an ASV are derived 
for the object in Figure 1. The deficiency ~,~ is obtained 
by subtract ing ~.~_ ~ from I-I~_ 1, where i = 1, 2 . . . .  ,. As 
-Q~+I becomes the null set ~ ,  the I-I,s are collected, 

-£ko ~ CH ~_ [ Z ~  Ho=CH(E'Lo ) 

/ 

.CL I CH H I=CH(-N- 1) 

13 .J oH 0 H 3= CH(-N- 3) 

/ 

Figure 2. Derivation of ASV series 
[CH = convex hull operation, = difference operation, ,~ = null 
set.] 
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starting with H~. The ASV expression is formed by 
alternating ' - '  and ' + '  signs, as in H0--H~ + H2--, 
• . . ,  . 

Consider the machining process of the mechanical 
component in the above example. There are two 
features: a slot and a hole. They can be extracted by 
algebraic manipulation of the object's ASV as illustrated 
in Figure 3. Parenthesizing H~ and H2 forces a change 
in the sign from + to --. Subtracting H2 from H1 yields 
a new H'I for a disjunctive expression: 

Ho--(HI--  H2)-- H~ = H~-- H~-- H~ 

If H'0 is the stock, H'I and H~ can be thought of as 
volumes to be removed to create the slot and the hole. 

As another illustration of the material-joining 
process, consider Figure 4. The components adjacent 
to the - sign are parenthesized, yielding a conjunctive 
expression: 

Ho-- H1 + H2 = (Ho-- H1) + H2 = Ho + H'I 

Here, H'o is the base plate on which a protrusion H'I is 
to be joined. 

These two examples illustrate that, through the 
manipulation of an ASV series, features of a given object 
can be extracted automatically, which can in turn help 
the process planners in deciding on suitable manu- 
facturing operations, such as machining or welding. 

Ho HI H 2 H 3 

Ho H1 H2 H3 

Ho' HI' H z' 
Figure 3. Algebraic manipulation of ASV series into 
disjunctive form 

Ho H, H2 

HO H~ H 2 

Hj  H1 ,  

Figure 4. Algebraic manipulation of ASV series into 
conjunctive form 

The ability to 'disassemble' allows conversion from 
boundary-based solid-modelling systems to those that 
are CSG-based 2. 

As implied in the examples, the terminating condition 
of an ASV-series expansion is when the deficiency An 
becomes convex, that is, when Hn identifies with ,Q~. 
This condition, however, is not guaranteed. Figure 5 
shows an example of an infinite ASV series. It has been 
shown 1 that an ASV series is nonterminating if and only 
if there is an integer i such that H,+ 1 = H. In such a 
case, the deficiency ~ is said to be nonconvergent. 
When a nonconvergent deficiency ~ is encountered, 
the ASV expansion cannot continue. 

When a deficiency ~n becomes nonconvergent, one 
solution is to divide it into convex subsets 1. However, 
there is a drawback. It is known ~ that there can be 
O(n t) convex subsets, where n is the number of concave 
edges, and each subset requires further polynomial time 
to determine. An alternative is to decompose the 
deficiency into subsets that are themselves convergent, 
so that the ASV series can expand further. For example, 
the object-Q in Figure 6 is nonconvergent. By separating 
it along the edge e into two parts P1 and P2, and 
performing the ASV expansion on each of them, a finite 
ASV series of two branches, each of which is a finite 
ASV series, results. The observation that edges of the 
type of e in Figure 6 may be a very small subset of the 
set of all concave edges encourages inquiry. 

l l . i  CH ,,- ~ Hi 

/ 

/ /// 

31.i + CH ,- Repeot 

Figure 5. Example of ASV nonconvergence 

Figure 6. Remedy for nonconvergence 
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This paper is the first part of a 2-part paper 4. Part 1 
deals with a special difference operation. While a 
general difference operation s may be invoked, the 
relationship between an object and its convex hull 
merits investigation. This relationship is made concrete 
by the notion of a pseudomanifold object, shown as 

in Figure 6. This is an entity with characteristics 
between those of a 2-manifold 6 and a nonmanifold 7 
object. With the aid of a data structure for 
pseudomanifold objects, the use of an O(nlogn) time 
algorithm for computing a convex deficiency is made 
possible, where n is the number of faces of the 
pseudomanifold. The data structure is shown to be O(n) 
in space, which gives an absolute upper bound to the 
number of edges of the type e in Figure 6. 

