
Journal of Sound and Vibration (1991) 144( 2), 281-292 

THE VIBRATION AND STABILITY OF 
A FRICTION-GUIDED, TRANSLATING STRING 

S.-P. CHENG AND N. C. PERKINS 

Department of Mechanical Engineering and Applied Mechanics, Universitjj qf‘ Michigan, 
Ann Arbor, Michigan 48109-2125, U.S.A. 

(Received 10 November 1989 and in revised,form 19 March 1990) 

Eyelets, capstans and cylindrical surfaces are often used in thread, fiber and paper 
handling machinery to guide the axially moving element. In addition to providing positional 
control, these “guides” introduce dry friction forces that alter the vibration and stability 
characteristics of the system. This paper examines the lateral response of a string that 
slides through an elastically supported, dry friction guide. Exact expressions are derived 
for the linear response under free and forced conditions. Solutions for the eigenvalue 
spectrum exhibit unusual features including multiple divergence instabilities, regions of 
flutter instability, and regions of curve veering associated with mode localization. A second 
order perturbation solution is derived to examine the behavior of the eigenvalue spectrum 
in regions of flutter instability and curve veering. The analysis highlights the common 
features of these two phenomena and suggests ways to minimize vibration by adjusting 
various design variables. The analysis also demonstrates that the eigenvalue loci in regions 
of flutter instability and curve veering are naturally described by a local hyperbolic 
approximation. 

1. INTRODUCTION 

A large class of mechanical systems, commonly referred to as axially moving materials 
[l], employs a translating element as a mechanism for transmitting power, material or 
information. The translating string is an important model for flexible, axially moving 
materials such as translating belts, chains, fibers, magnetic tapes, paper and threads. 

The stability of a translating string is limited by a critical translation speed; above this 
speed a buckling instability occurs [2]. The critical speed remains unaltered when the 
translating string is coupled to subsystems that do not affect the system tension such as 
elastic guides [3,4] and elastic foundations [5,6]. Any distributed elastic foundation, 
however, renders the translating string model dispersive, and significant attenuation of 
vibration amplitudes is possible by the proper selection of the foundation stiffness and 
the translation speed [6]. Pulley or wheel subsystems mounted on compliant supports 
lead to a speed-tension relation that can alter the critical speed [7,8]. 

In contrast to the above studies, which feature conservative subsystems, very little 
research has addressed the response of axially moving materials coupled to non-conserua- 
five subsystems. In many applications, the tautly drawn element slides across fixed guiding 
surfaces such as capstans, cylinders, eyelets, record/erase heads and rollers, which may 
generate substantial dry friction forces. Dry friction forces are responsible for the inadver- 
tent twisting of yarn in contact with rollers [9], the motion of threads along cylindrical 
surfaces [lo], and the self-excitation of longitudinal vibrations in magnetic tapes [ll]. 
Despite the pervasive use of these dry friction guides, there have been no studies of the 
effect of dry friction on the lateral response of axially moving materials. 
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The purpose of the study reported here is to investigate the dynamic response of an 
axially moving material that is in contact with a dry friction guide. A theoretical model 
is derived that governs the lateral motion of a string which slides through an elastically 
supported, dry friction guide. Exact methods are used to derive closed form expressions 
for the linear response of the string/guide system under free and forced conditions. The 
solutions illustrate how the vibration and stability of the string/guide system can be 
modified by changing design variables. 

2. EQUATIONS OF MOTION 

The system depicted in Figure 1 consists of a flexible string that is drawn to the right 
between two eyelets at X = 0 and X = L. The eyelet at X = L remains stationary while 
the eyelet at X = 0 may execute a prescribed lateral displacement F( T). The string, which 
translates with speed S, slides through an elastically supported guide with negligible mass 
at X = D. The top and bottom surfaces of the guide are assumed to remain in contact 
with the string due to the relatively large static forces N that are applied externally 
through two elastic supports K, and K2. As the string translates, dry friction forces F1 
and F2 develop on the surfaces of the guide and create a non-uniform tension R(X, T) 
along the string. 

Figure 1. Translating string/guide system. String is drawn through two eyelets and a dry friction guide by 
constant downstream tension R,. Guide surfaces remain in contact with the string and are preloaded by a large, 
static force N. 

