
European Journal of Operational Research 52 (1991) 167-178 167

North-Holland

Theory and Methodology

Algorithms for a class of single-machine
weighted tardiness and earliness problems

Candace Arai Yano
Department of Industrial & Operations Engineering, University of Michigan, Ann Arbor, M1 48109-2117,
USA

Yeong-Dae Kim
Department of Industrial Engineering, Korean Advanced Institute of Science and Technology, Seoul, Korea

Abstract: We address the problem of determining schedules for static, single-machine scheduling problems
where the objective is to minimize the sum of weighted tardiness and weighted earliness. We develop
optimal and heuristic procedures for the special case of weights that are proportional to the processing
times of the respective jobs. The optimal procedure uses dominance properties to reduce the number of
sequences that must be considered, and some of the heuristics use these properties as a basis for
constructing good initial sequences. A pairwise interchange procedure is used to improve the heuristic
solutions. An experimental study shows that the heuristic procedures perform very well.

Keywords: Scheduling, integer programming, heuristics

1. Introduction

Recent research on scheduling problems has
been concerned increasingly with objectives re-
lated to profitability measures. Two obvious ef-
fects of scheduling on profitability are penalties
for tardy delivery (or expedited shipment to avoid
tardiness) and associated loss of goodwill, and the
cost of inventories due to earliness when the
finished product cannot be shipped before its due
date. The 'no early shipment' rule is quite com-
mon now with the adoption of just-in-time inven-
tory policies by many firms.

We address the problem of determining sched-
ules for static, single-machine scheduling problems

Received February 1989; revised September 1989

where the objective is to minimize the sum of
weighted tardiness and weighted earliness. This
objective permits us to reflect the total 'lost profit'
for each job in a simple and practical way. In the
process of developing optimal procedures for the
general weighted tardiness and earliness problem,
we discovered a subclass of problems for which a
simple sorting procedure can provide precedence
rules, and in some cases, the optimal sequence.
The optimal timing of jobs can be found with
little effort using a highly structured dynamic pro-
gram. Since the sorting procedure can provide
arbitrarily bad results in the worst case, we de-
velop an optimal algorithm for the subclass of
problems and empirically evaluate the sorting pro-
cedure in this context.

Relatively little research has been done on
scheduling problems involving both tardiness and

0377-2217/91/$03.50 © 1991 - Elsevier Science Publishers B.V. (North-Holland)

168 C.A. Yano, Y.-D. Kim / Algorithms for single-machine tardiness and earliness problems

earliness because the inclusion of earliness in the
objective makes it a nonregular measure of perfor-
mance. Sidney (1977) develops an optimal al-
gorithm for the problem of minimizing the maxi-
mum of the costs of earliness and those of tardi-
ness, under the assumption that the costs are
nondecreasing functions of earliness and tardi-
ness, respectively. In that paper, earliness is de-
fined as the difference between the target starting
time and the actual starting time of a job. A more
efficient algorithm for the same problem is given
by Lakshminarayan et al. (1978).

Townsend (1978) addresses the problem of
minimizing the total penalty, where the penalty
for each job is quadratic function of the comple-
tion time. He develops a branch and bound proce-
dure to solve the problem. Gupta and Sen (1983)
use the objective of minimizing a quadratic func-
tion of job lateness, and present both an optimal
branch and bound procedure and a heuristic for
this problem. They limit consideration to sched-
ules with no idle time.

A special case of the weighted tardiness and
earliness problem in which all weights are equal
and the jobs have one common due date, has been
discussed in Kanet (1981), Sundararaghavan and
Ahmed (1984), and Bagchi et al. (1986). A prob-
lem similar to ours is considered by Abdul-Razaq
and Potts (1988). They developed a branch and
bound algorithm for the weighted tardiness and
earliness problem, but do not allow idle time.
Since earliness is a nonregular measure of perfor-
mance, it is possible that delay schedules are opti-
mal, and that the optimal sequence of jobs differs
between delay and nondelay schedules. Therefore,
decisions about completion times of jobs may be
as important as decisions about the sequence.

Fry et al. (1987a, b), Garey et al. (1988), and
Kim and Yano (1986) give algorithms for the
optimal timing of a given sequence. Fry et al.
(1987a) consider a problem in which all earliness
weights are equal, and all tardiness weights are
equal, but the earliness weight differs from the
tardiness weight. They give heuristic algorithms in
which optimal timing for a sequence is determined
through a linear program. Flow times of jobs are
considered in addition to earliness and tardiness
in Fry et al. (1987b). A branch and bound proce-
dure is developed and compared with a solution
procedure using a mixed integer programming for-
mulation.

Kim and Yano (1986) consider problems in
which weights of tardiness and earliness of all jobs
are equal. They use a branch and bound algorithm
to determine the sequence, and a specially desig-
ned algorithm for optimal timing which takes ad-
vantage of the problem structure. Their optimal
timing algorithm runs in O(n 2) time for problems
with equal weights, where n is the number of jobs.
Using an efficient data structure, Garey et al.
(1988) achieve O(n log n) time for both problems
with equal weights and different weights. Note
that the time complexity of an optimal timing
algorithm is important in solving the problem
since it may have to be executed many times to
find an optimal sequence. They also give an NP-
completeness proof for the problem with equal
weights for earliness and tardiness of all jobs.

Taking a somewhat different approach, Pan-
walkar et al. (1982) consider a problem in which
due dates are decision variables. They develop a
polynomial-time algorithm to find both the se-
quence and the due dates to minimize costs arising
from the selected due dates, earliness and tardi-
ness. Further details on the above papers can be
found in an excellent review by Baker and Scudder
(1990).

In the next section we briefly describe a proce-
dure to find the optimal timing of jobs when the
sequence is given. We then present a simple sort-
ing procedure and derive conditions in which it is
optimal. In the subsequent section, we describe a
subclass of problems for which the sorting proce-
dure provides strong precedence information, and
we incorporate these ideas into an optimal partial
enumeration algorithm. Finally, we present an ex-
perimental study in which we evaluate several
heuristic procedures and report on the efficiency
of the partial enumeration algorithm.

2. Dynamic programming procedure for optimal
timing

In this section, we assume that the sequence of
jobs is given and that the decisions involve only
their timing. Let [i] represent the job in the i-th
position in the sequence, and

Dr0 = due date of job [i].
P[O = processing time of job [i].

