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1. Introduction 

Throughout this paper ‘ring’ means commutative ring with identity and modules 

are unital. Given rings are usually assumed to be Noetherian, but there are 

notable exceptions. The phrase ‘characteristic p’ always means ‘positive prime 

characteristic p’, and the letters q, q’, etc. denote pe, p”, etc., where e, e’ E N, the 

nonnegative integers. 

The authors have recently introduced the notion of tight closure for a sub- 

module N of a finitely generated module M over a Noetherian ring R of 

characteristic p and in certain equicharacteristic zero cases, including affine 

algebras over fields of characteristic 0. The theory started with the study of the 

notion of tight closure for an ideal I c R, i.e. with the case M = R, N = I, and this 

is still perhaps the most important case. The notion of tight closure has yielded 

new proofs, and, in many instances, unexpectedly strong improvements, of the 

local homological conjectures, of the existence of big Cohen-Macaulay modules, 

of the Cohen-Macaulay property for subrings which are direct summands of 

regular rings (where A is a direct summand of R means that A is a direct 

summand of R as an A-module) in the equicharacteristic case (in fact, tight 

closure techniques give the first proof of this fact in complete generality in the 
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case of equal characteristic zero), and of the Briancon-Skoda theorem on integral 

closures of ideals in regular rings. The method has so far been limited to the 

equicharacteristic case. It would be of great importance to extend the notion of 

tight closure to the mixed characteristic case, where most of the theorems 

described above are conjectures, and, for this reason, it is of importance to 

understand what tight closure means in characteristic p from as many points of 

view as possible. An alternative characterization in characteristic p may well yield 

a definition that can be used in mixed characteristic. 

In this paper we shall explore one such alternative characterization of tight 

closure (see Theorem 3.1), as well as some related ideas which arise in the proof 

that it is a characterization. In this connection, we prove some new results (see 

Theorems 3.2, 3.4 and 4.1) about when an element u of ‘small order’ (essentially, 

this means with respect to a rather arbitrary Q-valued valuation) in a module- 

finite extension S of a ring R has the property that Ru+ S splits over R. It turns 

out that if R is an equicharacteristic complete regular local ring (or a characteristic 

p complete local F-regular Gorenstein ring), then every u of sufficiently small 

order has this property in every S. This may be thought of as a generalization of 

the direct summand theorem (still a conjecture in mixed characteristic), which 

asserts that R+ S splits when R is an equicharacteristic regular ring and S is a 

module-finite R-algebra extension; this is the case where u = 1. Note that 1 has 

order 0, which is the smallest possible order and is ‘small enough’. 

We go quite a bit further, and show that several elements of small order in a 

module-finite extension of a complete regular ring often generate a free direct 

summand; this happens, for example, when the orders of the elements are 

distinct. See Theorem 3.4. Moreover, this result generalizes from regular rings to 

F-regular Gorenstein rings (Theorem 4.1). We also obtain a parallel result for the 

case of one element for F-rational rings; see Theorem 5.1. 

We refer the reader to [17,18,29] for expositions on tight closure, to [20] for 

the main basic theory, and to [19,21-251 for the further development of that 

theory. Background on the local homological conjectures may be found in 

[39,40], the papers [5-7, 9-15, 43-471, as well as [21,24]. For background on 

direct summands of regular rings (and the original inspiration for the problem, 

which came from invariant theory) see [3, 16, 26, 331. Concerning the Briancon- 

Skoda theorem see [4, 35, 36, 481 as well as [20,24]. 

2. Tight closures of ideals in characteristic p 

If R is a ring we shall denote by R” the set of elements of R not in any minimal 

prime of R. Thus, if R is a domain, R” = R - (0). We recall that if R is a 

Noetherian ring of characteristic p, then an element x E R is the tight closure I* 

of an ideal I if there exists an element c E R” such that cx’ E 1”’ for all 

q = pe B 0. Here, I “’ denotes the ideal (i’: i E Z)R. The main case is where R is 
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reduced, and then x E I* iff there exists c E R” such that cx4 E Zlql for all q = p’. 

We mention at once two very important properties of tight closure: in a regular 

ring every ideal is tightly closed, and the tight closure of any ideal is contained in 

its integral closure (but is often much smaller); see [20, Sections 4 and 51. 

