Nucleotide sequence and chromosomal location of Cabll and Cab12, the genes for the fourth polypeptide of the photosystem I light-harvesting antenna (LHCI)

Egbert Sehwartz ${ }^{2}$. Dingren Shen ${ }^{2}$, Ruedi Aebersold. J. Mitchell McGrath', Eran Piehersky' and Beverley R. Green ${ }^{2}$
 Deph, of Biarhemixtry. Universiay af B.C., Vancouver. B.C., Conalf

(Reecived 19 Deember 1990)

Abstract

 served resions. Ihe L.HCO polypeptidex have sequence motif' which appar to be DS/-specific.

1. INTRODUCTION

The chlorophyll a / b-binding (CAB) light harvesting antennas of higher plants comprise a diverse group of chlorophyll-protein complexes, one associated with Photosystem I (LHCI) and three with Photosystem II (LHCII, CP29 and CP24) [1-3]. Their polypeptides are immunologically related [4-6], and comparison of sequences obtained to date by gene cloning indicate that they are part of a large gene family $[7,8]$.

Genomic and CDNA clones encoding three of the four LHCl polypeptides have been isolated and characterized in tomato [9-12]. We report here the isolation and characterization of cDNA clones for 2 tomato genes, cab11 and cab12, which encode the fourth LHCl protein (Type IV). Comparison of the deduced amino acid sequences for all four of the LHCI polypeptides shows that while they are structurally related to the CAB polypeptides of PSII in having the two highly conserved regions characteristic of all Chl a / b-binding polypeptides, outside of these regions they

[^0][^1]have some unique sequence motifs which may be involved in their association with Photosystem I.

2. METHODS

2.1 Isolation and protein sequencing of tomato L.HCI polypeptidess L. ©cepersicon exculenum var. Best of All, was grown in a mixture of soil and vermiculite under natural illumination in a greanhouse. PSI partieles (PSI-200) were made according to [13] with a Triton/Ch] ratio of 6.25 . L.HCl was prepared by solubilizing PSI-200 in 1% dodecyl malioside, $130 \mathrm{mM} \mathrm{NaCl}, 10 \mathrm{mM}$ Tricine, pH 8.0 , and fractionating on a $0.2-1.0 \mathrm{M}$ sucrose gradient [14].
Polypeptides were separated by ceetrophoresis for 22 h at 17 mA on 22 cm long 14% polyacrylamide gels containing 0.8 M Tris, pH 8.8 , and 0.3% SDS, at $4^{\circ}[15]$ and electrotransferred onto nitrocellulose membranes for tryptic hydrolysis or immunostaining, or onto polyvinylidene difluoride (Immobilon P) membranes for N terminal sequeneing. LHCl was identified by Western bloting using antibodies raised against barley $\mathrm{CPla}(\mathrm{CPI}+\mathrm{LHCl})$ [5]. Subunit 11 (psaD gene product) was identified using antisera donated by Drs R . Malkin and N. Nelson.

Protein bands on nitrocellulose membranes were cut out, digested on the support with trypsin [16] and separated by narrow-bore reversed phase HPLC on a Waters peptide analyzer equipped with a Vydac C-4 column. Individual peptides were collected manually and sequenced using standard pulsed-liquid-phase or solid-phase sequencing procedures [17]. For N-terminal sequencing, Coomassie-stained bands [18] were excised and sequenced in an Applied Biosystems Model 477 protein sequenator.

2. 2 Gene cloning and sequencing

Oligonucleotides were prepared using sequences derived from 2 of the tryptic peptides: for PGSVNQDPIF, the sense 20 -mer 5^{\prime} $\mathrm{GT}(\mathrm{A} / \mathrm{T} / \mathrm{G} / \mathrm{C}) \mathrm{AA}(\mathrm{C} / \mathrm{T}) \mathrm{CA}(\mathrm{G} / \mathrm{A}) \mathrm{GA}(\mathrm{C} / \mathrm{T}) \mathrm{CC}(\mathrm{A} / \mathrm{T} / \mathrm{G} / \mathrm{C}) \mathrm{AT}(\mathrm{A} / \mathrm{T}-$

 min repertively. Atrer amptifkation, tomal anplified DNA wan pass
 random.primer method. The labethed DNA wro usd w* a probe to verectr tomano penomie mol leaf cDNA libraries in the lambeda.phage vectors Charon 15 and Charon 16, revpecively [10.19). Prube labat.
 wat done as proviously deseribed $110,20 \mid$. DNA wis sequefred by