With the elementary assumptions of the moving threadline model [2] and the inclusion 
of the strain energy and kinetic energy due to small extensions, Hamilton’s principle 
becomes 

[I 
L 

sf b(s+ W.,+sW,,)Z+p(Ur+SUx)~-R(X, T)l&-EAW;,}dX 
0 

- CK, + K2) U(Q n* 1 -(F,+F,)6W(D, T) dT=O. 
> 

In equation (l), U(X, T) and W(X, T) represent string displacements in the transverse 
and longitudinal directions, respectively, p is the string mass/length, and EA is the string 
section stiffness. Taking the first variation in equation (1) leads to the equations of planar 
motion 

[(R-pS2)U.xl,x=pU.rr+22pSU.x~+(K,+K2)U6(X-D), (2) 
(EA - PS’) Wxx =PW,+~PSWXT+(F,+F,)~(X-D), (3) 
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where S(X -D) denotes the Dirac delta distribution at X = D. The string tension is 
written as R=R,+(R*-R,)H(X-D), where R,(X, T) and R2(X, T) represent the 
tension in the string segments upstream and downstream of the guide, respectively. Note 
that the friction forces generated by the guide depend on the transverse string displacement 
and are given by 

F, = AN+ RI U(D, 771, Fz=p[N-KzU(D, 771, (4,s) 

where p is the coefficient of friction between the guide and the string. 
The model is simplified by noting that the speed of propagation of longitudinal waves 

in the moving string, m, greatly exceeds the speed of propagation of transverse 
waves, m. Thus, in the time scale of transverse motion, the string stretches in a 
quasi-static manner and the inertia terms p[ W., + 2s W,,, + S* W,,,] may be neglected. 
Integrating equation (3) in this case shows that the upstream tension R, reduces to a 
function of time alone, 

R,=RZ-(F,+F2)=R2-/J[~N+(K,-K~)U(D, T)], (61 

where the constitutive relation R = EA W,, and equations (4) and (5) have been used 
and R2 is the prescribed downstream tension. With U(X, T) = U, for 0 < X < D and 
VCX, T) = U, for D < X < L, the equation of transverse motion (2) becomes: 

(R, --PS~)U,.X.X = PU,.TT+~PSU,,XT, (RrpS’NJz,x.u =pU>.n+2pSUz.,,T, (7,8) 

with boundary conditions 

U,(D, T)- Uz(D, T)=O, (9) 

W~-PS~W~.X(Q W(R,-pS2W,.,dQ T)-(K,+K2)U(Q T)=O, (10) 

U,(O, T) = F( 7-A U*( L, T) = 0. (11) 

Note that equations (7) and (10) are non-linear due to the dependence of the upstream 
tension on the transverse motion of the string; see equation (6). This interesting non-linear 
coupling represents a possible source of internal resonance and is the subject of current 
research. The present study is focused on the related linear problem that results when 
equal support stiffness K, = K2 = K is assumed. In this case, the tension R, is constant. 

3. FREE, LINEAR RESPONSE 

3.1. CHARACTERISTIC EQUATION 

Exact methods can be used to examine the linear vibration and stability of the 
string/guide system for the case of free response, F(T) = 0 in equation (11). Using the 
separable solutions Uj(X, T) = y(X) eiRT, j = 1,2, in the homogeneous equations (7)- 
(11) leads to the (non-dimensional) eigenvalue problem 

( y* - n*)v; -i2vwvi + w’v, = 0, O<x<d, (12) 

(1-n’)v~--i2nwv~+o”v1=0, d<x<l, (13) 

u,(O) = 0, v~(l)=o, (14) 

v,(d)-v,(d)=& (1-r]2)u5(d)-(Y2-7)2)v:(d)-ku,(d)=0. (15) 

The non-dimensional quantities introduced here are 

x=X/L, VI = VI/L, v2 = v,/ L, d=D/L, c= = R,/p, 

Y* = RJR*, rl=S/c, t= Tc/L, 0 = 0Llc, k = 2KLlpc’. (16) 
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u,(x) = A, eimlx[sin (+,x)1, uz(x) = AI e”j+‘[sin (&x) -tan (I&) cos (&x)], ( 17, 18) 

which contain two arbitrary constants A, and Al, satisfy the field equations (12) and 
(13) and the two boundary conditions (14), provided that 

~,=Vl(Y~+), &=VJl(l-172), $,=Pl(YJ-‘IZ), &=w/(l-T$). (19) 