We note that if R is reduced and essentially of finite type over an excellent local 

ring, and d is any element of R” such that R, is regular, then d has a power c 

which is a test element: this means that this single element c can be used in all 

tight closure tests. A priori, the element c may vary with Z and x. (In fact, d has a 

power c which is a completely stable test element: this means that it can be used 

in all tight closure tests not only in R, but also in any localization of R, and in the 

completion of any local ring of R as well.) See [20, Sections 6 and 81, [19], and, 

especially, [23, Section 51 (where the result on test elements quoted above is 

proved). 

When R is reduced we denote by R” the ring U 4 R”4 obtained by adjoining all 

qth roots to R, where q = p’. It is shown in [20, Section 61 that one can 

characterize tight closures of ideals I in R by studying elements of small order in 

R”. First note that if cx4 E Z’Y’R for all q + 0, then, taking qth roots, we have that 

C”~X E ZR” for all q % 0. If one puts a notion of order on R”, e.g. by means of a 

valuation with values in the rational numbers Q, one will have ord cl” = 

(1 /q)(ord c) no matter how one chooses the notion of order, and so it will be true 

in R” that there are elements of arbitrarily small order that multiply x into ZR”. A 

converse, Theorem 6.9, is established in [20, Section 61 for the case where R is 

generically smooth, torsion-free, and module-finite over a regular domain A C R 
(this is another case where one knows that R has a completely stable test 

element). 

If S is a completed local ring of R at a maximal ideal, then S is module-finite 

over the completion B of A at the contraction of that maximal ideal to A, and as 

in (6.6) of [20] we have a norm N: S + Z? which extends to a norm N: S”+ B”. 
Let ord be the valuation on B such that ord b 2 r precisely if b E rn; (note that 

(B, mB) is a regular local ring): ord extends uniquely to a Q-valued valuation on 

B”. 
Then Theorem 6.9 of [20] asserts that x E I* iff for every completed local ring S 

of R at a maximal ideal there exists a sequence of elements {E,}, in (S”)” such 

that for all n we have F,X E IS” and lim,,, ord N(s,) = 0. Notice that this 

condition is a priori very much weaker than the one given by the original 

definition of tight closure: here { E~}~ may be different for every S. While each E, 

must be the qth root of some element of S for some q, the element of S may vary 

enormously. All that is required is that ord N(E,)+ 0. Note that with the original 

definition one simply takes F, = cl”” to get such a sequence, it does not vary with 

S. 

One of our objectives is to find an analogue of the characterization of tight 

closure given above that makes sense in mixed characteristic. Thus, we want to 

avoid, as much as possible, the peculiarities of positive characteristic. In charac- 



236 M. Hochster, C. Huneke 

teristic zero and in mixed characteristic the ring R" is not available, but one can 

still talk about the integral closure of R in an algebraic closure of its fraction field 

in the domain case. We shall denote this ring by the symbol Rf. (Integrally closed 

domains with an algebraically closed fraction field are studied in [2], where they 

are called absolutely integrally closed.) It is then natural to define an operation on 

ideals I L R, let us call it the ‘dagger’ operation and denote it It, by letting x E It 

if there are elements E,, of R' - (0) of ‘arbitrarily small order’ such that 

E,X E IR+. We have used quotation marks because it is not immediately clear 

what ‘arbitrarily small order’ should mean. In the local case one may fix a 

Q-valued valuation nonnegative on R and positive on the maximal ideal and use 

this to give a notion of small order. Of course, a priori, each valuation may give a 

different dagger operation. (By a theorem of Izumi [32] (see also [42] for an 

exposition of a generalized version), different valuations centered on the maximal 

ideal of a complete local domain are each bounded by a positive constant times 

the other; however, the situation when one extends to R' is not clear.) 

In the next section we make all this precise, and show that for complete local 

domains of characteristic p the tight closure of an ideal coincides with the dagger 

closure. This is of some interest for several reasons. First, on the face of it, the 

dagger closure might be larger. We are now allowing as our multipliers of small 

order arbitrary elements from R', a much larger ring than R" whose relationship 

to R is significantly harder to understand. 

Second, the dagger closure immediately yields a corresponding notion both in 

equal characteristic 0 and in mixed characteristic. However, it is quite unclear 

whether this notion has sufficiently many of the good properties of tight closure to 

make it useful in solving the many open questions in mixed characteristic that 

yield to tight closure techniques in characteristic p. We discuss this point further, 

as well as some alternative ideas, in Section 6. 