CA. Yano, Y.-D. Kim / Algorithms for single-machine tardiness and earliness problems 169

eli I = earliness penalty (per unit time) for job

[i1.
~'I,I = tardiness penalty (per unit time) for job

[i].

We assume that zlq >/e[d >/O, since tardiness nor-
mally incurs a larger penalty than does earliness.

The problem can be formulated as a dynamic
program with the following recursion formulas:

f . (s) = m i n { e , , (D . - p . - s) +
s>>-O

+ ' r . (s - Dn+ p.) ++ min fn+l(t)},
t>~S+pn

/ ~ + , (s) = 0 ,

where n denotes the position of the job being
scheduled, and s is the (selected) starting time of
the job in position n.

Since the penalty function for each job is a
piecewise linear convex function of the starting
time of the job (also of its completion time), the
total penalty function for any subsequence of jobs
having no inserted idle time is a piecewise linear,
convex function of the starting time of the first
job in the subsequence. Consequently, the dy-
namic program is easy to solve. At each stage, one
either schedules the n-th job to start at s = D n - Pn
if this would not interfere with jobs n + 1 N,
or schedules it immediately preceding job n + 1
and finds the optimal starting time for the subse-
quence of jobs starting with n and ending with the
first idle period. Finding the optimal starting time
for this subsequence may result in a concatenation
with another subsequence (i.e., an idle period may
be eliminated), and the optimal starting time for
the larger subsequence would then need to be
found.

Computations are further simplified by noting
that (i) the slope of the total penalty function can
change only when a job changes from being early
to being tardy, (ii) the minimum of the function
must occur at one of these extreme points, and
(iii) the function is convex, so one only needs to
consider extreme points until the function starts to
increase. It is worth pointing out that the optimal
solution (at any stage) may not be unique, but it is
advantageous to choose the optimal solution with
the latest starting time for the subsequence be-
cause this provides the most flexibility to the jobs
not yet scheduled. See Kim and Yano (1986) for
additional details.

This procedure allows idle time when it is opti-
mal to do so. In the next section, we develop
conditions in which a simple sorting procedure
produces optimal sequences.

3. A simple sorting procedure

In this section, we show that under certain
conditions on the weights and processing times, it
is optimal to sequence the jobs in nondecreasing
order of D~-p , values. Let s , = D , - p ~ be the
target starting time for job i.

Proposition 1. I f jobs i and j are adjacent and
s, <~ sj, then it is optimal to sequence job i before job
j i f

e,/ej <~ pJp , , (1)

pJp~ ~ , J ~ , (2)

and

e, PJ + ~JP, ~ (5 + SJ)(6 - s, + pj)

or

~, + ~-,~ ~, + ~. (3)

Proof. See Appendix A.

The essence of the proof is that if one ordering
is preferred to the other for all possible starting
times of the earlier of the two jobs, that ordering
must occur in the optimal sequence if jobs i and j
are adjacent. Also if the three conditions above
are satisfied for all pairs of jobs, an optimal se-
quence can be obtained simply by sorting the jobs
in non-decreasing order of the s i values. If condi-
tion (3) is not satisfied for all i and j , sequencing
i before j when s~ ~ sj can have arbitrarily poor
performance, as shown in Appendix B. We now
turn to an description of a subclass of problems
for which the conditions in (1) and (2) are auto-
matically satisfied.

4. A class of problems with proportional weights

Consider a class of problems for which

F. i ~ olpi ,

170 C.A. Yano, Y. -D. Kim / Algorithms for single-machine tardiness and earliness problems

and

= tip/

for all i, and for some nonnegative real values a
and ft. This represents a simply-defined but realis-
tic class of problems satisfying conditions (1) and
(2). If the value (or cost) added to a job is propor-
tional to its processing time, then the inventory
holding cost (earliness penalty) associated with
that value added can be viewed as being propor-
tional to the processing time. Sometimes one can-
not assess a 'value added' because most costs are
fixed. In this case, assuming that capacity is con-
strained (otherwise scheduling would not be a
problem), one should consider the opportunity
cost associated with the use of the equipment as
the 'value added' and therefore also proportional
to the processing time. In a similar fashion, if the
profit from a job is proportional to the processing
time, then the opportunity cost of delayed revenue
due to delayed shipment (tardiness penalty) should
be proportional to the job's processing time. It is
also possible that any additional tardiness cost
due to loss of goodwill might be proportional to
the processing time. Thus, while the conditions
may appear to be restrictive, they are sometimes
realistic.

Arkin and Roundy (1988a, b) study a special
case of this class of problems in which a = 0 and
fl = 1. They prove that this problem is NP-com-
plete and present an optimal pseudo-polynomial
time algorithm for which the running time is
quadratic in the number of jobs and linear in the
sum of processing times of the jobs. They also
present a heuristic, which they call the 'earliest-
gamma-date' rule, in which jobs are sequenced in
increasing order of)'i = Os, + (1 - O)D i, where 0 <
0 < 1. They show that the deviation from the
optimal objective value for this heuristic cannot
exceed 0.5 [0 v (1 - 0)] E, p2. Consequently,
among this class of policies, the best choice of 0 is
0.5.

Let us examine in what circumstances the class
of problems with a, fl > 0 satisfies condition (3).
For this class of problems, condition (3) reduces
to

P i - P j <~ sj - s i. (3a)

If condition (3a) is satisfied, job i should precede
job j . If condition (3a) is not satisfied and s~ > sj,

then we must apply Proposition 1 with the sub-
scripts reversed, from which we find that job j
should precede job i. In situations where s t ~< sj
and (3a) does not hold, the optimal resolution of
the conflict between jobs i and j depends heavily
upon the various penalties. Moreover, in these
cases the jobs overlap when scheduled at their
respective target starting times, so it is clear that
there should be no idle time between the jobs if
they are adjacent. We show that if such a conflict
occurs and jobs i and j are adjacent, the optimal
sequence depends upon when the jobs are sched-
uled (see Appendix C). For this case, i should
precede j in the optimal sequence if

(1) the selected starting time for the earlier job
~< sj - p~, or

(2) the selected starting time for the earlier job
>~ s~.
Simply stated, these conditions say that either
both jobs are early or on time, or both jobs are on
time or tardy. The two instants of time given
above are the breakeven points between i preced-
ing j , and j preceding i. If the selected starting
time for the earlier job is between s j - p~ and s~,
job j should precede job i.