Applying the remaining boundary conditions (15) and simplifying the result leads to the 
characteristic equation 

+yocos(t&,d)sin[~/~~(l-d)]=O. (20) 

The eigenvalues wI, 1= 1,2,3,. . . , governing the natural frequency and stability of each 
vibration mode are determined as the roots of equation (20) for prescribed values of the 
string translation speed n, guide position d, stiffness k, and upstream tension y. The 
quantity y in equations (16) may also be interpreted as the ratio of the sound speeds of 
transverse waves in the upstream and downstream portions of the string, and it is related 
to the applied pre-load N and friction p of equation (6). For the special case y = 1 
(p = 0), equation (20) reduces to the characteristic equation for a class of frictionless 
systems studied in reference [6]. 

3.2. EIGENVALUE SPECTRUM 

As noted above, the eigenvalue spectrum for the string/guide system may be determined 
numerically for a given set of parameters. The first example illustrates how this spectrum 
depends on the guide stiffness and translation speed for a centrally located guide (d = 0.5) 
with constant friction ( y = O-5). In Figures 2 and 3 are shown the eigenvalues as functions 
of translation speed 7 for representative values of the guide stiffness k. The real parts 
(i.e., natural frequencies) and the positive imaginary parts of the complex eigenvalues 
are plotted separately over the range of speeds 0 < 77 < 1. 

0 0.2 0.4 0.6 

Translation speed, 7) 

Figure 2. Eigenvalue spectrum for limiting cases of guide stiffness. Real and (positive) imaginary parts of 
eigenvalues are plotted versus translation speed 17 for the case of a central guide (d = 0.5) with constant friction 
( y = 0.5). Solid curves are the solution for k = 0; dotted curves are the solution for k --* a. 
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For the limiting case of infinite guide stiffness, k+oo, the upstream and downstream 
string segments become decoupled, and the characteristic equation (20) reduces to 

f(w, n)g(w, 17) = 0, (21) 

where 

f(w, 7)) = sin (Ad), g(w,n)=sin[&(l-d)l. (22,23) 

The functionsfand g, which are the characteristic equations for upstream and downstream 
string segments with fixed ends, have real roots: 

m7r(+$) 
w, = 

rd 
, m=*l,*2,*3... (24) 

and 

nn-( 1 - n2) 
0” = 

l-d ’ 
n=+l,+2.*3..., (25) 

respectively. These solutions give the natural frequencies of two classical threadlines [2], 
one of length d with sound speed y, and the other of length 1 - d with sound speed 1. 
The dotted curves in Figure 2 illustrate the two families of frequency speed loci given by 
expressions (24) and (25). This elementary solution exhibits two critical speeds, y and 
1. The first critical speed, n = 7, leads to a buckling instability in the relatively slack 
upstream segment. For speeds y < n < 1, the upstream and downstream segments remain 
stable according to the present linear analysis. However, the contribution of geometric 
non-linearities increases with translation speed [7], and this solution is interpreted as a 
first approximation only. Indeed, as described below, the string/guide system becomes 
unstable in the range y < n < 1 for a guide with finite stiffness. 

The first five eigenvalues for the extreme case of vanishing guide stiffness, k = 0 (solid 
curves) are also depicted in Figure 2. Note that altering the guide stiffness does not alter 
the system tension, and the critical speeds, n = y and n = 1, are unaffected. For translation 
speeds greater than y, regions exist in which pairs of eigenvalues become complex 
conjugates; in such cases, the non-conservative friction forces lead to flutter instability. 

The transition of the eigenvalue spectrum between the limiting cases represented in 
Figure 2 is depicted in Figure 3, where an intermediate value of the guide stiffness, k = 20, 
is considered (solid curves). In Figure 3, an important comparison is made with the 
spectrum for the decoupled system, k +CO (dotted curves). The crossings (i.e., repeated 
frequencies) of the frequency speed loci for the decoupled system mark regions of abrupt 
change in the spectrum for finite stiffness case, k = 20. Below the first critical speed in 
Figure 3, the loci crossings for the decoupled case become regions of curue veering for 
the finite stiffness case; for example, see the boxed region to the left in Figure 3. The 
term curve veering is commonly used to describe eigenvalue loci that abruptly turn away 
from each other as their separation decreases [4]. 