The characterizatio.n of nonconvergence and its 
remedy as illustrated by Figure 6 is given in Part 24 of 
this paper. 

\ 

Figure 7. Points in a manifold, a pseudomanifold, and a 
nonmanifold 

DOMAIN AND DATA STRUCTURE 
In this section, the domain of objects and a data 
structure to represent them are given. An object ~ is 
a set of points in 3D Euclidean space, E 3. It must satisfy 
certain restrictions. Because the ASV process performs 
operations on the boundary of volumes, each object 
must be a closed surface that forms the closure of an 
open set of finite extent in E 3. In other words, an object 
must be the surface of a volume, and must not have 
'dangling' faces and edges 2. In addition to this 
restriction of homogeneous three-dimensionality, the 
objects must also be closed under the (regularized) 
difference operation, i.e. they should have differential 
preservability 2. To define a domain of objects that will 
meet both the restrictions, some definitions of the 
interior and boundary points of a 3-dimensional point 
set must be clarified: 

Definition 7: A point p of a set S in E 3 is called an 
interior point of S if there exists an open 
3-dimensional neighbourhood that consists of points 
in S only. A point p is called a boundary point of S 
if it is not an interior point. The set B(S) of all 
boundary points of S, and the set I(S) of all the 
interior points of S, are defined as the boundary and 
the interior of S respectively. 

The relationship between a boundary point and its 
neighbouring points of a set S in E 3 is described by one 
of three characterizations, namely manifold, pseudo- 
manifold, and nonman#old. A point p in B(S)is called 
a 2-manifold point if it has a 3D neighbourhood such 
that the subset of the points of S contained in 
that neighbourhood is topologically equivalent to a 
hemisphere 7. A point p is a pseudomanifold point if 
every 3D neighbourhood of it contains some points in 
I(S). If a point p has a 3D neighbourhood such that 
the subset of the points of S contained in that 
neighbourhood entirely belong to B(S), then it is called 
a nonmanifold point. As an example, the boundary 
surface of the object in Figure 7 consists of the six faces 
of the cube and a 'dangling' face f. All the boundary 
points except those on f (including edge e) are 

2-manifold points. The boundary points on the six faces 
of the cube, including edge e, are pseudomanifold 
points. The nonmanifold points are those on face f but 
not on edge e. 

Definition 2: A point set S in E 3 is a 2-manifold set if 
I(S) is connected, and every point in B(S) is a 
2-manifold point. S is a pseudomanifold set if every 
point in B(S)is a pseudomanifold point. S becomes 
a nonmanifold set if B(S) contains some nonmanifold 
points. 

A pseudomanifold point is a relaxation of a 2-manifold 
point, i.e. it only requires that every neighbourhood of 
the point contains some interior points of the set, but 
with no topological constraint on the neighbourhoods. 
A pseudomanifold set need not be a connected set 
either. The relationship of these three sets can best be 
described in Figure 8. Because an object must have 
homogeneous three dimensionality, nonmanifold sets 
are immediately excluded from consideration. Although 
2-manifold sets satisfy the homogenous 3-dimensionality 
condition, they are not closed under regularized 
difference operation 2. Pseudomanifold sets, while still 
conforming to homogeneous three dimensionality but 
also guaranteeing differential preservability 2, prove to 
be the only clan of objects suitable for ASV 
representations. Figure 9 shows several examples of 
2-manifold, pseudomanifold and nonmanifold objects. 

A data structure for the pseudomanifolds is crucial 
to both the development and analysis of algorithms. A 

3D sets 

- d o m a n ~  

Figure 8. Relationship between 2-manifold sets, pseudo- 
manifold sets and nonmanifold sets 
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Figure 9. (a) 2-manifold, (b) pseudomanifold and (c) 
nonmanifold objects 

data structure for polyhedra" is not suitable because a 
pseudomanifold could have more than two faces 
meeting at an edge (see Figure 9b). The representation 
of general nonmanifolds ~ is more than that needed 
here, because of the difference preservability of 
pseudomanifolds. The concept of pseudopolyhedra is 
proposed. A pseudopolyhedron is 'almost' a polyhedron, 
except that it allows edges to have more than two 
adjacent faces. 

Definition 3: A pseudopolyhedron P is a finite 
collection of planar faces such that (a) every edge 
of P has at least two adjacent faces, and (b) if any 
two faces meet, they meet at a common edge. 
Specifically, a pseudopolyhedron with n~ vertices, n, 
edges and nf faces is a quintuple <V, E, F, NORM, 
El>, which is defined as: 

• V = {vl, v2 . . . . .  v,~} is a list storing the n v vertices; 
each v~ is a coordinate triple (x~, y, z~). 