It is now evident that for each possible pair of
adjacent jobs, we can either specify the optimal
ordering regardless o f their timing if certain condi-
tions hold, or depending upon their timing if these
conditions do not hold. This information could be
used to eliminate many alternative sequences.

We were optimistic that in realistic problems, it
would be possible to obtain partial orderings that
would permit elimination of most sequences from
consideration. With this in mind, we propose a
branch and bound algorithm in which branching
involves assigning available jobs to the last availa-
ble position in the sequence. (Thus, the procedure
constructs the sequence backward.)

The proposed optimal algorithm is a variation
of the branch and bound algorithm presented in
Kim and Yano (1986) for a problem in which all
tardiness and earliness weights are equal. Solu-
tions from the heuristic algorithms were used as
upper bounds on the optimal solution. The branch
and bound tree is constructed by assigning jobs to
positions in the sequence starting at the end of the
sequence and moving backward. Thus, each node
in the branch and bound tree is associated with a
partial sequence of the last several jobs in the
sequence. When we branch from a node, the

C.A. Yano, Y. -D. Kim / Algorithms for single-machine tardiness and earliness problems 171

dominance rules for adjacent jobs are used to
avoid considering dominated sequences.

At each node of the branch and bound tree, we
compute a lower bound on the solution that can
be obtained from the partial sequence correspond-
ing to the node. This lower bound is the sum of a
lower bound for the jobs in the partial sequence
and a lower bound for the jobs not in the partial
sequence. The first lower bound can be obtained
by applying an optimal timing algorithm with a
constraint that the first job in the partial sequence
cannot be started until the earliest possible com-
pletion time of the jobs not in the partial se-
quence. The optimal timing algorithm is a varia-
tion of the procedure in Kim and Yano (1986) for
the case of equal weights and requires O(n 2 log n)
time in the worst case. The second lower bound is
obtained using a property presented in Kim and
Yano (1986). Conceptually, this lower bound is
simply the sum of unavoidable earliness and tardi-
ness that occurs because two or more jobs would
conflict if they were scheduled with C~ = D, for all
i, where C~ is the completion time of job i.

Since the problem is a generalization of a prob-
lem with tardiness penalties proportional to the
processing times and earliness penalties equal to
zero, which has been shown to be NP-complete
(Arkin and Roundy, 1988a), this problem is also.
We therefore view the branch and bound al-
gorithm principally as a means to evaluate heuris-
tic solution procedures. In the next section we
propose and test four heuristic procedures and an
improvement routine.

5. Heuristic procedures

We compared five heuristic algorithms with the
optimal algorithm. Four of the heuristics use sort-
ing procedures to find a sequence. In each case,
the final schedule (sequence and timing) is ob-
tained by applying an optimal timing algorithm
for each of the sequences. The sorting procedures
include EDD (earliest due date) rule, MDD (mod-
ified due date) rule, EST (earliest starting time)
rule in which jobs are sorted in increasing order of
the s~'s, and a rule in which the dominance rules
are used to establish a sequence. In the last rule,
all pairs of two jobs are compared and their
priorities (denoted by k,, i = 1 n) are com-

puted as follows. Starting with k, = 0 for i =
1 , . . . , n, we update the ki's by adding 1 to k, if
job i should precede job j , and subtracting 1 from
kj if job j should succeed job i, where each of
these precedence relationships is determined by
assuming that the two jobs are adjacent and that
their starting times are not restricted. By both
adding and subtracting points (rather than simply
adding a point for the earlier job in each pair),
this procedure tends to provide better discrimina-
tion among jobs and to break ties that would
occur under simpler rules. After comparing all
pairs of jobs, a sequence is obtained by sorting the
jobs in decreasing order of the ki values. Ties are
broken by the EST rule. This rule will be denoted
by PREC (short for 'precedence').

After applying these four rules on a problem,
we start with the best among the four heuristic
schedules and apply pairwise interchanges as fol-
lows. For k = n - 1 1, we consider pairwise
interchanges of the job originally in position k
with the subsequent job in the sequence. If an
interchange of the job in position k with the job
in position k + 1 results in an improvement, the
sequence is modified accordingly. An interchange
of the job now in position k + 1 with the job in
position k + 2 is considered, and the sequence is
modified if appropriate. This process is repeated
as long as interchanges result in improvements.
This procedure essentially considers moving the
job originally in position k to later positions in
the sequence by looking forward one position at a
time. This is the fifth heuristic tested in this re-
search and is called INT (short for 'interchange').

For our experiment, 100 problems were gener-
ated randomly with the method used in Potts and
Van Wassenhove (1982). In this method,
processing times of jobs are randomly generated
using a selected distribution, then due dates are
generated using the sum of the processing times of
all jobs and two parameters, the tardiness factor
(T) and relative range (R) of due dates. Follow-
ing their method, the due dates are generated from
a uniform distribution [P(1 - T - ½R), P(1 - T +
½R)], where P is the sum of the processing times
of the jobs. In our test problems, the number of
jobs ranged from 7 to 40, the tardiness factor
ranged from 0.1 to 0.5, and the relative range of
due dates ranged from 0.6 to 1.8. Since only the
ratio of the earliness factor to the tardiness factor
is of consequence when there are proportional

172 C.A. Yano, E-D. Kim / Algorithms for single-machine tardiness and earliness problems

Table 1
Performance of the algorithms on 100 test problems

Problem n T R Heuristic algorithms Optimal algorithm

EDD EST MDD PREC INT CPU B & B CPU

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

7 0.5 1.0
7 0.4 1.0
8 0.5 1.0
8 0.4 1.2
8 0.3 1.2

10 0.5 1.0
10 0.4 1.2
10 0.3 1.4
10 0.2 1.6
10 0.1 1.8
10 0.5 0.9
10 0.5 0.8
10 0.5 0.7
10 0.4 1.0
10 0.4 0.8
12 0.4 0.6
12 0.3 1.2
12 0.3 1.0
12 0.3 0.8
12 0.2 1.4
14 0.2 1.2
14 0.2 1.0
14 0.1 1.5
14 0.1 1.2
14 0.1 0.9
15 0.5 1.0
15 0.4 1.2
15 0.3 1.4
15 0.2 1.6
15 1.0 1.8
15 0.5 0.9
15 0.5 0.8
15 0.5 0.7
15 0.4 1.0
15 0.4 0.8
15 0.4 0.6
15 0.3 1.2
15 0.3 1.0
15 0.3 0.8
15 0.2 1.4
15 0.2 1.2
15 0.2 1.0
15 0.1 1.5
15 0.1 1.2
15 0.1 0.9
16 0.5 0.9
16 0.5 0.8
16 0.5 0.7
16 0.4 1.0
16 0.4 0.8
18 0.4 0.6
18 0.3 1.2
18 0.3 1.0
18 0.3 0.8
18 0.2 1.4
20 0.5 1.0