3. RESULTS

The resolution of tomaro SSI-200 and LHCl polypeptides on a long separating gel is shown in Fig. 1 . The int Subunit II (psaD) polypeptide, which was identified by Western blouing using two differemt antisera (data not shown). The LHCl polypeptides were immunostained (lane a) with antisera raised against the barley complex CPla (CPI +LHCl) (5). The lowest LHCl polypeptide (22 kDa) was the most strongly stained band in all preparations. A similar predominance of one polypep-

F. Polypeplides of tomaio LAEC (a, k, and PSL. 200 (c). Lane a finmunodecorated with anti-CPla, wheh recounizes the LHCl polypeprides (S): hanes b, ©, Coomassie smined. The psab polypeptide whs identified by immurobloting with two independent amisera (datd not shown).

Fig. 2. Structure of cabll and cabl2. (Above) Restriction maps. Arrows indicate direction of transcription, Cleavage sites: Bg, Bgl $11 ; \mathrm{Bm}, \mathrm{Bam}$ HI; D, Dral; H, HindlII; N, NcoI; P, PslI; and X, Xbal. (Below) Nucleotide and deduced amino acid sequences. Intron positions were determined by comparison with cDNA clones. Exact matches to 22 kDa tryptic peptides XPGSVNQDPIFK, XGYPGXIFNPLNFA and XXXXNLLQXLSDP are boxed (X denotes amino acid not unambiguously identified); similar but not identical sequences are underlined in cabl2. Arrow-liead denotes the most likely transit peptide cleavage site [28]. The sequence corresponding to the DCCD-labeled pea 20 kDa polypeptide of [32] is underlined with dots.

Hide has been observed in I.HCI from some other higher plants [23,24] and the green afa Chtambedomonos rheimhardili (25). The antibedy did not detect the minor polypepities of 17 and 11 kDa reported in maize and barley LHCl [26,27].

The amino atid sequenees of three tryptic pepides from the 22 kDa LHCI band (Type IV, Fig. I) were unl. que but clenrly related to sequences in the Type Il and Type IIt tomate LHCI proteins (11,12). Two of them appeared to belong to adjacent regions by comparison with other CAB sequences and were therefore used to prepare synuctic oligonueleotides for amplification of the intervening gene segment by the polymerase chain reation. The sequenee of one tryptie peptide from the band labelled Type I (Fige 1), (K) CIFPN, uniquely idenified it as the C-terminus of cabora, the first LHCl gene isolated [9].

The amplified DNA segmen was used as a probe to isolate two different CDNA clones and the corresponding genomic clones (Fig, 2), We designated the two genes cabll and cabl2; genes cabl through cabl0 en* code other CAB polypeptides of PSI and PSII [7,8,19]. The gene cabll encodes a protein of 251 amino acid residues, and cab 12 encodes a very similar polypeptide of 250 residues (88% overall sequence identity).

All 3 tryptic peptide sequences derived from the 22 kDa LHCI band were identical to sequences encoded by $c a b 11$ (boxed), and two were identical to cabl2-encoded sequences. Although the sequence XGYPGXIFNPLNFA matched a cabl2 sequence it should not have been produced by tryptic cleavage of a cabl2-encoded protein because the preceeding Lys has been replaced by Glu. The third sequence, NLLQXLSDP, differs in one residue (L instead of I) from the corresponding cab 12 peptide. This suggests that the cabll gene codes for most of the 22 kDa LHCL polypeptide produced by tomato leaves. In our tomato cDNA library the frequency of clones for cabll is approximately 100 times that of cab12; work is in progress to determine whether $c a b 12 \mathrm{mRNA}$ is also rare in vivo.

Comparison of the sequences of the cDNA and genomic clones revealed that both cab 11 and cab 12 contain two introns in identical positions (Fig, 2); the first intron is in the same position as an intron found in the Type II and Type IIl LHCI CAB genes and in the CP24 $C A B$ genes $[11,12,19]$; the second intron is in the same position as one found in the Type 1 LHCI CAB genes [9]. Since $c a b 11$ and $c a b 12$ have the same number and position of introns, as well as 88% sequence identity, we consider them both to be Type IV LHCl.