• E =  . . . . .  <Vno,1, Vno, >} is 
the edge list. Each entry {vi.~, v,,2> stands for an 
edge, with v,.~ and v,. 2 being indices of the two 
end points; e.g. {v,,~, v~,~> = {3, 10> means that 
the end points of the ith edge are v~ and Vl0. 

• F = { F~, F~ . . . . .  Fn, } stores face information. Each 
element F~ is itself an array of the form { { e~,~, e~,~, 
. . . .  e l , f 1  >, { e~,~, e~,~ . . . . .  e~.,~ )> . . . .  , < e~.~, e k ,  2 . . . .  , 

e~.~> }, where k is the total number of polygons 
in face F~. Each <ei,~, e~.~ . . . . .  e,.~,> is a simple 
polygon, and each ei, ~ is the index of an edge in E. 
For example, F~ = { < 2, 4, 1 >, < 5, 7, 6, 3 > } means 
that face F, is bounded by two simple polygons; 
the indices of the edges of the outer polygon are 
2, 4, 1, and they are 5, 7, 6, 3 for the inner polygon. 
The edges are ordered clockwise (for the outer 
polygon) or counterclockwise (for the inner 
polygon). 

• NORM={N1 ,  N~, ..., Nn,} stores the outward 
normals of the n,~ faces. 

<fo~.~, f .... . ........ ~,,~.> f is a list that describes the 
edge-face adjacency relationship. An entry of 
{t,.~, f,.2, --., t,.k,} says that edge E, has k~ adjacent 
faces, and that the indices for them are f,.,, t,.2, 
.... t,.~. For example, if <t~, /,., . . . . .  f,k,> is 
<1, 7, 6, 2 >, then edge E~ has four adjacent faces, 
and their indices in F are 1, 7, 6 and 2. Each k~ is 
defined as the face adjacency index of edge Ej. 

The data structure given above, although quite simple, 
completely describes one family of pseudomanifolds: 
planar pseudomanifolds. (Pseudomanifolds with non- 
planar boundary surfaces are not considered in this 
paper.) A detailed proof is given in the Appendix that 
the space requirement of a pseudopolyhedron is linear 
in the number of its faces. It should be noted that, 
although a pseudopolyhedron completely describes the 
boundary of a pseudomanifold, it carries no set- 
theoretic information itself. It is the pseudomanifold, 
which a pseudopolyhedron represents, that possesses 
the set in E 3. 

DIFFERENCE OPERATION 

To study the difference operation between a pseudo- 
manifold and its convex hull, the following notations 
are used: .¢~ denotes a pseudomanifold object, ~h its 
convex hull, and ~d the deficiency ~ h -  g~'- The same 
notations are used to represent their defining pseudo- 
polyhedra unless noted otherwise. 

Consider the convex hull ~h of an object ~D.. The set 
• Qh can be divided into four disjoint subsets. They are: 

~h: 

l l ( ~ ) / ,  the interior points of ~ ,  

{ II(~h) I, the boundary (hull) points of ~D. h, 

{ll(~.)r~l(~[~h)}, the boundary points of ~D. 
excluding those that are also in ~h, 

{l(,Qh) -- ~-}, interior (deficiency) points of ~h 
excluding ~.  

Figure 10 shows these subsets in two dimensions. 

Definition 4: A point P~-.h is a preserved point if, 
for any real number 8 > 0, no matter how small it 
is, the open neighbourhood sphere that centres at 
p with radius 8 always has a point in ~ .  A point p 
is a lost point if it is not a preserved point. 

.[1. .O.h 

Figure 10. Illustrations of ~j, ~h, ~p and ~j 
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The difference operation between ~.h and ~ is defined 
as follows: 

Definition 5: The deficiency ~ of an object .~ is a 
set in E s consisting of all the preserved points of . ~ .  