It is worth mentioning here one of the main results of [22]: If R is an excellent 

local domain of characteristic p, then R + is a (balanced) big Cohen-Macaulay 

algebra for R; every system of parameters for R is a regular sequence in R+. This 

gives a new proof of the existence of big Cohen-Macaulay modules in characteris- 

tic p, and provides a surprising new insight into the structure of local rings in 

characteristic p. 

3. Tight closure and elements of small order for complete local domains of 

characteristic p 

In good cases (e.g. if R is module-finite and torsion-free over a regular domain 

or if R is essentially of finite type over an excellent local ring) the issue of whether 

x E R is in Z* for a given ideal I c R is local on the maximal ideals of R and 

unaffected by completion; this is the case, in fact, whenever R has a completely 

stable test element (or a completely stable weak test element: see [20, Sections 6 
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and 81). Therefore, we shall focus in this section on the case where (R, m, K) is a 
complete local ring of characteristic p. Moreover, although analogues of certain 
results can be obained when R is equidimensional and reduced, we shall assume 
for simplicity that R is a domain. To obtain a notion of order we shall fix an 
arbitrary valuation with values in Z, which we denote ord, which is nonnegative 
on R and positive on m, and extend it to R+ so that it takes values in Q; this is 
always possible. Since R + is integral over R, the extension is automatically 
nonnegative on R+. Since each element of the unique maximal ideal m+ of R+ is 
nilpotent on mR+, the extension is automatically positive on m+. One of our main 
results is then the following: 

Theorem 3.1. Let (R, m) be a complete local domain of characteristic p, let x E R 
and let Z c R. Then x E Z* iff there exists a sequence of elements E, E (R+)” such 
that ord E, + 0 as n + 0 and E,X E ZR + for all n. 

The proof of this result depends heavily on Theorem 3.2 and its corollary 
Theorem 3.3 below, and is postponed until we have established these results. 

Let (A, m, K) be a local Gorenstein ring of dimension d. Before giving the 
proof of Theorem 3.2 below (and for application in the proofs of Theorems 3.4 
and 4.1 as well) we want to discuss a criterion for when a map g : Ah - M of a 
finitely generated free module to a finitely generated A-module M has a splitting. 
Let x,, . . , xd be a system of parameters for A, let y represent the socle modulo 
(x) = (x1,. . xd)A in A/(X), and let u,, . , . , uh be the images of the standard free 
basis for Ah in M. A necessary and sufficient condition for the map g to have a 
splitting is that for all nonzero elements (cx,, . , ah) E Kh, and for all t E N, 

(x1 . . . x,)‘y$?(x’+‘)M , 

where (xffl) = (x:f’, . . . ,x’d+’ )A. This guarantees that the induced map g, : 
(A/(x”‘))~ + Ml(x’+‘)M obtained from g by applying (A/(x”‘)) (%A is injective 
for each t, because the socle in A/(x’+‘) is generated by the image of (x, . . . x,)‘y, 
and so this condition implies that a typical nonzero socle element does not map to 
zero. Since each map g, is injective, taking the direct limit we find that the map 
g gA id, : Eh + M @A E is injective, where E = lim, A/(x’) is an injective hull for 
K over A. Applying Horn,,, , E) yields that the induced map from 
Hom,(M @,_, E, E) z MBA Hom,(E, E) z M @3.A A to Hom,(Ah @‘A E, E) s 
Ah @‘A A is surjective, which implies the existence of a splitting after completion. 
But this implies the existence of a splitting over A: cf. [9, Lemma 11. 

Theorem 3.2. Let (A, m) be a complete regular local ring of equal characteristic 
and let ord be a valuation from A+ to Q which is nonnegative on A and positive on 
m. Let x1,. . . , xd be minimal generators of m and let u = minj ord xi. Let u E A+ 
be any element such that ord u < v. Then the map Au - A’ splits over A. 
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Proof. It suffices to show that if A[u] C R C A’ with R module-finite over A, then 
A-+ R splits, for then A-+ A+ is pure and splits by a result of M. Auslander (cf. 
[20, Section 6, the second paragraph of the proof of Corollary 6.241) since A is 
complete. Let Z, = (xicl, . . . , x>+‘)A. 