DNA from cabll and cabl2 was used to probe Southern blots of tomato (Lycopersicon esculentum) and its close relative, L. pennellii, to determine if additional genes encoding the Type IV LHCI CAB protein existed in the genomes of these plants (Fig. 3). With one exception, only two hybridizing fragments were observed in all restriction digests probed with cab12 under

 DNA, (A) Prubed with the 0.5 kb Neol-BamHt fragment from the cobl2 cDNA ctone. Odel-numbered lanes, I. pemiélii DNA: cvenmumber lanes, L. esculenhm DNA; dlecsed wiht Hindill (lanes 1,2); Bu/II (lanes 3,4). Xhal (lanes 5,6): Drat (lanes 7, B); ECoRV (lanes 9,10): and Ecokl (lancs (1,12). Hybridization conditions were 6 X SSC: 65*, washing conditions were $2 \times 5 \mathrm{SC}, 65^{*}$, so that both Type IV genes were eletected with the cabl2 probe. (B) Higher stringency hybridizmion with the 0.7 kb Hindlll-Pst 1 fragment from the cabll cDNA slone. Lanes 1-6 are replieas of lanes $7-12$ in (A). Hybridiaafion conditions as in A but washed with $0.1 \times S S C, 65^{*}$. Numbers at lefi indicate position and size (in k b) of marker fiagments.
low-stringency conditions (Fig. 3A, lanes 1-12), where the probe hybridizes with both cab11 and cab12 genes (the second Dra I bands of about 1 kb are faint and may not be visible in the printed figure). The three hybridizing fragments in the EcoRI digest of L. pennellii (Fig. 3A, lane 11) are likely the results of an EcoRI site occurring inside one of these two genes. The fragments containing cabll were identified under high stringency conditions (Fig, 3B, lanes 1-6). In the case of HindIII, comparison of the L. esculentum restriction map (Fig. 2A) and the Southern blot (Fig. 3A, lane 2) showed that $c a b 11$ is on the 4.0 kb fragment and $c a b 12$ on the 3.0 kb fragment. The cloned HindIII fragments were finemapped and Southern blotted to rule out any tightlylinked duplications; no additional CAB genes were found (data not shown). We therefore conclude that L. esculentum and L. pennellii both contain the two genes encoding the Type IV CAB polypeptide of LHCI.

Due to the presence of polymorphisms in fragment sizes between the two species of Lycopersicon (Fig. 3), we were able to map the two loci in segregating F2's of the interspecific cross [20]. Results indicate that cabll maps to chromosome $\overline{3}$, approximately 4 cM from the marker TG242, and the cab12 gene maps to chromosomes 6, approximately 7 cM from marker TG275 (data not shown).

4. DISCUSSION

LHCl can be subdivided into LHCl.730 and LHCI-680, with fluorescence emission maxima at 730 and 680 nm respectively (23, 28). Ikeuchiter al. [29) have reported partial peptide sequences from all four of the mature LHCl polypeptides of spinach and pa, including a spinach 20 kDa polypeptide of $\mathrm{LHCl}-730$ with an N-terminal sequence that closely matches that of tomato cab11 and cabl2-encoded polypeptides, starting with Lys 51 and Lys 52 (Fig. 2, arrowheads). In tomato, most of this protein appeared to be N . terminally blocked, but a low level of elearly iden-
tifiable amino acids were detected in eycles 4 (Om). $6($ Leu), 9 (Leu) and $10(A / a)$, sugyesting that the transit pepide of the tomato Type IV precunor polypeptide is also removed at this point, giving a mature polypeptide of 200 residues. The faec that there is Gin rather than Glu at the 4 th position and Ala rather than The at the 10th position is consistent wilt the tryptic peptide results which indieate that the dominant polypeptide in the tomato 22 kDa band originates from cabll rather than eab12. By comparison with their peptide sequenees from spinach and pea, ikeuchi et al.[29] also confirmed that the comato coib 6 A, B (LHCI Type I) genes eneode the other LHC:-730 CAB polypeptide. and that the
 - LHCI-I I (7) MASACASSTIAAVAFSSPSRRNGSIVGTTKASPLGCRALRVSKYSTTPTARSATTVCVAADPDRPLNPPGSTPI C LHCI-III (G) MATQAL. . ISSSSISTSARAAROIICS.RISQSVTRKASFVVAAASTP....... PVKGCANROLWFASKQSI
 - LHCII-Z (3C) HKPSTMALSSSTPACKAVKLSPSSSEIT, GNGRVTMRKTATKAKPASSESP, WYOPDRVKYLGPFSCRS. .
 9 CP29-I (9) MAAATS. LYVSEMLCSPVKFSGVARPAAPSPSSSATFKTVALFKKKAAAA-
....... PAKAKAAAVSPADDELAKWYGPDR, RIFLPECLLDRSEI,
h CP24-I (ION MATTSAAVLNGLSSSFLTGGNKSQALLAAPLAARVGCAAPKAPTVLAMAAXXSHZPAVRGCGNVO