1373 1325 1373 1325 1325 0.05 1325 0.93
719 719 719 719 719 0.05 719 0.60

23884 23664 23884 23664 23664 0.05 23664 3.07
1217 1217 1217 1217 1217 0.05 1217 0.71
6564 6528 6564 6528 6528 0.05 6528 1.37

12956 12920 13166 12920 12920 0.06 12920 8.63
1955 1955 1955 1955 1955 0.06 1955 4.83

11563 11323 12331 11323 11323 0.11 11323 2.14
6824 6508 6824 6880 6508 0.05 6508 11.09
2952 4374 2952 3096 2760 0.05 2760 12.96
6450 6450 6450 6450 6450 0.06 6450 2.14
3198 3174 3198 3174 3174 0.11 3174 2.14
5787 5667 7101 5667 5667 0.11 5667 2.96
1131 1323 1131 1323 1131 0.06 1131 1.21
8021 8007 8861 7895 7895 0.11 7895 9.01
8869 7602 8869 8435 7602 0.05 7602 33.50
5918 5724 5918 5852 5598 0.11 5598 4.23
7401 8874 7401 8874 7401 0.05 7401 5.55

11745 11775 11745 11927 11745 0.11 11745 106.89
2196 2196 2196 2196 2196 0.06 2196 2.26

11536 12157 11536 11536 11536 0.05 11536 62.83
6298 10636 6298 9376 6298 0.11 6298 92.60

10174 13484 10174 11014 10174 0.11 10174 76.46
13493 13209 13493 13209 12509 0.17 12509 666.91
40343 40343 40343 40343 40343 0.11 40343 459.39

3674 3590 3872 3590 3590 0.11 3590 41.31
5188 6065 5272 5314 5188 0.11 5188 40.09

13720 13991 13720 13991 13656 0.16 13656 97.71
50102 50102 50858 50102 50102 0.11 50102 111.01
13051 14351 13051 14351 13051 0.05 13051 47.68
4451 4491 4731 4359 4359 0.22 4359 47.40
4026 3978 4080 3858 3858 0.17 3858 5.55
9095 9305 9491 9305 9005 0.22 9005 135.45
2519 2827 2519 2827 2519 0.11 2519 10.93

11759 11759 12683 11759 11759 0.16 11759 28.29
17575 17106 17575 17106 17106 0.22 17106 863.49
13811 14291 13811 14291 13811 0.16 13811 567.49
12224 12176 13576 12224 12176 0.11 12176 28.73

9922 10339 9922 10339 9922 0.17 9922 300.66
16456 14034 18220 14034 13936 0.11 13936 34.99
6890 7279 6890 7279 6174 0.11 6174 204.43

28107 28107 28107 28107 28107 0.11 28107 2433.80
3243 3311 3243 3311 3243 0.05 3243 39.76
6766 6994 6766 6994 6766 0.11 6766 238.00

43138 43950 43138 41550 41550 0.16 41550 * 3600.00
16371 16371 16857 16371 1637 0.11 16371 52.35

9034 9034 9034 9034 9034 0.17 9034 60.86
9556 9556 9610 9556 9556 0.11 9556 352.84

15466 15301 15466 15301 15301 0.17 15298 383.38
6870 6864 6870 6864 6864 0.17 6864 260.90

24895 24993 25161 24769 24769 0.33 24769 * 3600.00
4833 5093 4833 5093 4333 0.17 4333 428.37
6072 6274 6072 6274 6072 0.11 6072 1014.64

10795 10920 10795 10920 10795 0.17 10795 * 2649.06
16685 16873 16685 16685 16685 0.22 16685 * 2411.23
7236 7236 7278 7236 7236 0.16 7236 3315.96

C.A. Yano, Y. -D. Kim / Algorithms for single-machine tardiness and earliness problems 173

Table 1 (continued)

Problem n T R Heuristic algorithms Optimal algorithm

EDD EST MDD PREC INT CPU B & B CPU

57 20 0.4 1.2 12507
58 20 0.3 1.4 30705
59 20 0.4 1.6 5622
60 20 0.1 1.8 6048
61 20 0.5 0.9 4613
62 20 0.5 0.8 23955
63 20 0.5 0.7 8406
64 20 0.4 1.0 8734
65 20 0.4 0.8 19604
66 20 0.4 0.6 64137
67 20 0.3 1.2 35551
68 20 0.3 1.0 5960
69 20 0.3 0.8 18755
70 20 0.2 1.4 12137
71 20 0.2 1.2 15870
72 20 0.2 1.0 11121
73 20 0.1 1.5 14264
74 20 0.1 1.2 17192
75 20 0.1 0.9 52419
76 20 0.2 1.2 55709
77 20 0.2 1.0 18946
78 20 0.1 1.5 14740
79 20 0.1 1.2 13911
80 20 0.1 0.9 24121
81 25 0.5 1.0 3574
82 25 0.4 1.2 17614
83 25 0.3 1.4 15704
84 25 0.2 1.6 11704
85 25 0.1 1.8 6448
86 30 0.5 1.0 35685
87 30 0.4 1.2 15112
88 30 0.3 1.4 15828
89 30 0.2 1.6 23063
90 30 0.1 1.8 19411
91 35 0.5 1.0 9806
92 35 0.4 1.2 10366
93 35 0.3 1.3 58104
94 35 0.2 1.6 18106
95 35 0.1 1.8 57313
96 40 0.5 1.0 21753
97 40 0.4 1.2 54287
98 40 0.3 1.4 33161
99 40 0.2 1.6 50796

100 40 0.1 1.8 24751

12507 15048 12507 12507 0.16 12507 31.03
31559 30705 31559 30705 0.22 30705 * 2440.13

