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Spiral selection as a free boundary problem 
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We present a new formulation of the spiral selection problem for the Betousov-Zhabotinsky reaction. In particular, we 
focus on deriving an exact integro-differential shape equation and discuss the possible behavior of solutions to this equation. 
We also present some new results on the asymptotic (far from core) structure of spirals in the Fife scaling regime. 

1. Introduction 

One of the most striking examples of spatial pattern formation in non-equilibrium systems is the 
rotating spiral seen in diffusion-coupled excitable media #~. T h e  most studied example to date is the 
Belousov-Zhabot insky (BZ) case [2-5], but similar structures appear  in systems as diverse as catalysis on 
platinum surfaces [6] and aggregation of slime mold amoeba [7]. Remarkably and regrettably there is as 
yet no first principles calculation of a spiral shape in any reaction-diffusion system. 

This work at tempts to formulate and treat  spiral patterns in a simplified Oregonator  model #2 to be 
described shortly. Some of the ideas have appeared elsewhere in preliminary form, but here we offer 
some new results and a new perspective on this problem. The basic ingredient of our method is the 
rewriting of the spiral pat tern problem as a free boundary problem for the thin reaction zone of the fast 
reaction. This approach was advocated long ago by Fife, but will be reformulated here in a novel manner.  

The outline of this paper  is as follows. First, we briefly review the Fife regime of the Oregonator  model 
and explain why this scaling is crucial for the spiral shape determination. Next, we derive asymptotic 
corrections (far from the core) to the spiral shape and discuss the utility of these results. Finally, we 
derive an integro-differential shape equation in which the rotation frequency appears  as an eigenvalue. 
We present a general argument  as to why the spectrum of frequencies might be discrete, corresponding 
to the experimental observation of unique spiral structures at fixed conditions. This selection occurs 
despite the fact that the asymptotic expansion allows for a continuous frequency. Finally, we summarize 
our findings and offer some conjectures regarding spiral tip meandering. 

2. Fife scaling 

Let us briefly review the Oregonator  model with the asymptotic wave velocity in the Fife region [9]. 
What this means is the following: the Oregonator  equations have the form 

ti =eV2u  + f(u,c____~), (1) 
E 

t:' = eV2c + g ( u , t ' ) ,  (2) 

el For a general introduction to excitable media, see ref. [l]. 
#2For a discussion of the Oregonator model, see ref. [8]. 
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where the equation f ( u ,  v) = 0 admits multiple stable solutions u --- u +(v) for c in some range. The ratio 
of reaction rates, •, is small and hence as reviewed by Keener  and Tyson [10], one can assume that 
u = u+(v )  or u_ (v )  except for thin reaction zone. Actually, this methodology crucially depends on the 
assumpt ion  that the relevant length scales in the spiral pattern are never comparable to the reaction zone 
width e; this will be important in the discussion below. 

In the reaction zone, L' can be taken constant, and a domain wall solution which proceeds from u+ to 
u_ (or vice versa) constructed. At one particular value of c, the stall concentration cs, this domain wall is 
motionless. For v ~ v~, we can linearize the relationship between velocity and concentration; including 
curvature effects, this leads to 

(C n -{'-£'~K)1-' 6 = (U -- Us) (3) 

for some constant v6, c n the normal velocity and K the curvature. The constant 3' should equal 1 for the 
model given in eqs. (1), (2) but we leave it as an arbitrary additional parameter ,  which can be related to a 
ratio of unequal diffusivities for the two chemical species. 