$1 \quad 1$

Fig. 4. Comparison of tomato CAB protein sequences. Thick wavy lines, predicted trans-membrane helices; betas, predicted beta turns. The two regions of high sequence similarity are enclosed in solid boxes. Sequence corresponding to pea 20 kDa DCCD-labeled polypeptide [32] is underlined with dots. C-terminal tryptic peptide identifying cab6A polypeptide is underlined. Dashed boxes are proposed LHCl-specific motifs. Arrows point to highly conserved residues discussed in text. (a) LHCI Type IV(cab11); (b) LHCI Typell(cab7); (c) LHCl Typelll(cab8), (d) LHCl Typel(cab6A); (e) LHCII Typel(cab3C); (f) LHCII Typell(cab4); (g) CP29 Typel(cab9); and (h) CP24 Type 1(cab10A).
tomato cab7 (LHCI Type II) and cabs (LHCI Type III) enenes encede the two polypeptides of tomato LHCI-680.

Fig. 4 shows the deduced amine aed sequences of the four types of LHCl genes lined up with the sequences for Type I and II LHCII (cab3 and cab4). Type I CP29 (eab9) and the CP24 polypeptide (cabl0A). All the proteins have three hydrophobie regions long enough to be trans-membrane heliees (heavy wavy lines). There is a high degree of conservation (35% identity plus conservative substitutions) in the two homology regions diagnostic of CAB proteins (boxed). These regions include the first and third trans-membrane helices and the highly polar sequences N-terminal to them which are enriched in turn-promoting amino acids (Asp, Gly, Pro). According to the euprent model for LHCII topology [30], the N-termini of helices I and 3 are exposed on the stroma side of the thylakoid membrane. Within the highly conserved regions, all CABs should have the same folding pattern, with the core 3D conformations within 1.2-1.5 \dot{A} (root mean square deviation) of each other [31]. Direct evidence for the 22 kDa polypeptide having the same relative orientation comes from DCCD-labelling of pea $C A B$ polypeptides [32]. A DCCD-labeled CNBr fragment of a pea 20 kDa polypeptide had the sequence LXPEVFTSIGIINVP which matches the corresponding cab11 and cab12 sequences except for an Ile/Leu substitution (Figs 2 and 4). Since DCCD was used under conditions where it reacts with acidic residues in a hydrophobic environment [32], this supports the location of a Glu within the first membrane-spanning helix.

Arrows in Fig, 4 mark the positions of conserved His, Asn and Gln residues that could be ligands to the Ch Mg^{+2} atoms, as well as several conserved Glu, Gln and Arg residues within trans-membrane helices. There are also a number of highly conserved Leu and aromatic residues. The conserved polar residues could be involved in H -bonding to polar groups on the porphyrin rings [33]. Note that there are a number of charged residues within the predicted trans-membrane helices; this is comparable to the situation in bacteriorhodopsin where the trans-membrane helices have a number of ionizable side-chains that are not part of the proton pore [34].

Differences between LHCI and the PSII CAB polypeptides can be seen in Helix 2 and the sequences flanking it. The PSI LHCI sequences have very short connectors between the first conserved region and Helix 2. With the exception of cab6A, the LHCl's have longer connectors between Helix 2 and the second conserved region. In all four LHCl polypeptides, this connector has more positively-charged residues than in the PSII polypeptides. The CP24 polypeptide also has a long connector, but it has 6 negative charges and no detectable similarity with the other CAB polypeptides. In addition to this region, predicted to be exposed on the stromal side of the membrane, there is a second motif
near the N-temminus whieh appears to be LHCl-speeifie (Flig. 4). These motif sequences could be involved in speefice binding to the PSI core or other PSI proteins, or could be required for targelling the protein to PSI during assembly of the holocomplex. In addition, Helix 2 appears to have some periodicity in conserved residues: this could indieate that one side of it is making specific contacts with other proteins.

Acknowtedtement: Our work was mpperied by U.S. Depl of AzriculturetEP, Natural Seiences and Engineering Researeh Couneil af Canada (BRG) and Medical Reveareh Counell of Canada (RA), We sheukd like te thank Dry N. Nekon and R. Malkin for their generous tifis of antbodiss, Drx J. Golbeek and I. Damm for helprul diseus. slons abou PSI, Dry P. Jahow, W. Junge and M. Ikeuchi for com. musleation of unpublished rewils, and Mr Ted Bures for expent rechnieal belp in protein xequencing.