9425 5622 9425 5622 0.17 5622 195.43
9898 6048 9898 6048 0.16 6048 489.93
4291 4613 4291 4291 0.17 4291 328.07

23955 24945 23955 23955 0.27 23955 2952.13
8754 9264 8628 8406 0.27 8406 1994.84
9838 8734 9838 8734 0.22 8734 3227.37

19758 20976 19478 19373 0.39 19373 * 290.12
64123 64879 64123 64123 0.27 64123 * 2733.92
33927 37319 33927 33927 0.22 33927 206.90
6043 5960 5960 5960 0.22 5960 * 2837.67

18755 18755 18755 18755 0.22 18755 * 2711.12
12767 12137 12767 12137 0.16 12137 2136.98
15777 15870 14064 14064 0.22 14064 * 2923.91
12816 11121 12816 11121 0.16 11121 * 2241.73
17924 14264 17924 14264 0.17 14264 * 2543.49
25478 17912 25478 17912 0.22 17912 * 2575.13
56769 52419 54099 52419 0.27 52419 * 2374.35
55804 57842 55804 55709 0.22 55709 344.28
19945 18946 19549 18946 0.22 18946 * 2399.81
20173 14740 19259 14740 0.17 14740 987.29
16241 13911 16241 13911 0.22 13911 * 2356.19
29887 24121 29887 24121 0.22 24121 * 2136.66

3937 3574 3886 3574 0.27 3574 * 3600.00
17590 17614 17590 17320 0.38 17320 * 2256.83
17047 15704 16963 15688 0.33 15688 * 2691.84
13912 11704 13912 11704 0.22 11704 * 3600.00
6912 6448 6884 6448 0.22 6448 * 3600.00

35685 37107 35685 35685 0.50 35685 * 2565.02
14978 15492 14908 14433 0.39 14433 1523.47
16644 15828 16644 15828 0.33 15828 * 3600.00
27130 30758 27130 23063 0.33 23063 * 3600.00
19801 19411 19801 19411 0.33 19411 * 3600.00

9770 9806 9770 9770 0.44 9770 * 3600.00
10996 10366 10996 10366 0.60 10366 * 3600.00
58960 58296 58960 58104 0.60 58104 * 2530.14
21586 18229 21586 18106 0.44 18106 * 3600.00
56921 57313 56921 56837 0.49 56837 * 3600.00
21747 22899 21747 21747 0.93 21747 * 2896.00
53703 55085 53584 53496 1.05 53496 * 3034.97
33621 35153 33349 33161 0.66 33161 * 3203.09
53796 52749 53699 50796 0.60 50796 * 3137.67
26780 24751 26780 24751 0.66 24751 * 3600.00

* This is the incumbent solution at the time when the algorithm was stopped.

weights, a was set to 1 for all problems and /3
ranged from 3 to 9.

The algorithms were coded in FORTRAN and run
on a personal computer (Zenith Z386). To prevent
excessive computation time, the branch and bound
algorithm was stopped after 3600 seconds (one
hour) of CPU time for each problem. In addition,

c o m p u t a t i o n w a s s t o p p e d w h e n t h e m e m o r y re-

q u i r e m e n t s f o r a p r o b l e m e x c e e d e d t h e c a p a c i t y o f

t h e c o m p u t e r m e m o r y (640 k B o f a c c e s s i b l e R A M) .

T h e r e s u l t s o f t h e c o m p u t a t i o n a l e x p e r i m e n t s

a r e g i v e n in T a b l e 1. T h e t a b l e s h o w s t h e n u m b e r

o f j o b s , t h e t a r d i n e s s f a c t o r (T) , t h e r e l a t i v e r a n g e

(R) o f d u e d a t e s , s o l u t i o n v a l u e s , a n d C P U t i m e s

174 CA. Yano, Y.-D. Kim / Algorithms for single.machine tardiness and earliness problems

for each problem. The CPU time given for the
heuristic algorithms is the total CPU time required
for all five algorithms.

As shown in the table, a half of the 20-job
problems and most of the smaller problems were
solved optimally by the branch and bound al-
gorithm. Considering the combinatorial aspect of
the algorithm, this is a very encouraging result.
During testing of the branch and bound al-
gorithm, another set of tests was done on small
problems. (The results are not shown here.) These
tests were designed to study the effects of the
dominance rules and the lower bounding methods.
The dominance rule in Proposition 1 provided a
good pruning tool and eliminated many dominated
partial sequences. However, the bounding scheme
used for the jobs not in a partial sequence did not
perform as well as the dominance rule principally
because the lower bound for jobs not in the partial
sequence is quite loose. Although the bounds re-
duced the number of nodes generated (and there-
fore, the memory size needed for a problem), the
computation time was not reduced significantly
because of the time required to compute the bound.
Further research is needed to develop an im-
proved bounding scheme for this problem.

Compared with the solutions from the branch
and bound algorithm, the solutions from the heur-
istic INT were very good. INT found good solu-
tions in a fraction of the CPU time needed for the
branch and bound algorithm. Only one of the
solution out of 100 was proven to be non-optimal.
Even in that problem (Problem 49), the difference
between the heuristic and optimal solutions was
less than 0.1%. Indeed, we actually had to try to
find a problem for which INT produced a solution
that was inferior to the incumbent branch and
bound solution. It is also important to point out
that it is well known that in many branch and

bound algorithms, the optimal solution is found
quickly and the remainder of the CPU time is
spent verifying optimality. Thus, although the
computation was stopped prior to termination in
some cases, the final incumbent solution may be
optimal or very close to optimal.

Performance of the five heuristics is further
analyzed in Tables 2 and 3. Table 2 shows the
average and the worst case performance ratios of
the algorithms for different tardiness factors, while
Table 3 shows the same for different relative ranges
of due dates. The performance ratio in the tables
is the ratio of the deviation of the heuristic objec-
tive value from optimality to the optimal objective
value. If an optimal solution was not found at the
termination of the algorithm, the current in-
cumbent solution was used instead of an optimal
solution when computing this ratio. Therefore, the
ratios in the tables are actually optimistic esti-
mates of the exact ratios.