When A is regular, to show that Au-+ M splits for a finitely generated 
A-module M, it suffices to show that (x, . . . xd)‘u el,M for all t E N. Thus, it will 
suffice to show that u @ I,R :R (x, . . . xd)’ for all t. By part (a) of Theorem 7.15 of 
[20] for the characteristic p case and by the results of [25] for the equicharacteris- 
tic zero case (see also the comments in the paragraph immediately following this 
proof), the colon ideal on the right-hand side is contained in ((x,, . . . , xd)R)*, 
and hence we are done unless u is in the tight closure of (x1, . . , xd)R. But the 
condition on the valuation shows that u is not even in the integral closure of this 
ideal, a contradiction. 0 

The proof of Theorem 3.2 does not use the full strength of the results on 
operations on ideals generated by monomials in a system of parameters obtained 
in [20]; the only result we really need is that 

1+1 (x1 ,...,x~+l)R:~(x,~~~x,)‘R 

is contained in the integral closure of the ideal (x1,. . . , xd)R for all t. However, 
so far as we know, the proof of this result in equal characteristic 0, even when 
stated only for integral closure, requires tight closure techniques. Following [28], 
one can use Artin approximation to reduce to studying the local ring of an affine 
algebra at a maximal ideal, and then pass to characteristic p. The fact that the 
colon is contained in the tight closure in equal characteristic zero cases where tight 
closure is defined and, more generally, in the regular closure (see Section 6) can 
also be proved using Artin approximation [l], but the argument is not straightfor- 
ward, one must find precisely the right statement to which to apply Artin 
approximation. Details will appear in forthcoming manuscripts, still in prepara- 
tion, on tight closure in characteristic zero, beginning with [25]. 

We note that there are related results on controlling colons of parameter ideals 
and Koszul homology of parameters using integral closure: see [28, 30, 31, 411. 
However, without ideas related to tight closure it has so far not been possible to 
control 

r+1 
(x, ,...,~y~)R:~(x~...x~)‘R. 

From Theorem 3.2 we can deduce the following: 

Theorem 3.3. Let (R, m, K) be a complete local domain. Let ord be a Q-valued 
valuation on R+ nonnegative on R (and, hence, on R+) and positive on m (and, 
hence, on m’). Then there exist a jixed real number v > 0 and a fixed postive 
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integer r such that for every element u of R+ of order <u there is an R-linear map 
4 : R+ += R such that $(u)$mr. 

Proof. Fix a complete regular local ring (A, Q, K) with A c R such that R is 
module-finite over A. Let Q = (x1, . . . , xd)A and let v = mini ord x,. Let w = 
Hom,(R, A), which is a torsion-free rank one R-module, and choose an iso- 
morphism o s .Z with an ideal .Z of R. By the Artin-Rees lemma we can choose r 
so large that m’ fl .Z c Q.Z (m and QR have the radical, and so m’.Z c Q.Z for 
t B 0). We shall show that these choices of v and r will give the conclusion of the 
theorem. 

Note that we may identify R+ with A’. By Theorem 3.2, we can fix an A-linear 
map 8:Rf+A such that 0(u) = 1. This gives an R-linear map 
Cc, : R+ + Hom,(R, A) by letting @cl(s) be the functional A, defined by A,(r) = tI(rs). 
Now compose II, with Hom,(R, A) E J c R to get 4. Note that the value of q,(u) 
on 1 E R is 0(1. u) = O(u) = 1. It follows that $(~)$QeHorn,(R, A), and so 
4(u) gQ.Z. Since m’ n .Z c Q.Z, it follows that +(U)ern’. 0 

Proof of Theorem 3.1. Choose v > 0 and r as in Theorem 3.3. Fix q = pe > 0. 
Choose n so large that ord E, < v/q. Let F = E,“. Then EU’ E Z”‘R+ and ord F < V. 
Applying an R-linear map 4 as in Theorem 3.3 we find that cq.uq E Z’q’, with 
cy = $(F) E R - m’. Thus, cquy E (Z’41)* for all q, and so cq E Z, = (Z”‘)* :,u’R 

for all q. 
The sequence Z, is nonincreasing, for if yup4 E (Z’pq’)* then c’( YU~~)~’ E 

(p?l)Wl = ~[w?‘l f or all q’ S= 0 and some c’ # 0. But then c’( YU’)‘~’ E (Z’ql)‘pq’l 
for all q’ % 0, and so yuq E (Z’q’)*, as required. 

Since the sequence {Z,} q is nonincreasing, if it had intersection (0), Chevalley’s 
theorem would force Z, c m’ for large q. Since c, E Z, - m’ for all q, we can 

choose a nonzero element d in n 4 Z9. But then duq E (Z”‘)* for all q. If c is a test 
element for R, we then have cduY E I”’ for all q, which proves that u E I*. 0 

We conclude this section with a generalization of Theorem 3.2 which shows that 
when (A, m, K) is an equicharacteristic complete regular local ring the ring A+ 
splits off many copies of A. 