The definition of deficiency here correlates with the 
intuitive view. The purpose of categorizing the points 
of ~ is to relate the interior and the boundary 
of the deficiency ~ to those of ~ and its convex hull 
~h. It is easy to see that, because both I (~)  and I(.Qh) 
are open sets, so must the sets ~ and ~ be. By definition 
(of the deficiency), all the points of ~ are lost. As ~d is 
an open set, every point in it has a neighbourhood 
sphere of points in ~ only and is thus interior to Dd. 
This means that ~ must be a subset of the interior of 
deficiency ~d. The neighbourhood of any point in ~p 
or ~u contains some points in either ~i or  {E3--~'~h}, 
i.e. it contains points not belonging to ~d, and hence, 
by definition, they cannot be in the interior of .1~ d. 
These observations are summarized in the following 
lemma. 

Lemma "I: The deficiency .Qd of a pseudomanifold 
is also a pseudomanifold, whose interior set I([1~) 

is the ~ set of ~-h, and whose boundary set B(-Q d) 
is a subset of {~h u ~ } .  

As noted in Lemma 1, the boundary surface B(~  d) of 
the deficiency -Qd is a subset of {~hU~p}  of ~h. 
Because of the planarity of the faces, I i ( ~ )  must be a 
set of some faces of ~ and ~ .  The key to the algorithm 
for finding the deficiency is to find these faces and the 
adjacency relationship between them, so that the result 
is a pseudopolyhedron representation of .Q~. 

Definition 6: A face of a pseudomanifold ~ is a hull 
face if it is in ~h; otherwise it is called an internal face. 

Lemma 2: A hull face f of ~ will not exist in the 
boundary surface B(.Qd). 

Proof: For any point in the interior set I(f) of f, say 
p, there must exist an open neighbourhood 8 of p 
that belongs to I(f) and hence in ~h only. As ~ is a 
pseudomanifold, every point in 8, including p itself, 
must have a neighbourhood sphere that consists of 
points in { ~h u ~ u { E 3 -- ~h}  } only. Because of the 
way that a preserved point is defined, p can only 
be a lost point. Therefore, every point in set I(f) is 
a lost point. 

QED 

Lemma 2 asserts that the boundary surface B(~  d) 
consists of only the internal faces of .Q and the faces 

e2 e 3 

[ 
.N. -~h 

Figure "I'1. Functionality of procedure HULLP 
[FH: FH(f)= 0; all other FHS are 1. 
EH: All EHS are nonzero. 
F~: Fl(f~)= FL(f2)= FL(t3)= Ft(f4)= 1; all other Fis are 0. 
El: El(e 1) = El(e 2) = El(eg) = El(e 4) = 1; all other Eis are 0.] 

of ~h but not the hull faces of .Q. This observation 
leads to the development of the desired difference 
algorithm. It accepts as input (V, E, F, El, NORMf), which is 
the pseudopolyhedron representation of a pseudo- 
manifold ~,  and it outputs the pseudopolyhedron 
representation of the deficiency ~d. Suppose that there 
is a procedure HULLP that takes as input the 
pseudopolyhedron (V, E, F, El, NORMf) of a pseudo- 
manifold ~ .  Its outputs are two: one is the pseudo- 
polyhedron of the resultant convex hull -Qh, and the 
other is two arrays F H and EH, called hull tag arrays, that 
distinguish those faces and edges of ~h that do not 
belong to ~ .  Specifically, FH(i)= 1 means that face i 
of ~h is a face of .Q. When FH(i) = 0, the meaning is 
reversed. EH(i) = j means that edge i of -Qh is edge j of .Q, 
whereas EH(i) = 0 means that edge/is not an edge of ~ .  
As most available 3D convex-hull algorithms 9'1° support 
data structures that embody our pseudopolyhedra, the 
feasibility of the output of HULLP is justified. For 
convenience of computation, it is also assumed that 
the vertex array V is unchanged through HULLP, 
although redundant vertices in the V array of ~h are 
implied. Also, there are two additional arrays, F~ and E~. 
They are the internality tag arrays, which identify internal 
faces and internal edges of ~ .  Specifically, F~(i)--1 
means that face i of ~ is an internal face, and, similarly, 
E,(i) = 1 means that edge i of ~ is an internal edge. 
Similarly, when F~(i) or Ej(i)is equal to 0, the meaning 
is reversed. These two arrays are O(nlogn) derivable 
from ~,  because the internality of any face f (or edge e) 
can be identified by checking the internality of an 
arbitrary point of I(f)(or I(e)). Figure 11 demonstrates the 
functionality of procedure HULLP on a pseudopolyhedron. 

The first algorithm MERGE given below adds those 
edges and faces of ~h that do not belong to ~ to the 
description arrays E and F of ~ ,  and updates Ef 
correspondingly. A constant time function named 
INSERT_El(El, i, j ) is used. It either sets El(i) to 'j ' if El(i) 
is not previously defined, or appends 'j ' to Ef(i). 