From Table 2, it is apparent that as the tardi-
ness factor becomes large, the performance of EST
and PREC improves, while the performance of
EDD and MDD is less sensitive to the tardiness
factor. PREC performed best when due dates were
tight, and EDD was the best when they were not
tight. A similar pattern was observed for sensitiv-
ity to the relative range of due dates. While the
performance of EDD and M D D did not depend
heavily on the relative range, EST and PREC
performed better when the range was small. This
can be partly explained as follows. When the due
dates of jobs are dispersed, there would be little
conflict between jobs even if they were scheduled
to be completed at their due dates. Therefore, the
solution from the EDD sequence may be close to
an optimal solution. On the other hand, when the
due dates are not dispersed widely, they do not
play a s much of a role in determining the se-

Table 2
Performance ratios of the algorithms for each tardiness factor

No. of Average performance ratios
probs EDD EST MDD PREC INT

Worst case performance ratios

EDD EST MDD PREC INT

0.1 19 0.0103 0.1856 0.0103 0.1593
0.2 19 0.0249 0.1374 0.0544 0.1190
0.3 20 0.0128 0.0377 0.0276 0.0383
0.4 21 0.0151 0.0357 0.0415 0.0319
0.5 21 0.0132 0.0113 0.0456 0.0070

Total 100 0.0152 0.0788 0.0361 0.0699

0.0 0.0786 0.6357 0.0787 0.6366 0.0
0.0 0.1808 0.6888 0.3337 0.6765 0.0
0.0 0.1154 0.1990 0.1154 0.1990 0.0
0.00001 0.1667 0.1698 0.2032 0.1698 0.00020
0.0 0.0750 0.1016 0.2530 0.0873 0.0

0.00000 0.1808 0.6888 0.3337 0.6765 0.00020

C.A. Yano, Y.-D. Kim / Algorithms for single-machine tardiness and earliness problems

Table 3
Performance ratios of the algorithms for each relative range

175

No. of
probs

Average performance ratios Worst case performance ratios

EDD EST MDD PREC INT EDD EST MDD PREC INT

0.6 4 0.0499 0.0023 0.0554 0.0274 0.0 0.1667 0.0090 0.1667 0.1096 0.0
0.7 4 0.0078 0.0187 0.1037 0.0149 0.0 0.0212 0 . 4 1 4 0 .2530 0.333 0.0
0.8 12 0.0067 0.0101 0 .0326 0.0062 0.0 0.0436 0.0420 0 .1224 0.0430 0.0
0.9 8 0.0197 0.0513 0.0285 0.0339 0.0 0.0750 0.0239 0.0863 0.2390 0.0
1.0 22 0.0041 0 .0766 0.0169 0.0643 0.00001 0 .0362 0.6888 0 .1150 0 .4887 0.00020
1.2 21 0.0299 0.0741 0.0473 0.0596 0.0 0.1284 0.4224 0 .2032 0.4224 0.0
1.4 11 0.0189 0.0263 0.0423 0.0241 0.0 0.1808 0 . 8 6 6 0 .3074 0.0813 0.0
1.5 4 0.0 0.2426 0.0 0.1667 0.0 0.0 0.3679 0.0 0.3065 0.0
1.6 7 0.0069 0 .1844 0.0732 0.1926 0.0 0.0486 0.6765 0.3337 0.6765 0.0
1.8 7 0.0111 0.2138 0.0111 0.1470 0.0 0.0696 0.6366 0.0696 0.6366 0.0

Total 100 0.0152 0.0788 0.0361 0 .0699 0.00000 0.1808 0.6888 0.3337 0.6765 0.00020

quence; the relative magnitudes of the penalties
are more important . These results corroborate
findings on the tardiness minimization problem.
In the tardiness problem, when two jobs are both
late, it is better to sequence the two jobs in SPT
(shortest processing time) order rather than E D D
order.

All of the above results demonstrate the impor-
tance of including a pairwise interchange method
in the heuristic algorithm. It can enhance the
per formance of a heuristic without much ad-
ditional computa t ion time. In our algorithm, the
interchange routine runs in O (n 2) time.

6. Conclusions

We have developed optimal and heuristic pro-
cedures for the problem of minimizing the sum of
weighted tardiness and weighted earliness on a
single machine when the weights are proport ional
to the processing times of the jobs. Dominance
criteria are derived which eliminate many possible
sequences from considerat ion in the optimal
b ranch and bound procedure, and provide a basis
for determining an initial sequence and evaluating
potential improvements in the heuristic proce-
dures. Al though the problem is known to be NP-
complete, the dominance criteria permitted us to
opt imally solve many problems with 15 jobs or
more. Fur ther research to develop a tighter lower
bound may permit much larger problems to be
solved optimally.

A composi te heuristic which combines several
sorting routines and a simple pairwise interchange

procedure performed extremely well in computa-
tional tests. In only one out of 1000 problems did
the optimal algorithm (with a generous C P U time
trap) find a better solution than the heuristic
procedure. Addit ional research is needed to de-
velop dominance criteria and heuristic procedures
for the more general weighted tardiness and earli-
ness problem.

Appendix A: Proof of Proposition 1

We initially consider the case of no idle time
between jobs, and then extend the results to the
case of permitted idle time. Recall that for each i,
e;E; + "tiT ~ is a piecewise linear convex funct ion of
the complet ion time (and therefore also the start-
ing time) of job i. Consider two jobs, i and j ,
processed sequentially. For each of the two order-
ings, total weighted earliness and tardiness (which
we refer to as total cost) is a piecewise linear
convex function of the starting time of the earlier
job.