The Fife limit [9, 11] arises from the assumption that we are dealing with a wave with c ~ e 1/3. From 
the above equation, uniformity demands that lengths scale a s  ff2/3, and c -  t's ~ e 1/3. In the dynamical 

equation for v, the function g can be evaluated at the stall value v S. Combining all of these comments  
leads to the free boundary problem [9, 11] 

V26  +_ a += a~/at (4) 

with t3, t3' continuous across zones and where we must satisfy the rescaled version of eq. (3): 

( e .  + = (5) 

Here  a _+ = + g ( u  _+(Vs), vs). 
TO find a spiral solution of the above equations, we assume a uniformly rotating field and replace 

V 2 - a / a t  by 

a 2 1 a 1 a 2 a 

Or - - 2  + r ~ + r ~ a~b ---2 + w ~ .  (6) 

A l s o ,  C n = o.)r/ ' l- ~. We must then find a curve q~0(r) for the reaction front such that the boundary 
condition (5) is satisfied by a continuous field tT. There are two methods to do this; we can eliminate t5 to 
find a shape equation for ~0 or we can map the spiral to a simpler region and at tempt to solve the 
resulting partial differential equation. These will be discussed in subsequent sections. 

The most important thing to notice about the Fife limit is that • has completely dropped out of the 
governing equations and boundary conditions. Let us therefore assume that there are indeed spiral 
solutions with the scaling assumed here c ~ e 1/3. Then, the physical scale of the spiral, being propor- 
tional to e 2/3, can be made arbitrarily large compared to the reaction zone width, which is of size •. This 
means that the thin reaction zone approximation and the concomitant recasting of the problem as a free 
surface one is uniformly valid at the spiral core. 

The above concept is critical to our entire approach and therefore it is worth discussing what other 
possibilities exist. One way of thinking about the Fife scaling is to recognize that it determines the core 
size by requiring the relevance of v diffusion. The other possibility is that the core size is determined not 



9 2  D.A. Kessler and H. Leuine / Spiral selection as a j?ee boundary problem 

by t' diffusion but instead by the finiteness of the reaction zone; this must occur for example in systems 
without diffusion of the slow species, but could also occur in general if the selected asymptotic velocity is 
E(1) instead of ~(el /3) .  Then, the singular perturbation theory used to derive the governing equation 
(4) is not valid, and one must return to the coupled PDE system (1), (2) in the inner core region. Of 
course, whether or not spirals will exist (for some choice of kinetic parameters) in the Fife regime could 
be studied computationally, but this has not yet been attempted. 

3. Spiral asymptotics 

It is intuitively clear that asymptotically far from the core, the spiral pattern appears to be just a plane 
wave with some particular asymptotic velocity. In this section, we present a methodology for calculating 
corrections to the asymptotic shape in a systematic expansion about large r. As we shall see, this 
calculation will place the spiral selection problem in proper focus. 

The basic idea is to define new coordinates: 

4; : 6  - q)0(r),  7 : r .  (7) 

This transforms the governing PDE to the form 

[ ( 0 0 c b  o a ) 2  1 ( 0 0 c b  o O )  0 1 0  2 

a7 07 04; + - f  07 07 04; + ~ ° a ~  + ~  17±_+a+=0. (8) 

The boundary conditions are now imposed at 4; = 0 and ¢5 = 2wA+/(A + A+) (for the excited " + "  
region) and, -2"rra / (X + a+)  (for the quiescent " - "  region). Note that one full turn of the spiral 
pattern corresponds to a change of 4; by 2-rr. Note too that A+ and A ,  the widths respectively of the 
" + "  and " - "  phases, depend on 7. Using the relationship 

O) 
c . = ~ [ a + ( r ) + a  ( i ) ] ,  (9) 

we can find A given A+ and the curve ~0; Z +(7) itself must be found as part of the solution. 
To make the above discussion less abstract, let us make use of this formulation to find the asymptotic 

shape of the spiral. We assume the series 

/~ +(7,4;) --- E ?,, (10) 
n --  0 

and 

ov 

( bo (7 )=  _ W ~ + D o l n 7  + ~ --Dn (11) 
C i n " 

n = l  
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We substi tute these expansions into eq. (8), which we then  solve order  by o rder  in 1/? .  To  leading order  

a+(~ 
v(°) =A(°) + B (°) e -c:g/°' + - -  (12) 

_ _ O) 