Theorem 3.4. Let (A, m, K) be a complete equicharacteristic regular local ring 
with regular system of parameters x, , . . . , xd and let ord be a valuation from A’ to 
Q that is nonnegative on A and positive on m. Let v = mini ord x,. Choose a 
coefficient field K c A. 

Let Us,..., uh be elements of A+ linearly independent over K such that in the 
K-vector space V= c I Ku, every nonzero element has order less than u. (This 
holds, in particular, if the ui have distinct orders all less than u.) Then the 
A-module G = cfi=, Au, is free and G+ A’ splits over A. 
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Proof. Let R c A+ be module-finite over A and contain the ui. It suffices to show 

that the map 4 of Ah to R sending (a,, . . . , ad) to c, aiui splits for each such R, 

for then the map Ah+ G c A+ is pure, and consequently, splits, since A is 

complete. By the discussion preceding the proof of Theorem 3.2, this is equiva- 

lent to showing that one cannot choose a nonzero element (cr,, . . . , ah) E Kh such 

that CF=, (Y~(x, . . + xd)‘ui is in I,R, i.e. such that 

$ aiui E Z,R :R (x, * . . xJ’R , 

which, as in the proof of Theorem 3.2, is contained in the integral closure of 

(XI,..., xd)R. But the order of c FE, qu, E V- (0) is, by hypothesis, too small 

for it to be in the integral closure of (x, , . . . , xd)R. 0 

Remark 3.5. The argument also shows that if u,, . . . , uh E R, a module-finite 

extension of the regular local ring A, then the U, are a free basis for an A-module 

that is a direct summand of R over A provided that the ui are linearly in- 

dependent over K and the K-vector space c f=, Kui meets the tight closure (or the 

integral closure, which is larger) of (x,, . . . , xd)R only in 0. Provided that we 

know that A has a coefficient field we do not need to assume that A is complete 

when the result is stated in this form. 

In the next section we shall show that Theorems 3.2 and 3.4 hold when A is an 

F-regular Gorenstein complete local domain of characteristic p. 

4. Splitting theorems over F-regular Gorenstein rings 

Recall that a Noetherian ring of characteristic p is called weakly F-regular if 

every ideal is tightly closed (this implies that every submodule of every finitely 

generated module is tightly closed, see [20, Section S]), and F-regular if all of its 

localizations are weakly F-regular. We have not been able to show that the two 

notions coincide in general, although we believe that this should be true under 

mild conditions on the ring. However, the two notions do coincide when the ring 

is Gorenstein, see [23, Section 41. A weakly F-regular ring is normal, and is 

Cohen-Macaulay if the ring is a homomorphic image of a Cohen-Macaulay ring. 

We mention that it is shown in [24, Section 51 that a weakly F-regular ring of 

charateristic p is a direct summand of every module-finite extension, and in [24, 

Section 61 that this characterizes weakly F-regular rings of characteristic p in the 

Gorenstein case, provided that the ring is locally excellent. We do not know 

whether the property of being a direct summand of every module-finite extension 

(also studied in [37]) is sufficient to characterize weak F-regularity in general in 

the excellent case (without the Gorenstein hypothesis), but it is shown in [22] that 
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the property of being a direct summand of every module-finite extension ring is 

sufficient to guarantee that a ring of characteristic p is Cohen-Macaulay. This is 

very different from the situation in equal characteristic 0, where every normal ring 

is a direct summand of every module-finite extension. 

In [19] (see also [23, Section 51) we introduced the notion of a strongly 

F-regular ring: R is called strongly F-regular if it is reduced, RI” is module-finite 

over R, and for every element d E R”, the map Rd”’ C R”q splits over R for all 

sufficiently large q. It turns out that strong F-regularity is equivalent to F- 

regularity (and to weak F-regularity) when the ring is Gorenstein and R”’ is 

module-finite over R. This point of view for F-regularity is evidently closely 

related to the splitting results we obtain here. We do not know whether a weakly 

F-regular ring R such that R”’ is module-finite over R must be strongly F-regular. 

Our main objective in this section is to extend Theorems 3.2 and 3.4 to the case 

where the complete local ring A is assumed only to be weakly F-regular 

Gorenstein (instead of regular). The discussion is limited to characteristic p. The 

critical tool is Theorem 3.1. 