Observe that for sufficiently early starting times,
bo th jobs will be early, and the total cost declines
(for a while) at a rate of e; + ej as the starting time
is increased. Similarly, for sufficiently late start ing
times, both jobs will be tardy and the total cost
increases by ~-, + Tj as the starting time is in-
creased. Thus, for sufficiently small and large
starting times, the total cost has the same slope,
regardless of the ordering. This fact, in conjunc-
tion with the piecewise linear convex nature of the
cost functions makes it sufficient to compare the
two cost functions at all extreme points to estab-

176 C A . Yano, Y.-D. K im / Algorithms for single-machine tardiness and earliness problems

Table A.1
Total cost at possible extreme points: Case 1 (s~ - pj < s t <~ s-i

- P i < s - i)

Starting Sequence
time i before j

Table A.3
Total cost at
< s, ~<s-i)

si - p-i etP-i + e(s-i - st

- P i + P- i)

S~ e.-i(S-i -- S i + Pi)

s-i - p~ ~'i(s~ - Pi - s,)

s~ r,(s~ + s A + r-ip~

possible extreme points: Case 3 (s-i - p, <~ st - pj

Starting Sequence

j before i time i before j

efls-i - s i + p j) s j - p , e t (s ~ - s~ + Pi)

"r, pj + ~j(s~ - si) s, - p-i ~iP-i + 5"(si - s-i
"ri(si - Pi + Pj - s+) + Pi - P-i)

+ ~jPl si "l'j(S i - - S-i + Pi)
"rt(p/ + Sj -- s,) s-i "ri(s j -- s~)+ r-ipi

j before i

~t(s, - s-i - p-i + Pt)
+ e-ip,

, j (s~ - s~ + p+)

rgp-i + efls-i - s,)

ri(s-i - s~ + p-i)

lish that one dominates the other. This is the
approach used in our proof .

There are only four start ing times at which
ext reme points can (but do not necessarily) occur:
(1) s~; (2) s+; (3) s ~ - p j ; (4) s / - p ~ . At t ime s,, if
job i is scheduled first, it changes f rom being early
to being tardy. Similarly, at s j , job j changes f rom
being early to being tardy if it is scheduled first.
At a start ing t ime of s ~ - p / , job i changes f rom
being early to being tardy if job j is scheduled
first. Likewise, at a start ing t ime of s j - p ~ , job j
changes f rom being early to being tardy if job i is
scheduled first.

There are three possible relat ionships among
the four possible extreme points in (1)-(4) above:
C a s e 1. s~ - p j < s i <~ s j - P i < s j .

C a s e 2. s i - p j <~ s j - P i <~ si <~ s j .

C a s e 3. s j - P i <~ si - P j < si <~ s j .

The values of the cost funct ion at each possible
ext reme point can be obta ined easily for each of
the two possible j ob sequences. These values are
shown in Tables A .1 -A .3 for the three cases listed
above.

Opt imal i ty of the schedule in which i precedes
j can be proved by s imply compar ing the total
costs of the two orderings, using Tables A.1-A.3 .

Table A.2
Total cost at possible extreme points: Case 2 (s i - p-i <<. s-i - pi
< s~ <~ s j)

Starting Sequence

time i before j j before i

s, - p+ ~,pj + e / s j - si ej(s+ - s, + p~)
+ p-i - p~)

s-i - p, e , (s t - s-i + p,) "r,(s-i - s i + P i - P,)
+ e-ipg

s, "r-i(s, - s-i + p,) "r~pj + ~-i(s-i -- st)
S-i "ri(sj-- s i)+ ~jp i "ri(s-i-- si + pj)

C a s e 1.

Starting t ime s i - p j :

i precedes j if e, pj - ejpi ~< 0 or e ~ / e s < ~ p J p / .

Starting t ime s /

i p r e c e d e s j for a l l e j > ~ 0 , r~>~0.

Starting t ime s / - p~:

i precedes j for all ~'~ >/0, ej >~ O.

Starting t ime s j:

i precedes j if ~ P i <~ r i p / or p J p j ~ " r J ~ .

C a s e 2.

Starting t ime s~ - p /

i precedes j if e i p j - e j p i ~ 0 or e i / E j < ~ p J p / .

Starting t ime s / - p~:

i precedes j

if e , (s ~ - s j + p ~) <~ "r~(sj - P i + P j - s~) + e j p ~ .

Rewrit ing the condit ion, we have (r~ + e ~) (s s -

S j + P i) ~ "riPj + e j P i , where 0 <~ s i - s j + P i ~ P j by
definition. Thus, (~ + e i) (s i - s j + P i) <~ (r i + E i) P / ,

and (~ + e i) P j ~ r i p / + e j p i if ~-iPj <~ e j P i or ei /e /

<~ P i / P i "
Starting t ime s~:

i precedes j if ,9(s+ - sj + p i) ~ ~',pj + e J (6 - s ,)

or ~p~,pj+ (~ + ~j)(6-s~).

Since sj - s~ >~ 0, the second te rm on the right-
hand side is nonnegative. The only condi t ion is
p J p j <~ , r y r / .

CA. Yano, Y.-D. Kim / Algorithms for single-machine tardiness and earliness problems 177

Starting time S/:

i precedes j if "(/P, ~< "riPJ or p, /pj <~ ~J'rj.

Case 3.
Starting time s / - p /

i precedes j if ejp i - eip j >~ 0 or ei/el ~Pi /P j .

Starting time s t - pfi

i precedes j

if eip j + Z l (s , - sj + p , - p j) <~ e j (s j - s i + pj)

or eipi + rjPi <~ (ej + ~ .) (s j - si + Pj).

If riP9>~ ~p, , then the left hand side of the
inequality is less than or equal to (e~ + ~'i)pj. Since
s j - s, >/O, in this situation a simpler sufficient
condition is e, + % ~< ej + r9"

Starting time s /

i precedes j

if "rj(s~ + p , - sj) <~ "r, pj + ej(sj - s,)

or "r, pi <~'riPj + ('cj + e j) (s j - - si).

Since : (/ - s, >i O, this is satisfied if p J p j <~ rJ'rj.
Starting time s /

i precedes j if %Pi <~ "c, Pl or p J p j <~ ~,/~j.

We next sketch a proof to show that the above
results are true even when idle time between jobs i
and j is permitted. When both jobs are early, the
schedule can be improved by permitting idle time
between the jobs. However, it is easy to show
(proof omitted here) that the schedule with idle
time is dominated by another feasible schedule
with a later starting time and without idle time
between the two jobs. Thus, the analysis for the no
idle time case applies here.

In all other cases, either (1) the schedule for
neither sequence can be improved by permitting
idle time, or (2) the schedule for the sequence with
i before j can be improved by permitting idle
time, but the schedule for the other sequence
cannot. (The proof is tedious but straightforward.)
Hence, the differences between the costs reflected
in Tables A.1-A.3 represent upper bounds on the
errors.

This, along with the proof for the case of no
idle time between jobs, completes the proof of the
proposition.