MERGE algorithm 

Procedure 

/*purpose: 

MERGE (nv, ne, nf, V, E, F, Ef, NORMf, FI, El, 
I I ! t ! ! n'v, n'e, n~, V, E, F, Et, NORM1, FH, EH) 

updates the pseudopolyhedron representation of a pseudomanifold ~ by 
adding the newly generated hull faces and hull edges of its convex hull to it. 
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input: 

output: 

(n,, n~, n,, V, E, F, E~, NORMf, F,, E~) . . . . . .  pseudopolyhedron ~ ;  F~ and E, 
are the internality tag arrays of its faces and edges. 
(n', n~,, n~, V', E', F', El, NORMI, FH, EH) . . . . . .  pseudopolyhedron 
representation of the convex hull -Qh of ~ ;  F H and EH are the hull tag arrays of its faces and edges. 
(n,., n,, n~, V, E, F, E~, NORMf, F t, E~) . . . . . .  updated pseudopolyhedron of 
with the newly generated hull faces and hull edges of ~h added; F~ and E~ 
are updated with the following convention: 

FI(i) = 0 
= 1  
= 2  

El(i) = 0 
= 1  
= 2  

face i is a hull face of 
f ace / i s  an internal face 
face i is a face of ~h, but not a face of 
edge i is a hull edge of 
edge i is an internal edge 
edge i is an edge of ,-Qh, but not an edge of 

*/ 
begin 

(1) ETOP = n e 
FTOP = nf 
for i =  1, n'e do 

EMAP(i) = 0 
end do {step 1[ 

(2) for i = 1, n{ do 
if FH(i)= 0 then 

(3) FTOP ~- FTOP + 1 
(4) (e~, e2 . . . .  , el) ~-- F'(i) 
(5) for j = 1, / do 

if EH(ej) = 0 then 
if EMAP(e~)= 0 then 

(6) ETOP ~- ETOP + 1 
(7) EMAP(e i) ~- ETOP 
(8) E(ETOP) ~- E'(ej) 
(9) EI(ETOP) *-  2 

end if 
else 

(6') EMAP(e i) * -  EH(ej) 
end if 

(10) call INSERT_Ef(Ef, EMAP(ej), FTOP) 
end do {step 5} 

(11) F(FTOP) ~--(1, (EMAP(el), EMAP(e2) . . . . .  EMAP(e/))) 
(12) NORMf(FTOP) ~- NORMS(i) 
(13) FI(FTOP) ~- 2 

end if 
end do {step 2~ 

(14) nf = FTOP 
n~ = ETOP 

end {MERGE} 

Comments  on MERGE 
Step 1 initializes two stack pointers FTOP and ETOP, 
which stand for the numbers of current faces and edges 
in l~,, respectively. Array EMAP is the index mapping 
between E' and E, e.g. EMAP( i )= /  means that edge i 
o f~h  is edgej of (current) ~ .  Steps 3-13 are performed 
once for each face of ~h that is not a face of ~ (FH = 0). 
For each edge of a selected face, whether it is also an 
edge of ~ is first checked. If it is not (when its EH---- 0), 
and it has not been previously added to ~ ,  it is then 
added to E with its E~ set to 2 and its EMAP set to a 
unique number ETOP (see steps 6-9). Otherwise, its 

EMAP is assigned with its EH, which is the index of this 
edge in the original ~ (step 6'). At step 10, the 
face-adjacency relationship of this edge in ~ is 
updated, as reflected by the insertion of this selected 
face. Steps 11 and 12 append the selected face and its 
normal to F and NORM~ of -Q. (Note that, because ~h 
is convex, every face of it has only one bounding 
polygon.) Step 13 assigns 2 to the F~ of this face that 
indicates that the added face is not a face of the original 
~ .  To analyse the time requirement of MERGE, note 
that each edge of ~1 h has exactly two adjacent faces 
in ~h. At most, an edge of ~h will be checked, retrieved 
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v~ v3 

MERGE 
~_ v2 

vl 

• Q- -Q.Ps 
Figure 12. Example ot PS description ~ps 
Iv = {Vl, v~, v3, v~, v~, v~, v~, v~} 
E={<v 1, v2), <Vl, v3/~, <v 1, v4>, <vs, v6), <v5, vT), <v5, vs), 