Applying the boundary  condit ions gives six equat ions  

A(+ °) + B(+ °) =A((! ) + B (°) = ug)c, 

B(0) _ B(0) a + + a _ 
+ - C 2 ' 

/~(o) _ / ~ { o )  _ a + + a 
+ - C 2 ' 

/i(+") + A (o) _ ~ -  a(o) = ~((2) + A((2) 
a _ A ( °  ) 

c vOc" (13) 

He re  / ~ ) =  e x p ( + c a  m)) B (°). This is exactly the same system as for plane waves [11, 12] and allows us to 
de te rmine  the unknown coefficients as well as a (°) and the asymptot ic  velocity c. 

Let  us now extend this calculation to the first nontrivial  correction.  The  field equat ion  to order  1 /~  is 
now inhomogeneous ;  we find 

[( 0(~0 ] 2 (~2 ~ ]  1 _ c B ( O + ) e - C - e , / o , + ~  _ _ D 0 o +  e _ , , : 8 / ~ "  (14) - - ~ - ]  ~ + w  u(+)= _ , -  _ a+c 2C3oj n(o) 

This is easily solved by 

a + -  c~b ,- ( 2c2 D ] 
.v(~)=A(~)+B~)e-C2e~/'°+_ w c 6 - T e  c-~/'°B(°) 1 +  w o).  (15) 

Again,  we have to apply the boundary  conditions. To  do this, we need the result  

wr Do c2 
c n = -~ c + - -  (16) 

¢1  + r2(OdPo/Or) 2 wr 

along with K = 1 /~  and the assumpt ion  h+(r) /[h+(r)  + A_(r)]  ~ ,,x(°)/t ~(o)+/,,, + + h(0))_ + E / L  Applying the 
boundary  condit ions gives us, as always, a set of  six l inear equat ions  in the six unknowns A +, B +, D o 
and E. These  can be solved directly. 

As a concre te  example ,  we choose the set of  pa r ame te r s  derived in ref. [11] f rom the original 
O r e g o n a t o r  model;  a + =  11/16,  a = 1 /16 ,  y = 1 and v(, = v~-/30.  We  then  pick an asymptot ic  velocity, 
say c = 0.5. Solving (13) for the p lanar  interface,  we find the results A(°_ ) = 6.223, A(°+ ) = 0.565 and the 
rotat ion f requency o~ = 2rrc/(h(°+ ) + A(°_ )) = 0.463. We can then evaluate  all the lowest-order  coefficients 
and derive the resul tant  l inear system for the f irst-order shifts; we find 

D 0 = 0.2625, E = 0. (17) 
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Extending this to second order, our result becomes 

0.194 2) @,,(r)  = - w r + 0.2625 In r -  - -  + ~ ( 1 / r  (18) 
C F ' 

A + ( r ) A('+" 
- - -  ( 1 9 )  

A + ( r )  +A ( r )  ;~(0)+A(0)" , , +  

One surprising result of the above calculation is the vanishing of the E = 0 coefficient to all orders. 
That  is, the relative width A + / A  does not vary from its asymptotic value to any order in 1/~; this is in 
distinction to the curve itself, which actually has logarithmically large deviations since D 0 :~ 0. It is 
possible to make the ansatz A + ( r ) / A _ ( r ) =  A(°) (r ) /A(°) (r )+ ff~e dr and derive an eigenvalue equation 

for a.  Since this is of only tangential importance, we skip this derivation here. 
What is this asymptotic calculation useful for? First, it is obviously possible in principle to measure the 

asymptotic velocity and compare the above analytic predictions with measured (or computed) shapes. 
Next, we will see in the next section that this offers a highly non-trivial check on the numerical 
implementation of the shape equation. Most importantly from our perspective is the statement that these 
results make regarding the uniqueness of the spiral pat tern and in particular of the rotation frequency. 
Clearly, there is no problem extending this procedure to arbitrarily higher order; we always recover the 
same structure and can determine the unknown coefficients to each order. Hence, there is no selection of 
frequency w. That  is, given o~ we can find all other unknowns and construct the expansions (10), (11); we 
will argue subsequently that this is misleading and in fact the full equation does select w albeit by terms 

that are exponentially small at large distances. 
How can we go beyond this asymptotic expansion? At present, the only viable approach appears  to be 

numerical solution of the integro-differential shape equation [11]. The next section discusses the 

derivation of this equation and the possible form of its solutions. 

