Production and use of ⁶He, ⁷Be, ⁸Li, ¹²B and metastable nuclear beams *

F.D. Becchetti, J.A. Brown, K. Ashktorab, J.W. Jänecke, W.Z. Liu¹ and D.A. Roberts *Physics Department, University of Michigan, Ann Arbor, MI* 48109-1090, USA

R.J. Smith, J.J. Kolata, K. Lamkin and A. Morsad²

Physics Department, University of Notre Dame, Notre Dame, IN 46556, USA

R.E. Warner

Physics Department, Oberlin College, Oberlin, OH 44074, USA

A low energy (few MeV/nucleon), modest flux $(10^4-10^7/s)$ radioactive nuclear beam (RNB) facility has been in operation for approximately three years at the University of Notre Dame Van de Graaff accelerator. This facility utilizes a compact superconducting solenoid lens, designed at the University of Michigan, with adjustable apertures to produce momentum-analyzed secondary beams via the direct transfer and other methods. Useable beams of ⁶He, ⁷Be, ⁸Li, ¹²B, ¹⁸F and to our knowledge the first isomeric beam, ^{18m}F, have been produced and a first generation of RNB experiments has been successfully completed.

1. Recent RNB development

The RNB beamline at the University of Notre Dame is shown schematically in fig. 1. The radioactive nuclei formed in the primary target are collected over a large angular acceptance (typically 5-11°) by a compact superconducting solenoid. The solenoid acts as a thick lens [1,2] focusing ions of a given magnetic rigidity to a circle of least confusion, which is typically 5 mm in diameter, at the secondary target $\sim 2 \text{ m}$ downstream of the primary target. An adjustable aperture in the midchamber can be used to block unwanted ion species of lower magnetic rigidity. The cylindrical symmetry and large acceptance solid angle make this a simple and efficient device for RNB production [3-5], avoiding some of the background problems encountered when using dipoles or quadrupoles for this purpose [6-8]. The short flight path and isochronism of the device is also advantageous for time-of-flight measurements and detection of short-lived, isomeric nuclei ($T^{1/2} \ge 100$ ns). The use of a simple air core magnet allows one to easily adjust the position of the production target and hence optimize the object and image positions of the beam foci for specific experiments. Thus by moving the production target forward we can increase the secondary RNB energies, although with a reduction $(\times \frac{1}{3})$ in RNB intensity.

The Notre Dame FN tandem Van de Graaff accelerator, with the recent addition of an intense negative ion Cs sputter source (SNICS ion source), is capable of delivering 10 eµA of beam (e.g. 17 MeV ⁷Li) to our primary production target. We have therefore installed a rotating primary target assembly, thus reducing local target heating by 20 times or more. In addition, to efficiently filter out unwanted scattered particles at lower rigidities than the desired secondary beam, a z-axis (solenoid axis) moveable beam stop has been installed in the mid-plane chamber (fig. 1). This has proved essential to remove ⁸Li* ($E_x = 0.98$ MeV) contaminants from the focused ⁸Li secondary beam from the ⁹Be(⁷Li, ⁸Li*) primary reaction.

During the past three years we have investigated several production reactions leading to secondary beams. As an example, the production-reaction spectrum to preferentially form ^{18m}F in its $J^{\pi} = 5^+$ metastable level is shown in fig. 2. Table 1 summarizes the yields and characteristics of secondary RNB beams achieved to date [3–5,9–13]. The RNB energy resolution is typically 300–500 keV FWHM at $E \doteq 14$ MeV (i.e. 0.3%). This is usually sufficient to separate low-lying nuclear levels, at least in light nuclei. The RNB energy resolution is an important aspect since a detailed analysis of any phe-

 ^{*} Supported in part by the US National Science Foundation.
 ¹ Present address: Texas A & M University, Cyclotron Institute, College Station, TX 77843-3366, USA.

² Present address: Centre de Recherches Nucleaires, B.P. 20 CR, 67037 Strasbourg Cedex, France.

Fig. 1. Schematic diagram of the RNB beamline at the University of Notre Dame.