F---- {(1, 10, 2), (1, 12, 3), (11, 2,3), (<10,11,12), <13, 15, 14)), 
<13, 5, 4>, <5,14, 6>, <4, 6, 15>, (7, 9,12 >, <7, 10, 8>, <8, 11, 9>} 

Ef = { ( I ,  2~), (I ,  3), (2, 3 ), <~5, 7), (5, 6~, <~6, 7~, <~8, 9), (9, 10), 
<10,8), <1,4,9), <3,4, 10~, <2,4,8), (5,4~, <4,6), (4, 7)}] 

and stored twice. Steps 12 and 13 take constant time. 
As a result, the loop from step 2 to step 13 is O(n'e + nl). 

The output of MERGE, called the PS description of 
~ ,  and denoted as ~-Ps, is a pseudopolyhedron. Figure 
11 lists the V, E, F, Ef entries of the P description of a 
pseudomanifold. -QPs itself, however, no longer represents 
a legitimate pseudomanifold, as it contains all the 
intermediate data for obtaining the deficiency ~d. For 
the pseudomanifold -(-1 in Figure 12, the boundary of 
its deficiency ~0 consists of the faces 14, 15, [6, [7, fs, g, 
i10, as defined in the F entry of -QPs. The vertices ot ~0 
are v2, v3, v4, vs, %, vT, v0 of -Q~s, and the edges of -Q0 
are e4, es, e6, e7, es, e9, elo , e11, e12, e13, e14, els of  ~'~PS. 
The procedure DIFFBUILD given below will generate -Qd 
using ~Ps. A constant t ime-routine called INSERT(L, i) 
will be used in the algorithm which appends an integer 
/ in to  an integer list L. 

DIFFBUILD procedure 

Procedure 

/*purpose: 

input: 
output: 

*/ 
begin 
(1) 

(2) 

(3.1) 
(3.2) 
(3.3) 

(3.4') 

(4) 

(5) 
(5.1) 
(5.2) 
(5.3) 

(5.4) 

(5.5) 
(5.6) 
(5.7) 

DIFFBUILD (nv, he, nf, V, E, F, El, NORM[, F~, Et, 

ndv, ride, ndf, Vd, Ed, Fd, Edf, NORMdf) 

finds the deficiency ~d of a pseudomanifold ,Q, and outputs the pseudopolyhedron 
representation of ~-d tO the external. 
(n~, n~, nf, V, E, F, El, NORM[, F~, E~) . . . . . .  the PS description of .Q. 
(ndv, n0e, ndf, Vd, Ed, Fd, Edf, NORMdf) . . . . . .  the pseudopolyhedron 
representation of deficiency ~d. 

ndf ~-- 0 
ride ~'~ 0 
ndv *-- 0 
for i =  1, nf, do 

if FI(i) =Y= I then 
ndf ~-- ndf -l- 1 
Fd(ndf) *-- F(i) 
FMAP(i) ~-- nd~ 
if F.(i)----0 then 

NORMdf(ndf) ~- NEG(NORM(i)) 
else 

NORMdf(ndf) *-- NORM(i) 
end if 

end if 
end do {step 2} 

for i =  1, nv, do 
VMAP(i) *-  0 

end do {step 4} 
for i =  1, ne, do 

( [1 ,  [2, " ' ' ,  [k~ ) ~ El(i) 
NewEfi *-  nil 
for j = 1 ,  k, do 

if Fj(fi) # 1 then 
call INSERT(NewEl[, FMAP(fj)) 

end if 
continue {step 5.3} 
if NewEf~ ~= nil then 

ride <'-- ride -~- 1 
Edf(nde) <'-- NewEfj 
EMAP(i) * -  ride 
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(5.8) 

(5.9) 

5.10) 

(5.11) 

{ v,, v2) ~ E(i) 
if VMAP(v 1) = 0 then 

ndv ~--- ndv + 1 
Vd(n~v) *- V(v~) 
VMAP(v~) ~- ndv 

end if 
if VMAP(v 2) = 0 then 

ndv ~- ndv -[- 1 
V~(n~) ~ V(v2) 
VMAP(v2) ~- n~, 

end if 
E~(n~) *-  (VMAP(vT), VMAP(v2)) 

end if 
end do {step 5~ 

(6) for i = 1, ndf, do 
(e l ,  e2 . . . . .  ek~ ~- Fd(i) 
Fd(i) ~-(EMAP(eT), EMAP(e 2) . . . . .  EMAP(ek)) 