4.  S h a p e  e q u a t i o n  

In other types of free surface problems [13], it has proven advantageous to recast the equations in the 
form of an integro-differential shape equation for the actual pattern. To derive this equation we return 

to the original variables and define 

' ( 2 0 )  q~ = v +_ aa +r 2 . 

The auxiliary field ~ then obeys the homogeneous equation V 2 ~  + oJ o~/o~h = 0, which fur thermore is 
the same in both phases. Green 's  theorem then demands that any discontinuities in either ~ or h • Vq r 
(for normal to the curve fi) give rise to sources in an integral representation of the field. Since v is 
continuous, the discontinuities of ~ can be determined directly from eq. (20): 

d i s c ~ = ¼ ( a + + a _ ) r  e, d i s c ( n . V q  s ) = ½ ( a + + a  ) r h ' ~ .  

Using the above results, we can immediately write down a solution for qr in terms of the Green 's  

function 

, ( ,  d t '  exp{_ [r2 + r,2 - ¢ h ' -  G ( r , r  ,q~,~') = j  ~ - 2rr 'cos(~b ¢ o ( t - t ' ) ) ] / 4 t ' } .  (21) 
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Using the easily derived expressions 

disc G = 0, d i sc (h ' .  V'G) = 1, disc[(h " V ) ( h ' .  V 'G)]  = - c , ,  

we find 

~ ( r ,  qb) = f d s ' ( ~ " V ' G ) l r ' 2 ( a +  +a ) -  f ds 'G[½(h"P' )r ' (a+ +a_)  + ICnr'2(a+ + a _ ) ] ,  

(22) 

which determines the field everywhere if we know the actual reaction zone q~0(r). 
The shape equation now follows when we evaluate qt on the reaction zone itself and use the known 

value of the field v to find an expression for the value of ~ .  Doing this, we derive the final shape 
equation 

1 2 vD(c . + TK) + za+r 
a+ +a_ = - f ds '(h" V'G)Ir'Z + f Os'G[½(h''~')r' + jc"r'2]' (23) 

where the first integral must be evaluated on the " + "  side of the interface. By definition, the normal 
vector h always points from " + "  to " - " .  This is then a closed form equation for the curve q~o(r) in 
which the rotation frequency ~o appears  as a parameter ,  both in the Green 's  function and in the normal 

velocity c n given by eq. (16). 
In principle, this equation can be solved by discretizing the curve and varying the parameters  using 

some type of Newton's  iteration to converge to a final solution. This has not yet been accomplished, but 
we have performed one specific consistency check. That  is, if we take our (lowest order) asymptotic 
expansion for the spiral shape derived in the last section and evaluate the integral on the right-hand side, 
it differs from the left-hand side by terms that are no bigger than ~ ( 1 / r ) .  This is rather nontrivial since 
the generic size of both sides of the equation is G(r2).  

In the absence of an exact solution, we can employ a heuristic argument that equations of this type 
should require fixed values for the rotation frequency w. We can rewrite the shape equation in the 
schematic form c n + yK = F[q~0(r)], where F is a rather  complex functional of the curve. We know of 
course that as s ~ + - oo, F will approach +c,  the asymptotic velocity and that fur thermore F cannot 
depend on either absolute angle or absolute arclength. Let us change to treating the curve parametrically 
by giving the radius R 0 and the angle q~0 as functions of the arclength. We can then rewrite the above 
equation as a dynamical system for the variables Ro(s), Cbo(S) and ~9(s)= c o s - l ( h  .~), where the 
coordinate axis has been chosen for a reference direction; after some geometry, this yields [14] 

dR° = - c o s (  q~o + ~9), dq~° sin(q~° + @) dO (oR 0 cos( q)o + {9) + F (24)  
ds ds  --- R 0 ' ds = 7 