Table 1 Secondary RNB beams

RNB	Production reaction	Primary target (mg cm ⁻²)	E(RNB) [MeV]	FWHM [MeV]	Yield (100 enA^{-1})	Conversion efficiency	Beams achieved [s ⁻¹]	Achievable [s ⁻¹]
⁸ Li	⁹ Be(⁷ Li, ⁸ Li) at 17 MeV	⁹ Be (2.29)	14.9	0.55	48580 s ⁻¹	2.2×10^{-7}	$> 1.2 \times 10^{7}$	$\geq 5 \times 10^7$
⁶ He	⁹ Be(⁷ Li, ⁶ He) at 17 MeV	⁹ Be (2.29)	9.0	0.7	580 s^{-1}	2.6×10^{-9}	1.5×10^{4}	$\geq 6 \times 10^4$
⁶ He	⁹ Be(⁷ Li, ⁶ He) at 14.63 MeV	⁹ Be (2.29)	8.5	0.8	$1900 \ s^{-1}$	8.6×10^{-9}	4.8×10^{4}	$\geq 2 \times 10^5$
⁷ Be	¹ H(¹⁰ B, ⁷ Be) at 23.5 MeV	1 H (0.04)	20.8	1.26	6320 s^{-1}	4.6×10^{-8}	1.6×10^{4}	$\geq \! 1.6 \! \times \! 10^4$
⁷ Be	¹² C(³ He, ⁷ Be) at 22.5 MeV	$^{12}C(0.5)$	15.1	0.88	500 s^{-1}	1.6×10^{-9}	5.0×10^{3}	$\geq 6 \times 10^4$
⁷ Be	¹⁰ B(⁶ Li, ⁷ Be) at 23 MeV	10 B (0.205)	23.0	0.6	940 s ⁻¹	4.3×10^{-9}	3.3×10^{3}	$\geq 1.5 \times 10^{5}$
¹² B	9 Be(7 Li, α) 12 B at 17 MeV	⁹ Be (2.29)	22	1.1	$\sim 5000 \text{ s}^{-1}$	$\sim 2 \times 10^{-8}$	$\sim 10^4$	$\sim 10^{5}$
^{18m} F	¹² C(¹⁷ O, ^{18m} F) at 70 MeV	¹² C (1.1)	52.0	2.1	290 s^{-1}	3.4×10^{-9}	1.5×10^{3}	$\geq 3 \times 10^4$

nomenon requires information about the specific nuclear levels involved. Fortunately many RNB-induced reactions of interest have very positive *Q*-values, so at least reaction particle groups are often well-separated and

Fig. 2. Production reaction used to preferentially produce [12] the metastable RNB^{18m}F.

unambiguous [11]. Many of the important experiments of astrophysics interest, such as ^{1,2}H(⁸Li, ⁷Li) and ^{1,2}H(⁸Li, ⁹Be) also are highly exothermic. Recent experiments [3,9–13] at the RNB facility have successfully determined cross sections for these reactions, including an ²H(⁸Li, ⁹Be) excitation function [13] down to $E_{\rm cm} < 1$ MeV utilizing energy-loss absorbers with the 14 MeV ⁸Li beam.

2. Recent experimental results

2.1. ⁸Li beams

2.1.1. Elastic and inelastic scattering of ⁸Li

Beams of 13.8–14.9 MeV ⁸Li³⁺ ions having an energy resolution of 0.4–0.6 MeV have been scattered from ¹⁹⁷Au, ^{nat}Ni, ^{nat}C and other targets [9–11]. Angular distributions for elastic scattering of ⁸Li from ¹²C are fit well using optical-model parameters derived from ⁷Li parameters. Inelastic transitions to ⁸Li* ($J^{\pi} = 1^+$;

Fig. 3. Spectrum (top) and cross section (bottom) for ⁸Li* + Ni. The curve is a classical Coulomb excitation calculation assuming an E2 transition with BE2↑ adjusted to fit the data.

 $E_x = 0.98$ MeV) are also observed. The results suggest a BE2 \uparrow value for ⁸Li^{*} which is subtantially greater than that observed for ⁷Li^{*} excitation.

We have also done experiments to observe the Coulomb excitation (COULEX) of ⁸Li^{*}. The original experiments [11] using ⁸Li scattered from Au were contaminated by ⁸Li^{*} from the production reaction. As noted, recent improvements allow us to eliminate most of this contamination hence permitting measurements of such reactions (fig. 3). Again the results indicate a BE2 \uparrow for ⁸Li which is substantially higher than that observed for ⁷Li^{*}, but this will need to be confirmed by future experiments. Good RNB energy resolution and energy profile are obviously critical for these types of measurements. This type of measurement can also be used in the search for unusual excitation modes of RNB projectiles (E1 GDR) which have been predicted [14].

The elastic scattering of 13.4–14.5 MeV ⁸Li from 9 Be, 13 CH₂ Melamine, Al and nat TiD₂ has also been

measured as a function of angle out to a lab angle of 55° and show deviations from Rutherford scattering, as expected from optical model calculations based on ⁷Li or ⁶Li OM parameters [11].