The significance of this result is that the modes of vibration associated with curve 
veering are highly localized to either the upstream or downstream segments. Localized 
vibrations in non-gyroscopic systems have recently been studied in detail; see, for example, 
reference [12]. In Figure 4 are depicted the third and fourth modes at the translation 
speeds n = 0.28 and O-37, which mark the beginning and end of the region of curve 
veering shown by the left-hand box in Figure 3. The eigenfunctions are, in general, 
complex, and the curves in Figure 4 are the enuelope of the modal response; see the 
square-bracketed functions in equations (17) and (18). Note that while the third mode 
is localized to the downstream portion in the beginning of the veering region, it becomes 
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Translation speed, 4 
Figure 3. Eigenvalue spectrum for intermediate guide stiffness. Real and (positive) imaginary parts of 

eigenvalues are plotted versus translation speed n for case of a central guide (d = 0.5) with constant friction 
( y = 0.5). Solid curves are the solution for k = 20; dotted curves are the solution for k + 00. Boxes indicate 
representative regions of curve veering and flutter instability. 
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Figure 4. Localization of free response. Envelopes of third and fourth modes are shown at n = 0.28 and 
I) =0.37; refer to boxed region at left in Figure 3. (a) Mode 4, n = 0.28; (b) mode 4, n = 0.37; (c) mode 3, 
n = 0.28; (d) mode 3, n = 0.37. 
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localized to the upstream portion at the end of the region. The opposite conclusion holds 
for the fourth mode. Thus, small changes in the translation speed produce large changes 
in the magnitude of the modal response in the upstream and downstream segments. 

The loci crossings in the decoupled system (k +o;)) above the first critical speed in 
Figure 3 indicate regions of flutter instability in the coupled system (k = 20). Note that 
the regions of flutter instability of various mode pairs are dense in the interval y -=c n < 1, 
and there are no speeds at which all the modes are stable. This instabihty region grows 
with increasing friction, which, in turn, reduces the upstream tension y. 

A second example considers how the eigenvalue spectrum depends on guide location. 
The spectrum is shown in Figure 5 as a function of guide location d for constant translation 
speed n = 0.3 and friction y = O-5. The dotted curves denote the natural frequencies for 
the decoupled system (k+ a) and the solid curves denote those of a coupled system 
(k = 20). For the subcritical case (r) < y), the loci crossing for the decoupled system again 
evolve into regions of curve veering for the coupled system. Within these regions, the 
associated eigenfunctions are extremely sensitive to small changes in guide location. 

1 I / 1 
0 0.2 0.4 0.6 0.8 I 

Guide location, d 

Figure 5. Influence of guide location on eigenvalue spectrum. Real parts of eigenvalues are plotted versus 
guide location d for the subcritical case 17 = 0.3, y = 0.5. Solid curves are the solution for k = 20; dotted curves 
are the solution for k + m. 

3.3. DEVELOPMENT OF REGIONS OF CURVE VEERING AND FLUTTER 1NSTABlLlTY 

From the above examples, it is clear that loci crossings in the decoupled system may 
evolve into regions of curve veering or regions of flutter instability. One might, therefore, 
suspect some strong connection in the development of these two phenomena. This 
connection, in the present problem, is examined by the following perturbation analysis, 
which provides an accurate, closed form approximation of the eigenvalue spectrum in 
these regions. 

Several perturbation analyses have been utilized for eigenvalue problems exhibiting 
curve veering; see the discussion in reference [ 131. In the present problem, a perturbation 
analysis of the characteristic equation (20) is employed to highlight how regions of curve 
veering and flutter instability can both be treated in a single analysis. 
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First, the characteristic equation (20) is rewritten as 

where 

C(w, rl)lk=.f(o, rl)g(w, n)+eh(m, ~)=0, (26) 

h(w,~)=wsin(~,d)cos[~z(l-d)]+y~~~~(~,d)sin[~IZ(1-d)], (27) 

and E = l/k is termed the coupling factor, in keeping with reference [ 131. The functions 
f and g retain their former definitions, given by equations (22) and (23), and the function 
h represents the characteristic equation of the fully coupled system (E + 00). Although in 
the present formulation the dependence of the eigenvalue w on the translation speed r] 
is examined, the dependence on any other parameter (e.g., k, d or y) could be examined 
in a similar manner. An approximation to equation (26) is derived that is valid to second 
order in E in a small neighborhood about a loci crossing point. The locations of the loci 
crossing points in Figure 3, denoted by (w*, n*), are determined as the common solutions 
of equations (24) and (25). These common natural frequencies of the decoupled subsys- 
tems, f(~*, n*) = 0 and g(w*, n*) = 0, are, of course, natural frequencies of the coupled 
system, C(w*, v*) = 0. Thus, the frequency speed loci of the coupled system must always 
pass through the loci crossing points regardless of the degree of coupling [3]. Note that 
h(w, n) can be rewritten as 

h(w, 77) = P(W, 711f(w, v)+dw, l?Mw, 171, (28) 

in which the functions f and g are weighted by 

p(w,77)=~cos[~12(1-d)l, do, T) = P ~0s (+,d). (29,30) 

