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We consider a system consisting of  an infinite number of identical particles on a latttce 
initially uniformly distributed, which diffuse in the presence of a single mobile trap and ask 
for the time-dependent behavior of the distance of the trap from the nearest particle. This 
quantity is a measure of the tendency of the system to self-segregate. We show, by a 
simulation incorporating the exact enumeration method, that in one dtmension the expected 
distance (L(t)) scales as (L( t ) )~  t ~ as t--.~0, where the exponent a depends only on the 
ratio of the diffusion constants. A heuristic expression for a ts suggested, analogous to a 
rigorous exponent found by ben-Avraham for a similar but not identical problem. The flux 
into the trap is found to vary as t-t~: independent of the dtffusion constants 

1. Introduction 

Widespread application of the Smoluchowski theory of reaction rates in the 
literature of chemical physics [1] suggests both the interest and importance of 
examining some of the physical effects omitted in the analysis of this grossly 
simplified model. In particular, one would like to gain some motion of 
whether, and by how much, many-body effects are likely to change the 
Smoluchowski model. In general this poses a formidable problem and only 
partial and approximate results are available, which are mainly due to Waite 
[2, 3]. More recently attention has been focussed on simplified one-dimensional 
systems exemplified by the reaction A + B--~ B, which is clearly an easier 
version of the original three-dimensional Smoluchowski model [4]. 

In the Smoluchowski model one starts from a picture consisting of a single B 
molecule that remains fixed in space while an infinite number of A particles, 
initially uniformly distributed throughout space, perform Brownian motion 
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without mutual interaction. A reaction is said to occur when an A comes into 
contact with the B. In the original, as well as in most later formulations of the 
Smoluchowski model, the key assumption that considerably simplifies the 
analysis is that the A particles, which are idealized as geometric points, diffuse 
without interacting with one another. Recently there has been considerable 
interest in the behavior of reacting systems in low dimensions [5-12], where 
the classical reaction laws require mgdification due to effects exemplified by 
the self-segregation of reactants. One of the conceptually simplest generaliza- 
tions of the Smoluchowski model is one in which both A and B particles are 
allowed to diffuse, with possibly different diffusion constants D^ and D a. A 
significant feature of such a model is that the diffusion of both species induces 
correlations in the distance from the B to individual A's, even in the absence of 
any physical interaction between the A's. Such correlations are most evident in 
low dimensions, and play a much less significant role in determining the 
reaction kinetics of three-dimensional systems. A mathematical analysis of 
even the most simplified version of the modified Smoluchowski nlodel appears 
to be intractable, and to date there is only one approximate ~,nalysis of the 
kinetics of such a model in the literature [13l. 

One quantitative measure of the tendency of low-dimen,!onal reacting 
systems to self-segregate is the distance of the B particle fn-,:n the nearest 
unreacted A, i.e., the generalization of the Hertz distribution [i.',] that is valid 
when neither A's nor the B can move. Analyses of this quantity have appeared 
in the limiting cases in which the B is stationary [15] and the A's diffuse, and in 
the contrary case in which the B diffuses while the A's are stationary [16]. The 
difference between these two cases can be characterized in terms of the mean 
value of the distance of B from the closest A, and is most striking in the case of 
a one-dimensional system. Let (L(t)) denote the mean nearest-neighbor 
distance at time t. It has been shown that for the stationary-B mobile-A model 
in one dimension [15] 

(L(t)) (1) 
lim tl/--- T-  =constant ,  

while in the mobile-B stationary-A model one has [16] 

{L(O) (2) lim tl,2 =constant .  

In the present note we investigate, by a form of simulation based in part on the 
exact enumeration method [17], the asymptotic behavior of (L(t)) for cases 
intermediate between those just mentioned, in which both A's and B's are 
allowed to diffuse. 
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2. Results 

Our simulations were performed for a discrete nearest-neighbor random 
walk model of  the diffusion process in one dimension in which, on any given 
step, the probability that a particle moves from site i to i -+ 1 is taken equal to 
c12 and the probability of making no step is equal to 1 - E. The corresponding 
diffusion constant in a continuous model is then proportional to ~. In the 
following presentation and discussion of results we will refer to e as the 
diffusion constant. In our simulation the motion of the B particle was pre- 
scribed by a Monte  Carlo method while the effects of motion of the more 
numerous A particles was handled by the exact enumeration method [17]. This 
has proved to yield highly accurate results in applications where exact results 
can be used to check the simulations (cf., for example, ref. [18]). In all cases 
we started with a semi-infinite lattice consisting of 2000 sites. The probability 
that a given site initially contains an A was set equal to 0.8 at t = 0, this high 
concentration being chosen in order  to minimize sampling errors insofar as 
possible. Initially the B particle is set at one end of  the line, but, since it is 
allowed to move either to the right or to the left, the line can be greater than 
its original 2000 sites after a number  of steps of the run. For each value of the 
parameters we made runs based on 500 initial A configurations (except for the 
case in which D k = D B ,  which is based on 5000 initial A configurations) 
averaging over the results to draw a log-log plot, which allows us to estimate 
the exponent a in the conjectured relation 

(L(t))  
,-,,~lim t ~ = constant ,  (3) 

generalizing eqs. (1) and (2). 