Theorem 4.1. Let (A, m, K) be a complete, local, weakly F-regular Gorenstein 
ring of characteristic p, and suppose that a coefficient field K c A has been fixed. 
Let A+ denote the integral closure of A in an algebraic closure of its fraction field 
and let ord denote a Q-valued valuation on A’ nonnegative on A and positive on 
m. Then there exists a positive real number v such that if ul, . . . , u,, E A+ are 

linearly independent over K and every nonzero element of V = c F=, Kui has order 
less than v (which is true if the ui have distinct orders less then v), then 
G = Cfi=, Au; has the u, as a free basis and G C A+ splits over A. In particular, if 
u E A+ and ord u < v, then Au is a direct summand of A+. 

Proof. Let x,, . . , xd denote a system of parameters for A and let y E A be an 

element whose image generates the socle in A/(x,, . . . , xd). 
1+1 

Let Z, = 

(x, ,...,x;+l )A. Then the image of (x, . . . x,)‘y in A/Z, generates the socle 

there. Since (x1,. . . , xd)A is tightly closed and y is not in the ideal, we can 

choose v>O so that if cEA+ and ordc<v, then cyj?(x,,...,x,)A’; if we 

could not choose such a v, Theorem 3.1 would imply that y is in the tight closure 

of (x,, . ,x,)A. 
We can now follow the lines of the argument for Theorem 3.4. We must check 

that if A C R C At with R module-finite over A, then the induced map 

(A /I,)” + RII,R is injective, which is equivalent to showing that if u = cF=, (Y,u, is 

a nonzero element of V, then (x, . . . x,)‘yu does not map to 0 in RII,R, i.e. we 

must check that 

But if uyE(x ,,..., xd)*, then there are elements w of arbitrarily small order in 
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R+ = At multiplying uy into (x)R+, and we can choose w such that ord(uw) < V. 

This contradicts our choice of V. 0 

We do now know whether corresponding results hold for complete weakly 

F-regular rings without the Gorenstein hypothesis. There is a parallel for 

Theorem 4.1 for the case where h = 1 (or a parallel for Theorem 3.2) if one limits 

attention to ideals generated by parameters. One is then led to consider F-rational 

rings rather than weakly F-regular rings. This is pursued in Section 5. 

In the remark following the proof of Theorem 3.2 it is indicated that one is only 

using that a certain colon is always in the integraf closure of (xi, . . . , xd), although 

it really is in the tight closure (but the proof that it is in the integral closure seems 

to require tight closure techniques). No such remark applies to the proof of 

Theorem 4.1: however, tight closure ideas appear to be even more innately 

necessary for the proof. 

5. The F-rational case 

A local ring R of characteristic p is called F-rational if one ideal generated by a 

system of parameters is tightly closed, in which case every ideal generated by part 

of any system of parameters is tightly closed. If R is F-rational, then it is normal, 

and if it is a homomorphic image of a Cohen-Macaulay ring, then it must be 

Cohen-Macaulay. Henceforth, we shall consider only F-rational Cohen- 

Macaulay rings. The property passes to all local rings of R. If R is not local, we 

define it to be F-rational if all its local rings are. We refer the reader to [23, 

Section 41 and to [S] for details. 

In the Gorenstein case, F-rational and F-regular coincide. However, there are 

examples of F-rational rings which are not F-pure (cf. [27]) and, hence, not 

F-regular, see [24, Section 41. These examples were constructed by Watanabe [49] 

for a different purpose. Until quite recently we did not know whether F- 

rationality together with F-purity implies F-regularity. We are indebted to K.-i. 

Watanabe for the following counterexample, which uses a result of [50]. 

Let K be a field of characteristic p, with p = 1 mod 3, and suppose that w E K is 

a primitive cube root of unity. Let 

s = K[X, Y, Z]/(X3 - YZ(Y + Z)) = K[x, y, z] . 

Let G = (1, w, w’} act on S K-linearly so as to send the elements X, y, z to x, wy, 

wz respectively. Let R be the fixed ring SC, which is generated over K by x, y3, 

y’z, z3 (note that yz2 = x3 - y’z). Because R+ S splits over R and S is known to 

be F-pure, R is F-pure. Moreover, R is F-rational. However, S is not F-regular, 

and, consequently, neither is R, by [50, Theorem (2.6)]. 
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For isolated singularities and in certain other cases in equal characteristic 0, 

F-rationality implies rational singularities, and it is possible that the characteristic 

0 notion of F-rationality coincides with rational singularity, this is the reason for 

the name. 