REFERENCES

(1) Green, B.R. (1988) Phatosyn. Res. 15, 3-32.
(2) Thormber, J.P. (1986) in: Encyelopedia of Plant Plysiology 19 (New Series) (Stachelin, L.A. and Arnizen, C.J., edis) SpringerVerlay. Berlin, pp. 95-142.
[3] Chitnis, P.R. and Thormber, J.P. (1988) Photoryn. Res. 16. 41-63.
(4) Evans, P.K. and Anderxon, J.M. (1986) FEBS Leti. 199. 227-213.
(5) White, M.J. and Green, B.R. (1987) Eur. J. Blochem. 163. 545-551.
(6) Darr, S.C., Somerville, S.C. and Arntzen C.J. (1986) J. Cell Biol. 103, 733-740,
17) Pichersky, E. and Green, B.R. (1990) Curr. Res. In Photosyn. 3. 553-556.
[8] Green, B.R., Pichersky, E. and Kloppstech, K (1991) Trends Blochem, (in press).
(9] Hoffman, N.E., Pichersky, E., Malik, V.S., Castresana, C.. Ko, K., Darr, S.C. and Cashmore, A.R. (1987) Proc. Natl. Acad. Sci. USA 84, 8844-8848.
[10] Pichersky, E., Hoffman, N.E., Malik, V.S., Bernatzky, R., Tanksley, S.D., Szabo, L. and Cashmore, A.R. (1987) Plant Mol. Biol. 9, 205-216.
[11] Pichersky, E., Tanksley, S.D., Piechulla, B., Stayton, M.M. and Dunsmuir, P. (1988) Plant Mol, Biol. 11, 69-71,
[12] Pichersky, E., Brock, T.G., Nguyen, D., Hoffman, N.E., Piechulla, B., Tanksley, S.D. and Green, B.R. (1989) Plant Mol. Biol. 12, 257-270.
[13] Mullet, J.E., Burke, J.J. and Armezen, C.J. (1980) Plant Physiol, 65, 814-822.
[14] Haworth, P., Watson, J.L. and Arntzen, C.J. (1983) Biochim. Biophys. Acta 724, 151-158.
[15] Camm, E.L. and Green, B.R. (1989) Biochim. Biophys. Acta 974, 180-184.
[16] Aebersold, R., Leavitt, J., Hood L.E. and Kent S.B.H. (1987) Proc, Natl. Acad. Sci. USA 184, 6970-6974.
[17] Aebersold, R., Pipes, G.D., Wettenhall, R.E.H., Nilco, H. and Hood, L.E. (1990) 187, 56-65.
[18] Matsudaira, P. (1987) J. Biol. Chem. 262, 10035-10038.
[19] Schwartz, E. and Pichersky, E. (1990) Plant Mol, Biol. 15, 157-160.
[20] Pichersky, E., Bernatsky, R., Tanksley, S.D., Breidenbach, R.B., Kausch, A.P. and Cashmore, A.R. (1985) Gene 40, 247-258.
[21] Maxam, A.M, and Gilbert, W. (1980) Methods. Enzymol. 65, 499-560.
[22] Sanger, R., Nicklen, S. and Coulsen, A.R. (1977) Proc. Nat!. Acad. Sci, USA 74, 5463-5467.
(3I) Andervan. I.N. (10yt) Fholoblochen. Phatoblaphyx. *. 25lmint.
(3)] Nehuwhal, R., Petersom, C.E.. Perer. G.F. and Thomber, J.P (1907) fur. J. Bixamem. 164, $345-310$.
(2s) Herrin. D. I.. Plumley. F.C., Hewhi. N., Miehacti. A.S. and Selmidr, G.W. (1987) Afuth. Blochem. Bophys. 354. 397 -40s.
(26) Vaindein. A. Pererson, G.C. and Thernber, J.P. (19w9) 1. fiol Chem. $364,4058-1061$.
[37) Anandan. S., Vansein. A. and Thornber. J.P. (198V) HEBS l.e11. $256.150-134$.
 10.14.
 Physhal. (in prow).

 Curr. Rex. Pholdym. 2, 69-72.

 899.939.

[^0]: Correspondence address: B.R. Green, Botany Department, University of B.C., B.C., Canada

[^1]: Abbreviations: Ch , chlorophyll; PS , $\mathrm{Photosystem} \mathrm{I;} \mathrm{LHCl}, \mathrm{Chl} a / b$ light-harvesting antenna of PSI; CPI, PSI reaction centre complex; $\mathrm{CAB}, \mathrm{Chl} a / b$ binding