Some typical plots of l n ( L ( t ) )  against in t are shown in fig. 1, together with 
the best-fit straight line through the data. Other  cases not shown in the figure 
lead to equally convincing straight lines. We have also compared data obtained 
with different values of D A and D B for fixed values of the ratio Da/D A finding 
that the values of the exponent a remains the same to within the sampling 
error. As an example of the results obtained, the exponent calculated using 
D A = D B = 1 yields an exponent equal to 0.319. The corresponding exponent 
for D A = D B = 0.5 was found to equal 0.314. The 99% confidence intervals 
associated with these exponents, on the assumption that errors have a Gaussian 
distribution [20], were calculated to be (0.307, 0.330), and (0.296, 0.331) 
respectively, for the two sets of data. For the sake of comparison we also find 
that in the case D a = 1 and D A = 0 the 99% confidence interval for our data is 
(0.449, 0.488). We also varied the sets (D:,, D B) corresponding to other  fixed 
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Fig. I. Data  for (L(t)) as a function o f  t on  a l og - log  plot .  t oge the r  with the approx imat ing  
s t ra ight  lines. The  th ree  lines represent :  ( 0 )  D a = 0 ,  D s = l ;  (I-3) D ^  = I ,  D a = l :  ( & )  D a = i ,  
D a = 0. 

values of Da/DA, finding no significant differences in the exponents. This 
suggests that the exponent a indeed depends only on the ratio, and not 
separately on the two diffusion constants. 

The exponent calculated by simulation for the c a s e  D A = 0 ,  D a # 0  is 
estimated to be 0.469, which should be compared with the theoretical value of 
0.5, while the exponent  for D g # 0 ,  D s = 0 is estimated to be 0.247, to be 
compared to the theoretical value of 0.25. An additional set of simulations was 
generated in which the concentration of  A particles is kept fixed at 1 at the 
edges of the lattice to mimic the situation in which the line is actually infinite. 
The results obtained in this way yielded results in excellent agreement with our  
first set. While we have no theory to predict the value of ct in terms of the 
diffusion constants, it is possible to conjecture a form for this parameter, based 
on an analogy with the exponent found by ben-Avraham [19], in an analysis of 
the double-diffusion problem in which there is a single B particle surrounded 
by two A particles. The exponent in ref. [19] appears in an expression for the 
survival time. While the extrapolation from a three-particle system to an 
infinite particle system is a considerable one, based on it, we suggest that a 
should be of the form 

1 -If1 Ds a =- - tan + 2 - -  (4) 
DA 

This correctly yields the results at the extreme values, Da/D A = 0 and ~c. A 



236 R. Sehoonover et al. I Nearest-neighbor distances in diffusion-controlled reactions 

comparison of values of a obtained by simulation and those found from the 
conjectured value in eq. (4) is given in table I. The values have been calculated 
using one set of values of the pair (D A, DB) for each ratio DB/D A. The reader 
will observe that values of a calculated from eq. (4) are consistently higher 
than our estimated values. Two possibilities can be put forward to account for 
the observed discrepancies. Either the simulations have not been carried out to 
large enough times or else eq. (4) should be regarded as an approximation and 
not an exact result. Possible evidence for the first possibility is contained in the 
fact that the simulation results are low in the two cases (0 and oo) in which a is 
known exactly. 

Finally, we propose a possible form for the asymptotic form of the probabili- 
ty density, f (L ,  t), for the nearest-neighbor distance L(t). This is a scaling form 
in which time enters only through (L( t ) ) ,  i.e., 

N g ( ,  
f(L,t)= (L--~)) (L-('t)) ) ' (5) 

where g(x) is to be found from our simulations and N is the normalizing 
constant 

N =  1 g dx .  
o 

(6) 

The asymptotic ft~rms for f (L ,  t) when DB/D A = 0 and oo have the scaling form 
suggested in eq. (5). In fig. 2 we present a histogram for the function g(x) 
based on data loc t  = 1000 and 5000 (in discrete time) plotted as a function of 
L / ( L ( t ) )  for DB/D A = 1. The approximate agreement between this scaling 

Table I 
Comparison of the estimated value of a with the 
conjectured prediction of eq. (4). 

DBID a ot from simulations a from eq. (4) 

0.0 0 247 0 250 
O. 1 0.259 0.264 
0.2 0.270 0 277 
0.5 0.290 0 304 
1.0 0.319 0 333 
2.0 0.350 0 366 
4.0 0.380 0 398 
5.0 0 390 0 407 

10.0 0.410 0.432 
0.469 0 50(1 
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Fig.  2. A histogram for approximation fo r  the  function g(x) at times t = 11900 and 5000 and 
D A = D ,  = 1. T h e  co l lapse  o n t o  a single sca led  c u r v e  is ev ident .  

form and our data is evident from the figure. A good fit to the resulting curve is 
found by using the skewed-exponential form 

g(x) = x 132 exp( -2 .64x) .  (7) 

One further quantity of interest in characerizing the kinetic behavior of the 
system is the reaction rate, or flux at the trap. Fig. 3 shows the results of runs 
made with several sets of diffusion constants. The apparent straight lines on the 
log-log plots all have slopes very close to - 1 / 2  which is the result found for 
the particular cases treated in earlier investigations [15, 16]. 

While most of our conclusions are based on the exact enumeration tech- 
nique, we have also performed a large number of numerical experiments in 
which the diffusion process was simulated, i.e., a pure Monte Carlo technique. 
In all cases the results of both approaches were in good agreement. 
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Fig. 3. Data for the cumulative flux at the trap as a function of step number on a log-log plot for: 
(r-I) DA = 1, D B = 1; (A) D A = 1, D a = 0.2. The two lines have slopes very close to 1/2. Other 
data sets not included in the figure show the same behavior. 
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