The main result of this section is the following: 

Theorem 5.1. Let (A, m, K) be a complete local F-rational ring of characteristic p 
and let ord be a Q-valued valuation on A+ nonnegative on A and positive on m. 
Then there exists v > 0 such that if u is any element of A+ with ord u < v, then for 
every ideal I of A generated by part of a system of parameters, IA’ fl Au = Iu. 

The proof is postponed until we have established Lemma 5.2 below. Note that 

when A is Gorenstein, the contractedness of all ideals I generated by parameters 

implies that Au c A’ is pure and, hence, since A is complete, splits. Thus, 

Theorem 5.1 is a generalization of Theorem 3.2 (and Theorem 4.1 for the case 

h = 1). We first prove the following: 

Lemma 5.2. Let V be a finite-dimensional vector space over a field K Let 

q:V-{O}+(O,~) b e a unc ton f t’ f rom the nonzero elements of V to the positive 
real numbers satisfying 

(1) if u E V- (0) and A E K - {0}, then v(Au) = q(u), 
(2) if u, w, u + w E V- {0}, then ~(u + w) S?(U) + v(w). 
Then there exists v > 0 such that for all u E V - (0)) T(U) > v. 

Proof. We use induction on dim V= h + 1. If h = 0, the result follows from (1). If 

h >O, pick u # 0 in V and let W be the subspace of V spanned by 

S={wEV-{O}:~(w)<~(u)/h}.Thenu~W,orelseu=~~~,hjw,withk~h, 

independent w, , . . , wk E S, and every Aj E K - (0). Repeated application of (1) 

and (2) then yields n(u) < (k/h)T(u) 5 v(u), a contradiction. Since dim W < 

dim V the induction hypothesis implies 77 is bounded away from 0 on W - (0)) and 

hence on V- (0). 0 

Proof of Theorem 5.1. Fix one system of parameters xi,. . . , xd for A and let V 
denote the socle in A I (x, , . . . , xd) A. We define a function from V- (0) to the 

positive reals as follows: for each u E V, if a E A represents u, let n(u) denote 

inf{ord u: u E A+ - (0) and ua E (x1,. . , xd)A+}. The set of u such that ua E 
(x) A’, is independent of the choice of representative a, so that n is a function of 

u. Its value is strictly positive because (x)A is tightly closed, and we may apply 

Theorem 3.1. It is clear that n( Au) = n(u) if A E K - (0). Moreover, if ua, u’a’ E 
(x)A’, then (uu’)(a + a’) E (x)A+, f rom which it is easy to see that n(u + u’) YS 

n(u) + r](u’) when u, u’, u + u’ E V- (0). We may therefore apply Lemma 5.2 to 

conclude that there exists u > 0 such that if u E A’, and a E (x)A :Am (i.e. a 
represents an element of V modulo (x)A) then if ord u < v, ua g(x)A+. We shall 

show that any v with this property satisfies the conclusion of the theorem. 
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We first consider the case where I = (x{“, . . . , x:: ’ )A. The socle in A /I 

consists of all elements represented by (x, . . . xd)‘u, where a represents an 

element of the socle in A/(x)A. If the result were false, we could choose 

a E A representing an element of V and u E A+ with ord u < v such that 

(x, ... x,)‘clu E IA’, i.e. such that au E IA’ :(x1 . . . xc,)‘. This will also hold when 

A+ is replaced by a suitable subring R module-finite over A containing U, and it 

will then follow as before that au E ((x)R)*. But then there are elements w of 

arbitrarily small order in R’ = A’ multiplying au into (x)A+, and we can choose 

w such that ord(uw) < V. This contradicts our choice of V. 

Since (x’)Au is contracted from A+ for all t, the induced map of local 

cohomology H&,(Au)+ H&,(A+) is injective, and this is the same as 

Hi(Au)+ Hi(A+). It follows that for any system of parameters yr,. . , y,, 

HfY,A(A~)-+ HfY,,(A’) is injective, which implies that (y)A+ n Au = (y)u. 