Appendix B: Worst case analysis of the sorting
procedure

In this appendix, we demonstrate that in the
worst case, sorting jobs in nondecreasing order of
the s, values can have arbitrarily poor perfor-
mance. Consider a situation in which s / - p ~
s i - p j <s, 4 s / , and suppose that the optimal
schedule has j preceding i with job j starting in
(s j - p , , s]. In this case, both jobs are early and
the penalty is

- t ,) t ,) ,

where tj is the actual starting time of job j , and t,
is the actual starting time of job i.

Since both jobs are early, it is advantageous to
have no idle time between the jobs and to delay
both jobs at least until one of the two (in this case,
job i) is exactly on time (tj = s , - p j , t, = s,). Sup-
pose now that r, > e, > e j, so it is undesirable to
make job i tardy in order to reduce the earliness
of job j . Then, the optimal solution is the one
given above, and the associated penalty is

e j (s j + P i - s ,) .

Now consider what happens when the sorting
procedure results in job i preceding job j , with job
i starting after s~. In this case, both jobs are tardy.
As such, it is optimal to have no idle between the
jobs and the penalty is

Since we cannot determine the value of t, a priori,
this penalty can be arbitrarily large (although
clearly finite).

Appendix C: Analysis of situations where job j
should precede job i when s i < s j

Recall that condition (3) in Appendix A per-
tains to situations where sj - Pi ~< s, - pj < s, ~< S r
We have already shown that under the condition
of proportional weights, if condition (3) holds and
jobs i and j are adjacent, job i should precede job
j if the starting time of the earlier is less than or
equal to s j - p, or greater than or equal to s,. Let
us analyze what happens when the starting time of
the earlier job is between the two points.

178 C.A. Yano, Y.-D. Kim / Algorithms for single-machine tardiness and earliness problems

For any starting time t ~ (s j - p , s~ -py] , the
cost if job i immediately precedes job j (with no
idle time between them) is

t) + l + p , - s+),

and the cost if job j precedes job i is

s j - t) + s, - t - p j) .

Thus, the sequence with i before j is preferred if

e i (s i - t) + r j (t + P i - s j)

Using the fact that e~pj---ap~pj = ejp,, this sim-
plifies to

t <~ s j - p , ,

which is inconsistent with the original assumption
about t. Therefore, if jobs i and j are scheduled
with one immediately after the other, it is better to
put job j first under the conditions given above.
Moreover, it is obvious that since both jobs are
early when job j is sequenced first, the cost associ-
ated with that sequence can be reduced by insert-
ing idle time between the two jobs. In the other
sequence, however, one job is early and the other
is tardy. Hence, it is optimal to have no idle time
between the jobs, and its cost cannot be reduced
further. Consequently, the conditions given above
reflect a case where job j should always precede
job i.

For a starting time t E (s~-p/ , s,), the cost if
job i precedes job j is

e i (s i - t) + "rj(t + P i - s j) ,

and the cost if job j precedes job i is

(s., - t) + ",', (, + p: - s ,) .

Using arguments similar to those above, it can be
shown that the sequence with j before i is always
preferred under the stated conditions.

References

Abdul-Razaq, T.S., and Potts, C.N. (1988), "Dynamic pro-
gramming state-space relaxation for single machine sched-
uling", Journal of the Operational Research Society 39/2,
141-152.

Arkin, E.M., and Roundy, R.O. (1988a), "A pseudo-poly-
nomial time algorithm for weighted-tardiness scheduling
with proportional weights", Technical Report No. 812,
School of Operations Research and Industrial Engineering,
Cornell University, Ithaca, NY.

Arkin, E.M., and Roundy, R.O. (1988b), "Weighted-tardiness
scheduling on parallel machines with proportional weights",
Technical Report No. 768, School of Operations Research
and Industrial Engineering, Cornell University, Ithaca, NY.

Bagchi, U., Sullivan, R.S., and Chang, Y.L. (1986), "Minimiz-
ing mean absolute deviation of completion times about a
common due date", Naval Research Logistics 22/3, 585-
592.

Baker, K.R., and Scudder, G.D. (1990), "Sequencing with
earliness and tardiness penalties: A review", Operations
Research 38/1, 22-36.

Fry, T.D., Armstrong, R.D., and Blackstone, J.H. (1987a),
"Minimizing weighted absolute deviation in single machine
scheduling", l IE Transactions 19/4, 445-450.

Fry, T.D., Leong, G.K., and Rakes, T.R. (1987b), "Single
machine schedufing: A comparison of two solution proce-
dures", OMEGA 15/4, 277-282.

Garey, M.R., Tarjan, R.E., and Wilfong, G.T. (1988), "One-
processor scheduling with symmetric earliness and tardi-
ness penalties", Mathematics of Operations Research 13/2,
330-348.

Gupta, S.K., and Sen, T. (1983), "Minimizing a quadratic
function of job lateness on a single machine", Engineering
Costs and Production Economics 7, 187-194.

Kanet, J.J. (1981), "Minimizing the average deviation of job
completion times about a common due date", Naval Re-
search Logistics Quarterly 28/4, 643-651.

Kim, Y-D., and Yano, C.A. (1986), "Algorithms for single
machine scheduling problems minimizing tardiness and
earliness", Technical Report 86-40, Dept. of Industrial and
Operations Engineering, The University of Michigan, Ann
Arbor, MI 48109-2117.

Lakshminarayan, S., Lakshmanan, R., Papineau, R.L., and
Rochette, R. (1978), "Optimal single-machine scheduling
with earliness and tardiness penalties", Operations Research
26/6, 1079-1082.

Panwalkar, S.S., Smith, M.L. and Scidmann, A. (1982), "Com-
mon due date assignment to minimize total penalty for the
one machine scheduling problem", Operations Research
30/2, 391-399.

Potts, C.N., and Van Wassenhove, L.N. (1982), "A decomposi-
tion algorithm for the single machine total tardiness prob-
lem", Operations Research Letters 1/5, 177-181.

Sidney, J. (1977), "Optimal single-machine scheduling with
earliness and tardiness penaltties", Operations Research
25/1, 62-69.

Sundararaghavan, P.S., and Ahmed, M.U. (1984), "Minimizing
the sum of absolute lateness in single-machine and multi-
machine scheduling", Naval Research Logistics Quarterly
31/2, 325-333.

Townsend, W. (1978), "The single machine problem with
quadratic penalty function of completion times: A branch
and bound solution", Management Science 24/5, 530-534.