end do l step 6} 

end DIFFBUILD 

Comments on DIFFBUILD 
Variables ndf, nde and ndv are the numbers of faces, 
edges and vertices of ~d that have been found. Three 
arrays FMAP, EMAP and VMAP are the mappings from 
the preserved faces, edges and vertices of ~Ps to those 
of-Qd. For example, FMAP(5)= 2 means face 5 of ~Ps 
is face 2 of ~d. At step 1, the total number of faces, 
edges and vertices in -Qd is 0. The loop at step 2 
generates the NORMf set NORMal of -Qd; if a face of 
~Ps is an internal face of ~ ,  it is preserved on ~.d, and 
its normal should be negated (step 3.4). Otherwise, it 
is also preserved, but its normal should be the same 
as the original (step 3.4'). Step 3.2 retrieves the current 
preserved face of ~Ps into the F d set of ~d, while step 3.3 
establishes the index mapping FMAP between them. 
The edge indices of the faces in F d are still the originals 
from E, and they will be mapped to Ed once EMAP is 
established. The mapping VMAP is initialized at step 4. 
The entire loop of step 5 generates the V, E and E~ 
arrays of ~ ,  Vd, Ed and Edf, as well as establishing the 
mappings VMAP and EMAP. Step 5.1 retrieves all the 
faces of ~Ps that are adjacent at an edge of ~Ps. By 
means of checking their F,s, those unpreserved faces 
(steps 5.3-5.4) are filtered out. If the remainder is not 
empty, this edge as well as its end points must be 
preserved on ~d. This is done as follows: step 5.6 inserts 
the ( ~ )  face-adjacency relationship of the edge into 
the Ef array Edf of ~d; step 5.7 assigns the mapping EMAP 
of the edge. Steps 5.9 and 5.10 establish the mapping 
VMAP of the two end points of the edge, and store 
their coordinates from V of ~Ps into the V array Vd 
of ~d. At step 5.11, this edge, with its new end points 
indices of V~, is stored into the E array E~ of -Qd. 
Finally, at step 6, the edge indices in Fd are replaced 
with their mappings in E~. 

Theorem 1: The deficiency -Qd of a pseudomanifold 
can be obtained in O(NlogN + k) time, where 

N is max{n~, nf, nvl of ,Q, and k is the sum of the 
face-adjacency indices in .Q. 

Proo[: As the -QPs of .Q is O(NlogN)-derivable from 
(see the comments on the MERGE procedure), it 

is only necessary to analyse the procedure DIFFBUILD. 
The overall time taken from step 1 to step 4 is O(N). 
The total time for the loop at step 5 plus the inner 
loop at step 5.3 is O(k). Analogously, the loop at 
step 6 is O(k) as well. 

QED 

The occurrence of k can be somewhat unpleasant, 
because of its seemingly nondeterministic relationship 
with N. Fortunately, k is shown to be O(n~) where nf is 
the total number of the faces of the pseudomanifold 
(see Appendix). Therefore, the deficiency of a pseudo- 
manifold can be obtained in O(NlogN) time. 

S U M M A R Y  

An ASV expression of an object .Q is based on two 
operations, convex-hull and difference. It is known that 
the convex-hull operations take O(NlogN) time 9, where 
N is the number of vertices in ~.  In this paper, it is 
shown that the difference between an object ~ and 
its convex hull CH(.Q)is also O(NlogN)in time. 

Although the time to find the deficiency of a given 
is only O(N), it takes O(NlogN) time to construct 

its pseudopolyhedral representation ~Ps. To support 
the data structure and the computation, manifolds, 
pseudomanifolds, and nonmanifolds are distinguished. 
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faces that meet at that edge. First, two definitions are 
introduced: 

Well adjacency of edges: An edge of a pseudo- 
polyhedron is called a well adjacent edge if its 
face-adjacency index is 2; otherwise, it is an ill 
adjacent edge. 
Well orientation of vertices: A vertex v of a 
pseudopolyhedron is said to be well oriented if the 
faces that are incident at v have an order fl, [2, ... ,  
[~ such that fl is adjacent to f2, [2 is adjacent to t 3, 
• -., fk 1 is adjacent to fk, and fk is adjacent to ll; 
otherwise, v is an ill oriented vertex. 