The approximation is achieved by considering first order perturbations of both w and 
n, given by w = w* + EO, 1) = n* + ~17, where the small coupling E represents the perturba- 
tion parameter. Expanding the functions f; g and h in first order Taylor series and 
substituting into (26) yields 

(u,w+b,ij)(a,w+ bZij)+[(p*a,+q*aJ~+(p*b,+q*bJij]=O, (31) 

where 

a, = (WWIW.?*lr o2= (%/WI,,*,,*,, b, = (Wa&~.r)*)r (32) 

bz = @s/Wl(w*, v*,, p* = pcm*, rl*L q* = qtw*, 77*). (33) 

Note that the quantity d = (a, b2 - u?b, )* 2 0; thus, the approximate characteristic equation 
(31) represents a general hyperbola in the (G, rj) plane near the loci crossing (o*, T*). 
Letting (W = w, , fj = 7,) denote the intersection of the asymptotes of the hyperbola enables 
the approximation to be rewritten as 

where 

(34) 

w,=(p*b,-q*bz)l(a,b,-azb,), 771=(q*u2-p*a,)l(a,b,-a,b,), A=p*q*. (35) 

In this form, the slopes of the asymptotes are readily seen to be -b,/u, and -b,/u,. 
From equation (34), the two eigenvalues ti,,,, in the veering or flutter region of the 

weakly coupled system (0 < E << I ), 

G”., =w,+[-(u,b,-u,b,)(~-~,)*:(u,b,+ua2b,)2(?-rl,)2+4u,uz~]/2u,u~, (36) 
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are known functions of the new speed parameter q and the eigenvalues w* of the 
decoupled system (E = 0). Moreover, the eigenvalues of the decoupled system are already 
known from equations (24) and (25). At 77 = n, , the approximation gives 

&,,(ii = 771) = WI *m, 

where Q, which may be positive, negative or zero, is given by 

(37) 

Q=p*q*/a,a,=w *z(yz-n*2j(1 - 7-/*‘)/d(l -dj. (38) 

Thus, the sign of Q determines whether the perturbed eigenvalues are real or complex 
and therefore whether the loci crossing evolves into a region of curve veering (Q > 0) or 
a region of flutter instability (Q < 0). The following three possibilities are noted from 
equation (37): (i) when Q > 0 for 0 < q* < y or T* > 1, two real and distinct eigenvalues 
result, and a region of curve veering develops; (ii) when Q = 0 for n* = y or 1, repeated 
(zeroj eigenvalues remain; (iii) when Q < 0 for y < n* < 1, two complex conjugate eigen- 
values result, and a region of flutter instability develops. 

The accuracy of this approximation is demonstrated in Figure 6, where the perturbation 
solution (dashed curve) is compared to the exact solution (solid curve) for the regions 
of curve veering and flutter instability shown by the boxes in Figure 3. The dotted lines 
represent the asymptotes of the hyperbola. The perturbation solution remains within 2.5% 
of the exact solution over the ranges of n shown in Figure 6. Note that the perturbation 
solution permits the regions of flutter instability to be determined without numerical 
computation of the eigenvalues from equation (20). From (36), the flutter region is easily 
found by identifying the speeds 17 for which W, = &,. 

4.0 (a’ I I I I I I I 
026 0.30 0.32 0.34 0.36 0.38 0.65 0.67 069 0.71 0.73 0 

Translation speed, 7 

5 

Figure 6. Perturbation solution for representative regions of curve veering (a) and flutter instability (b) in 
Figure 3. Solid curves are the exact solution; dashed curves are the perturbation solution. Dotted lines represent 
the asymptotes of the hyperbola. 