Now, we can write down the most general asymptotic spiral solution in terms of four constants s +, q~ ±, 

Ro(s ) ~ l l / ( 2 c / o ~ ) ( s - s ± ) ,  s ~ +_~,  q~o(S) ~ ~ / (2~o/c ) ( s - s+)  + ~+,  s--+ +_~, 

6 ) ( s )~  - ~ o ( S )  + 3~r/2, s ~  +~,  and 6) ( s )~  -dPo(S) +?r/2, s ~ - ~ .  (25) 
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Of these four unknowns, one corresponds to an overall rotation of the entire system (and is hence 

irrelevant) and one goes to fix A +/A _; we of course have already correctly chosen c and hence A ++ A . 
This leaves two unknowns but three matching conditions to generate a smooth trajectory from s = - ~  to 

s = + ~. Hence there is generally no solution unless we also pick ~o appropriately. In other words, the 

frequency is fixed by requiring the matching (at the core) of solutions with the correct behavior at _+ 
and is not visible in the asymptotic large distance expansion. 

The reasoning in the previous paragraph serves to explain why several different "geometrical" models 

of spirals [10, 14-16] ~3 have all yielded unique rotation frequencies. In a geometrical model, F is 

replaced by a function of local objects and hence eq. (23) can be directly integrated. From our current 

perspective, any "reasonable" geometrical model will give selection via this general mechanism. This 

does not really answer the question of whether this actually happens in a physical nonlocal model where 

there are conceivable loopholes in the above approach; but this does offer one possible scenario as to 

how the asymptotic freedom of choosing w is broken by the core region solution. Eventually, we hope to 

answer this question more definitely by finding full solutions of eq. (23). 

5. Comments 

To summarize, we have presented a novel way of looking at the spiral selection problem within the 
Fife scaling limit of the Oregonator model. We have calculated the asymptotic spiral shape, discussed the 
importance of the diffusion controlled core and reviewed the derivation of a spiral shape equation. 

Finally, we have presented a general argument as to why the rotation frequency might be selected via 

matching near the core. An explicit method capable in principle of demonstrating the validity of our 
proposed scenario was presented, and we are currently attempting to implement this approach. 

The last comment we wish to make concerns the tip meandering instability studied in great detail for 

the BZ system [5, 17, 18]. Our best guess is that this instability is a remnant of the Hopf bifurcation at 
zero traverse wavevector known to occur [19] for planar waves as A+,A ~ 0. For the Fife limit, this 

instability is again tied up with u diffusion and hence will become important on the same general scale as 
the core. Specifically, as the spiral moves inward from infinity, the width of the wave shrinks, with of 

course A + ~  0 as we reach the spiral core. Imagine doing a WKB calculation where at each radius we 

consider the spiral as a locally planar problem with some normal velocity. It appears likely that the 
stability boundary can be crossed as we move towards the core leading to a locally unstable region. 

Globally, this would lead to the prediction of an oscillatory mode localized near the core, which is what 

one appears to observe. 
The above conjecture explains why it is possible to see the meandering instability even with c diffusion. 

Most explanations [20] of the meandering have dealt with simplified models most appropriate to the case 
of no ~ diffusion and core sizes of order e. Obviously, a great deal of additional work will be necessary in 
order to see if this idea makes any sense. We have included this discussion, just to point to that once one 
can deal with the spiral as a free boundary problem, techniques which have proven capable of finding 
stability spectra for other free boundary systems [21] can be applied here and may offer additional insight 

into spiral pattern dynamics. 

~For a review of attempts to do this in the Russian literature, see ref. [15]. 
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