Figure 13 shows an example of well adjacency and well 
orientation. Based on these two characterizations of 
edges and vertices, two operations are defined on the 
ill oriented vertices and ill adjacent edges: 

• Vertex homogenization: A vertex-homogenizing 
operation (VHO) on an ill oriented vertex v is a 
replacement by a set of new vertices (v~, v 2 . . . . .  vm) 
such that all the v~s are well oriented, and have the 
same coordinates as v. 

• Edge homogenization: An edge-homogenizing 
operation (EHO) on an ill adjacent edge e is a 
replacement by a set of new edges (e~, e2 . . . . .  era) 
such that all the eis are well adjacent, and have the 
same coordinates as e. 

Figures 14 and 15 show VHO and EHO operations, 
respectively. 

An operation on a pseudopolyhedron is defined 
below using these two microoperations VHO and EHO. 

Polyhedron homogenization: A polyhedron-homo- 
genizing operation (PHO)on a pseudopolyhedron P 
is a series of VHOs and EHOs such that the resultant 
pseudopolyhedron P' has well oriented vertices and 
well adjacent edges only (see Figure 16). 

Lemma A: The resultant pseudopolyhedron P' of a 
PHO on a pseudopolyhedron P is either a single 
polyhedron or a set of polyhedra. 

Proot: Note that a polyhedron is a special case of 
pseudopolyhedra such that (a) all the faces of it are 
connected, and (b) all its vertices are well oriented 

APPENDIX 

Space linearity of a pseudopolyhedron 

In this appendix, the space required by a pseudo- 
polyhedron is shown to be linear in the number of its 
faces. Referring to Definition 3, let P = (V,  E, F, NORM, 
Ef~ be a pseudopolyhedron with nv vertices, ne edges 
and nf faces. The numbers nv and n e are shown to be 
both equal to O(nf) (for the items V and E). In addition, 
the sum of the face-adjacency indices of all the edges 
is shown to be linear in nf (for F and El). The 
face-adjacency index of an edge is the number of the 

o b 

Figure "13. Well adjacency and well orientation. (a) All 
the edges except e are well adjacent, (b) all the vertices 
except v are well oriented 
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VHO on v 

Iz 1 

Figure `14. Vertex-homogenizing operation 
[Vert ices v~ and v 2 have the same coordinates as v.[ 

EHO on e 

Figure "15. Edge-homogenizing operation 
[Edges e 1, e2, and e- 3 have the same coordinates as e.] 

/ /  
x . / /  

1"x.) 

/ 

Figure 16. Polyhedron homogenizing operation 

/ f  

/ 

and all its edges are well adjacent. By definit ion, a 
PHO has the property (b) but not always (a). 

QED 

The fol lowing theorem is induced by Lemma A. 

Lemma B: Let P(nv, ne, nf) be a pseudopolyhedron 
with n v vertices, ne edges and nf faces. The fol lowing 
are then true: 

n~ is O ( n f ) ,  

n~, is O(n~), 

K = ]~k, is O(nf)  

where k~ is the face-adjacency index of edge e~ 
(i = 1, 2 . . . . .  n~). 

Proof: Let P~, P2 . . . .  , Pm be the polyhedra of P'(n'~, 
n'~, nf), which is the resultant pseudopolyhedron of 

a PHO on P; each of them has Vi vertices, E, edges 
and F, faces (i = 1 . . . . .  m). By the Euler formula 6, 
V, ~< 2F~--4 and E,~< 3F,-- 6 ( i =  1 , . . . ,  m). Summing 
both sides of the inequality yields n'v = Vl + V2 + . . .  + 
Vm ~<2(F1 + F 2 + . . . +  Fm)--4m =2n~- -4m,  and n' e =  
E1 + E2 + . . .  + Ern ~< 3(F1 + F2 + . . .  + Fro) -- 6m = 3nf 
-- 6m. As n v ~ n'v and ne <~ n'~, n v ~< 2 n ~ - 4 m  and 
n e ~ 3nf -- 6m. To prove (c), let L be the total number  
of ill adjacent edges of P. Each EHO operation replaces 
an ill adjacent edge of P with a number of well adjacent 
edges. For an ill adjacent edge e,, exactly (k~/2) - 1 
new edges will be generated. This implies, however, 
that  the sum K' = ~ki  over all the L ill adjacent edges 
of P is 2 ( n ' ~ - n ~ ) +  2L. The sum K " =  gk~ over the 
rest of the n~ - L well adjacent edges of P is certainly 
2(n~ - L). Therefore, K = K' + K" = 2n'~ ~< 6nf -- 12m. 

QED 
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