This perturbation solution demonstrates that regions of curve veering and flutter 
instability are naturally described by a local hyperbolic approximation. This may, in part, 
explain the inadequacy of the classical, parabolic approximation for curve veering, 
previously noted in reference [ 131. Note that, in this problem, both types of regions evolve 
from regions of loci crossings (k+ CO), which are described by the degenerate form of 
the hyperbola, A = 0 in equation (34). 
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4. RESPONSE TO HARMONIC END EXCITATION 

Mechanical winders often impart a lateral motion to the translating element and 
represent an important source of external excitation. Here, the forced response of the 
string/guide system to harmonic excitation applied at the upstream end is examined. 

In this case, the equations of motion (7)-(10) are solved subject to the boundary 
conditions 

U,(O, 7) = Q cos 0J U*( L, T) = 0. (39) 

The introduction of additional non-dimensional variables: U, = U,/ L, u2 = U,/ L, q = Q/L, 
w,- = OfL/ c, enables the steady state response of the system to be written as 

u,(x, r)=b cos (wJ-r+6x){cos (+)+Esin (~IxVC(~f)ll-qcos (A4 03s C&-W) 

+vfsin(h4 sin(92-IC124-kcos (4~4 sin (Jlq-W)lIr 

u*(x, t) = 4 cos I++ 42x + (6 - d&u 

(40) 

x {--iIrq ~0s (bWC(of)l[sin (Jlzx) -tan (+d ~0s (W)lI. (41) 

Note that the factors in curly brackets in equations (40) and (41) describe the amplitude 
of the forced response envelope which becomes unbounded under the resonance condition 
C( wr = 0,) = 0. Near this resonance condition, wf = o,, the response envelope closely 
resembles that of the free response associated with the natural frequency 0,. Moreover, 
if this natural frequency lies in a region of curve veering, then large changes in the forced 
response envelope follow from small changes in operating conditions. 

The sensitivity of the forced response is illustrated in Figure 7, which shows the forced 
response envelope for three sets of close operating conditions. In this example, the guide 
stiffness, friction and translation speed are all held constant. The dramatic changes 
observed in the response derive from small changes in either the guide location d or the 
excitation frequency w,. The three sets of values chosen for d and wf are defined by the 
points a, b and c in Figure 5, near the region of curve veering for the first two modes. 
The solid curve in Figure 7 represents a response that is localized to the downstream 
portion of the system for an excitation frequency slightly lower than the fundamental 
natural frequency (corresponds to a in Figure 5). The forced response becomes localized 
to the upstream portion of the system after the guide location is adjusted from d = 0.2 
(point a) to d = O-277 (point b); see the dashed curve in Figure 7. A similar change in 

-2 1 1 I I I I 
0 0.2 0.4 0.6 0.6 I.0 

Posiiion, x 

Figure 7. Localization of forced response for three close operating conditions defined by a, b and e points 
in Figure 5. Solid curve: point a, d = 0.2 and w, = 3.36; dashed curve: point b, d = 0.277 and W, = 3.36; dotted 
curve: point c, d = 0.2 and of = 4.70. In all cases, 7 = 0.3, y = O-5 and k = 20. 
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the response could also be produced by changing the excitation frequency to a value 
close to the second natural frequency (point c); see the dotted curve in Figure 7. This 
result serves to illustrate how the forced response may be localized to either segment of 
the system by small adjustments to the operating conditions. 

5. CONCLUSIONS 

Exact expressions have been derived for the free and forced linear response of a 
translating string coupled to a dry friction guide. Solutions for the eigenvalue spectrum 
illustrate how the vibration and stability of the string/guide system can be modified by 
adjusting the design variables such as guide friction, location, stiffness, translation speed 
and tension. In particular, the range of stable operating speeds can be increased by either 
reducing the guide friction or increasing the prescribed downstream tension. For large 
values of the guide stiffness, the frequency spectrum in the stable range of speeds contains 
regions of curve veering, and the free response becomes highly localized to the upstream 
or downstream segments. The location (upstream or downstream) of the maximum 
response under forced conditions, therefore, may be strongly influenced by the selection 
of design variables. A derived perturbation solution greatly facilitates this selection by 
providing a closed form approximation for the eigenvalue spectrum in the regions of 
curve veering. The perturbation solution also highlights the common features of the 
regions of curve veering and the regions of flutter instability observed in this system. In 
both regions, the eigenvalue loci are naturally described by a local hyperbolic approxi- 
mation. 
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