2.1.2. (⁸Li, ⁷Li) transfer reactions

Single nucleon transfers of the type X(⁸Li, ⁷Li) have been studied for $X = {}^{12}C$, ${}^{13}C$, ${}^{14}N$, ⁹Be and ²H for ⁸Li energies of 13.4–14.4 MeV over an angular range to 45° in the laboratory [3–5]. These transfer reactions have positive *Q*-values of +2.9 to +6 MeV which leads to unambiguous identification of the transfer product, in its ground state, at energies higher than the secondary beam. Also, the *Q*-values are often near to optimum *Q*-values. Typical angular distributions for this transfer process are shown in refs. [3,11]. The large cross sections observed for the (⁸Li, ⁷Li) reaction on light nuclei suggest [3–5] that this is one of the dominant ⁸Li reaction channels and must be considered in any nucleosynthesis calculations. Surprisingly, this reaction channel is often not included in such calculations.

2.2. Elastic scattering of ⁶He

Beams of ⁶He ions of 8.8–9.3 MeV and intensity up to $5 \times 10^4 \text{ s}^{-1}$ have been used to study elastic scattering of ⁶He from ¹⁹⁷Au, ^{nat}TiD₂, ²⁷Al, ^{nat}C and ⁹Be targets [9]. This elastic scattering data is, to our knowledge, the first systematic experimental study of ⁶He scattering albeit at low energy.

Some of the ⁶He elastic scattering data [9] are presented in fig. 4. Scattering from Au, Ti and Al follows the Rutherford formula but the angular distributions for elastic scattering from C and Be show deviations that can be reproduced with optical model (OM) potentials based on ⁷Li rather than ⁴He suggesting the data is

Fig. 4. Elastic scattering of ⁶He compared with optical model calculations based on ⁴He and ⁶Li parameters [9].

best reproduced with an imaginary potential corresponding to strong absorption of 6 He.

2.3. Elastic scattering of ^{7}Be

Beams of ⁷Be ions (q = 3 + and 4 +) of 22.4, 20.7, 15.2 and 8.5 MeV (table 1) have been used to scatter from ¹⁹⁷Au and ^{nat}C targets [10]. The ⁷Be ions at 22.4 MeV from ^{nat}C show distinct deviations from Rutherford scattering which can be represented by a simple OM calculation with parameters similar to those used for ¹⁰B scattering.

2.4. ^{12}B beams

Usable beams $(10^3-10^4/s)$ of ¹²B $(J^{\pi} = 1^+, T_{1/2} = 20 \text{ ms})$ have been made at E = 15-25 MeV using the fusion-evaporation reaction ⁷Li + ⁹Be \rightarrow ¹⁶N* $\rightarrow \alpha +$ ¹²B. This compound nuclear reaction has a moderately large (~1 mb/sr) cross sections for emission of an α particle at large θ_{cm} and hence forward emission of a fast ¹²B in the lab. Initial measurements of projectile excitation of ¹²B are in progress.

2.5. ${}^{18m}F$ isomeric beam: elastic scattering ${}^{18m}F + {}^{197}Au$, ${}^{nat}C$

Production [12] of the isomeric beam ^{18m}F ($J^{\pi} = 5^+$, $E_x = 1.1$ MeV, $T_{1/2} = 160$ ns) was achieved via the reaction ¹²C(¹⁷O, ^{18m}F) at 70 MeV. As can be seen from the energy spectrum at 7° in fig. 2, the 5⁺ isomeric state of ¹⁸F is strongly populated in this reaction with a differential cross section of about 14 mb sr⁻¹. The first observations of scattering of ^{18m}F from ¹⁹⁷Au and ^{nat}C did not exhibit [12] a "superelastic" scattering peak (acceleration of the scattered ion). However, more intense beams and ^{18m}F coincidence γ -detection will be

Table 2 Suitable RNB metastable nuclei

Nucleus	$J_{ m GS}^{\pi}$	J_{M}^{π} a)	E _x [MeV]	τ ^{b)}	Typical production reaction
¹⁸ F	1+	5+	1.12	0.15 µs	$^{12}C(^{17}O, ^{18}F)$
¹⁹ F	$1/2^{+}$	$5/2^{+}$	0.19	89 ns	(¹⁸ O, ¹⁹ F)
²² Na	3+	1+	0.58	0.24 µs	(²³ Na, ²² Na)
²⁴ Na	4+	1+	0.47	20 ms	$(^{23}$ Na, 24 Na)
²⁶ Al	5+	0^{+}	0.228	6.36 s	$(^{27}Al, ^{26}Al)$
³⁴ Cl	0^{+}	3+	0.146	32 m	(³⁵ Cl, ³⁴ Cl)
^{38}Cl	2-	5-	0.671	0.71 s	(³⁷ Cl, ³⁸ Cl)
³⁸ K	3+	0^{+}	0.13	0.93 s	$({}^{37}\text{Cl}, {}^{38}\text{K})$
40 K	4-	0^{+}	1.64	0.33 µs	$({}^{41}K, {}^{40}K)$

^{a)} Spin and parity of metastable level.