This establishes the result for any ideal generated by a full system of parame- 

ters. But if I = (y,, . . . , y,)A where y,, . . . , y,, ys+,, . . , y, is a system of 

parameters we have that for all t, if J, = (y,, . . . , Y,~, y:+, , . . , y>) then IA+ n 
Au C .Z,A+ 17 Au c Jru, and the result now follows from the fact that n,.Z, = 

I. q 

6. What is tight closure? 

We have seen here that tight closure in characteristic p can be defined using the 

‘multipliers of small order’ idea. The definition the authors use in [25] in the case 

of affine algebras over a field of characteristic 0 is quite different, it uses reduction 

to characteristic p. The advantage of this rather complicated technique is that we 

can prove that the resulting closure operation has good properties comparable to 

the original characteristic p operation; for example (and this is a crucial example), 

ifx,,..., xi are locally parameters in an affine domain R, one has 

(x1,. ’ . ,x,_,)R:.x,Rc ((x,, . . . ,x,-,)R)* 

While the dagger closure arising from a valuation is immediately well defined for 

complete local domains in both equal characteristic zero and in mixed characteris- 

tic, we do not know that it has this property of ‘capturing the colon’. Indeed, it 

may be far ‘easier’ for an ideal to be dagger closed in characteristic zero and 

mixed characteristic, so that it is possible that this kind of operation only gives 

useful information in characteristic p. We feel that it is important to raise (and 

answer) this question. 

There are many other possible approaches to tight closure in characteristic p 
that might generalize to mixed characteristic. In good cases (when there is a test 

element) the tight closure of an ideal Z in a local ring (R, m, K) is the intersection 

of the tight closures of the m-primary ideals containing I. This spotlights the 

problem of characterizing the tight closure of an m-primary ideal in characteristic 
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p. One can get such a characterization by studying the asymptotic behavior of 

Z(R/Ztq’), where 1 denotes length; this is the Hilbert-Kunz function (see [34,38]). 
This function is known to have the form ylqd + 0( qd-‘) where yI is a positive real 

constant and d = dim R. It turns out [20, Theorem 8.171 that if R is analytically 

unramified, formally equidimensional, and has a test element (e.g. if R is 

complete, reduced, and equidimensional), then the tight closure of an m-primary 

ideal I is the largest ideal J containing Z such that yJ = y,. Said otherwise, if 

ZcJcm, then JcZ* iff lim q_J(/‘q’/Z’q’) /qd = 0. This raises the question of 

whether a useful notion of tight closure in mixed characteristic can be obtained by 

studying /(R/Z,) for some sequence of ideals Z, canonically associated with Z 

(these ideals might conceivably be defined in a sophisticated manner placing them 

somewhere between analogues of ordinary powers and analogues of Frobenius 

powers of I). 

Finally, there is the possibility of defining notions corresponding to tight closure 

by using maps to various classes of rings. It is worth noting that in characteristic p, 

if R C S is module-finite and Z is any ideal of R, then IS n R L I* (cf. [24, Section 

51). It is possible that in characteristic p one can characterize the notion of tight 

closure utilizing this idea. We have taken some small steps in this direction in [24, 

Section 61, which are dependent on characterizing when elements are in the tight 

closure of an ideal using finitely many equations that must be satisfied. The 

problem is that the results we have at the moment are limited to the case where 

the ideal is generated by a regular sequence consisting of test elements. 

It should be emphasized, however, that it is certainly impossible to obtain a 

useful notion of tight closure in equal characteristic zero by looking at contrac- 

tions from module-finite extensions in a naive way, because in a normal ring 

containing Q every ideal is contracted from every module-finite extension. 

Finally, we note that both in characteristic p and for affine algebras over a field 

of characteristic 0, if R is a domain, then I* C Zreg, where Zreg, the regular closure 
of I, is the set of elements x E R such that x E IS for every injective map from R 
to a regular ring S (see [21, Section 51). In general, Z* is strictly contained in I’“‘. 

The interesting facts that we have been able to prove about Zreg are consequences 

of tight closure theory. Nonetheless, there is some possibility that a variant of 

regular closure will yield a useful notion of tight closure in mixed characteristic. It 

would be important to answer, for example, the following question: if x1,. . . , xi+1 

is part of a system of parameters in a complete local domain R of mixed 

characteristic, is 

(x1,.. .,~~):x,+~Rc(x ,,..., x~)=~? 

This is true in the equicharacteristic case using tight closure techniques (and Artin 

approximation in equal characteristic 0). 

The theory of tight closure has produced some startlingly strong and un- 

expected results, while simultaneously generating a seemingly endless progression 

of difficult problems. 
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