²⁾ Lifetime of metastable level (must be > flight path through RNB solenoid). needed for a more thorough search for such phenomena. Other isomeric RNB candidates, all feasible using the direct-transfer method of production in conjunction with a solenoid lens, are listed in table 2. Attempts will be made to produce some of these nuclei in the near future.

3. Future plans

In addition to some of the improvements mentioned above, we have plans for future enhancement of the quality and/or intensity of the RNB available. This includes addition of a fast beam-pulsing system to permit TOF measurements and upgrade of the UND accelerator to achieve higher accelerating voltages and hence heavier RNB. Also a 7 T solenoid lens is under construction [11] which can be used at the UND facility and elsewhere to permit RNB production up to significantly higher energies, e.g. 10-50 MeV/u. This magnet, as well as the present magnet, is designed to include radial electrostatic elements or other devices [15] to achieve the high-purity RNB needed for experiments such as fusion and fission. We have recently done tests using a mid-plane energy-loss absorber to provide higher-purity RNB but this did not prove successful due to the inherent energy straggle in the absorbers. Other means must therefore be developed to achieve this goal.

Acknowledgements

We thank Ed Berners, the other staff, and the students at the University of Notre Dame nuclear structure laboratory for their assistance. This work was supported by the US National Science Foundation grants PHY-8605907, PHY-8911831, PHY-8803035 and PHY-8900070 as well as grants from the University of Notre Dame and the University of Michigan.

References

- J.P. Schapira, F. Azaiez, S. Fortier, S. Gales, E. Hourani, J. Kumpulainen and J.-M. Maison, Nucl. Instr. and Meth. 224 (1984) 337;
 S. Gales, E. Hourani, M. Hussonnois, J.-P. Schapira, L. Stab and M. Vergnes, Phys. Rev. Lett. 53 (1984) 759.
- [2] R.L. Stern et al., Rev. Sci. Instr. 58 (1987) 1682;
 R.L. Stern, Ph.D. thesis, University of Michigan (1987).
- [3] F.D. Becchetti, W.Z. Liu, D.A. Roberts, J.W. Jänecke, J.J. Kolata, A. Morsad, X.J. Kong and R.E. Warner, Phys. Rev. C40 (1989) R1104.
- [4] J.J. Kolata, A. Morsad, X.J. Kong, R.E. Warner, F.D. Becchetti, W.Z. Liu, D.A. Roberts and J.W. Jänecke, Nucl. Instr. and Meth. B40/41 (1989) 503.
- [5] W.Z. Liu, Ph.D. thesis, University of Michigan (1990).

V. RADIOACTIVE BEAMS

- [6] Proc. Workshop on Radioactive Ion Beams, ed. R.N. Boyd, IEEE Trans. Nucl. Sci. NS-30 (1983).
- [7] R.C. Haight, G.J. Mathews, R.M. White, L.A. Aviles and S.E. Woodward, Nucl. Instr. and Meth. 212 (1983) 245.
- [8] R. Bimbot et al., Z. Phys. A322 (1985) 443.
- [9] R.J. Smith, J.J. Kolata, K. Lamkin, A. Morsad, K. Ashktorab, F.D. Becchetti, J.B. Brown, J.W. Jänecke, W.Z. Liu and D.A. Roberts, Phys. Rev. C, in press.
- [10] R.J Smith, J.J. Kolata, K. Lamkin, A. Morsad, K. Ashktorab, F.D. Becchetti, J. Brown, J.W. Jänecke, W.Z. Liu and D.A. Roberts, Nucl. Instr. and Meth. A294 (1990) 26.
- [11] J. Brown, F.D. Becchetti, W.Z. Liu, J.W. Jänecke, D.A. Roberts, J.J. Kolata and A. Morsad, Proc. 1st Int. Conf.

on Radioactive Nuclear Beams, 1989, cds. W.D. Myers, J.M. Nitschke and E.D. Norman (World Scientific) p. 201;

- F.D. Becchetti et al., ibid., 305;
- W.Z. Liu et al., ibid., p. 499.
- [12] F.D. Becchetti et al., Phys. Rev. C42 (1990) R801.
- [13] R. Boyd et al., these Proceedings (11th Int. Conf. on the Application of Accelerators in Research and Industry, Denton, TX, 1990) Nucl. Instr. and Meth. B56/57 (1991) 550.
- [14] Y. Suzuki, K. Ikeda and H. Sato, Prog. Theor. Phys. Lett. 83 (1990) 180.
- [15] W.Z. Liu and F.D. Becchetti, Rev. Sci. Instr. 60 (1989) 1128.