J. Chem. Thermodynamics 1991, 23, 77-93

Heat capacity and thermodynamic properties of synthetic heazlewoodite, Ni_3S_2 , and of the high-temperature phase $Ni_{3+x}S_2$

SVEIN STØLEN, FREDRIK GRØNVOLD,

Department of Chemistry, University of Oslo, 0315 Oslo 3, Blindern, Norway

EDGAR F. WESTRUM, JR.,

Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, U.S.A.

and GERMAN R. KOLONIN

Institute of Geology & Geophysics, Siberian Branch of the USSR Academy of Sciences, 630090, Novosibirsk 90, U.S.S.R.

(Received 13 September 1990) •

The heat capacity of synthetic heazlewoodite (Ni_3S_2) was measured over the temperature range 5 K to 350 K by equilibrium adiabatic calorimetry and compared with earlier results. High-temperature results on this phase and on (two-phase) $Ni_{2.9}S_2$ were obtained through the transition regions and up to about 1000 K. In addition to comparing the post-(834 K)-transitional heat capacity with that of fast ionic conductors it is discussed phenomenologically with Helmholtz-energy modelling for the phase transformation. Thermodynamic functions have been evaluated and selected values are, for $R = 8.3144 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$:

	$C_{p, m}/R$	$\Delta_0^T S_{\rm m}^{\circ}/R$	${\cal P}_{ m m}^{\circ}/R$	T/K
$(1/5)Ni_{3}S_{2}$	2.844	3.204	1.469	298.15
	4.614	9.033	4.609	1000
	$C_{n,m}/R$	$\Delta_{298,15 \text{ K}}^T S_{\text{m}}^\circ/R$	$\Delta_{298,15 \text{ K}}^T H_{\text{m}}^{\circ}/R$	T/K
$(1/4.9)Ni_{2.9}S_2$	2.836	0	0	298.15
	4.667	5.613	3704.4	980

1. Introduction

The nickel sulfide Ni₃S₂ was first described by Petterd⁽¹⁾ and named heazlewoodite after the locality of its discovery. It was later synthesized by Alsén⁽²⁾ who indicated the structure to be cubic on the basis of X-ray-diffraction results. Westgren⁽³⁾ solved the structure of heazlewoodite, proposing the space group R32 with lattice constants a = 408.0 pm and $\alpha = 0.502 \cdot \pi$ as redetermined with corrections by Peacock.⁽⁴⁾ The

sulfur atoms are in an approximately cubic body-centred arrangement and surrounded equidistantly by 9 nickel atoms at the corners of an irregular poyhedron. A recent neutron-diffraction investigation by Fiellvåg and Andersen⁽⁵⁾ confirmed the structure and also delineated the temperature dependence of the lattice parameters, According to Kullerud and Yund,⁽⁶⁾ the solubility of nickel or sulfur in heazlewoodite is less than 0.3 mass per cent near 800 K. More sensitive measurements by Rau⁽⁷⁾ showed, however, that heazlewoodite has a measurable, although small, homogeneity range situated on the sulfur-rich side of Ni_3S_2 . The decomposition temperature of the compound was reported to be (838 ± 5) K by Rau,⁽⁷⁾ 826 K by Conard et al.,⁽⁸⁾ 823 K by Sokolova,⁽⁹⁾ and (834 ± 1) K by Ferrante and Gokcen.⁽¹⁰⁾ Above this temperature a grossly non-stoichiometric $Ni_{3+x}S_2$ phase is present. On each side of the stoichiometric composition eutectoids are formed. The eutectoid temperatures are 806 K and 797 K on the nickel and sulfur-rich sides, respectively.⁽¹¹⁾ The homogeneity range of the high-temperature phase is known through early activity studies by Schenck and van der Forst,⁽¹²⁾ and by Rosenqvist,⁽¹³⁾ as well as through more precise and recent studies by Rau⁽⁷⁾ and by Lin et al.⁽¹¹⁾ According to Lin et al. the phase field is divided by a two-phase region near mole fraction 0.41 of S.

The structure of the high-temperatue phase $Ni_{3\pm x}S_2$ is not well known. Crystallographic investigations were initiated by Kullerud and Yund.⁽⁶⁾ They noted that changes in the composition of the highly non-stoichiometric phase are accompanied by pronounced changes in the relative intensities of the observed reflections, and by decreasing unit-cell dimensions with increasing nickel deficiency. The reflections obtained were, however, diffuse and the crystal symmetry was uncertain. Liné and Huber⁽¹⁴⁾ first proposed a face-centered cubic cell, an interpretation later confirmed by Lamprecht and Manus⁽¹⁵⁾ and by Fjellvåg and Andersen.⁽⁵⁾ No sign of the proposed two-phase region in the high-temperature phase has been reported. On the contrary, the X-ray results at 923 K^(5,14) give evidence of a smooth continuous variation in the lattice constant as a function of composition. The region of the constant sulfur activity, upon which the proposal of a two-phase region was made⁽¹¹⁾ was, however, not investigated in detail. It has been proposed⁽¹⁶⁾ that by analogy with the notation of the high-digenite phase, as $Cu_{2-x}S$, the correct notation for the defect structure of $Ni_{3+x}S_2$ should be $Ni_{2-x}S$.

Heat-capacity results for Ni₃S₂ have been reported by Weller and Kelley⁽¹⁷⁾ over the temperature range 55 K to 300 K, and the standard entropy at 298.15 K has been derived. More recently, drop calorimetry has been carried out by Conard *et al.*⁽⁸⁾ and by Ferrante and Gokcen⁽¹⁰⁾ over the temperature range 298 K to 1250 K. In addition, the enthalpy increment from 298 K to 873 K can be evaluated from results of Cemic and Kleppa.⁽¹⁸⁾ Recent experimental determinations of formation energies are reported by them, by Mehrotha *et al.*⁽¹⁹⁾ and by Schaefer.⁽²⁰⁾ The thermodynamic properties of the binary system have been assessed by Lin *et al.*⁽¹¹⁾ and more recently by Sharma and Chang.⁽²¹⁾

In this first of a series of papers on the thermodynamic properties of nickel sulfides, the heat capacity of synthetic heazlewoodite, Ni_3S_2 , and its cubic facecentred high-temperature modification, $Ni_{3+x}S_2$, are reported. High-temperature results are also recorded for $Ni_{2.9}S_2$ which is a two-phase sample consisting of Ni_3S_2 and Ni_7S_6 at room temperature. This sample was chosen so that thermal effects related to the reported two-phase region of the high-temperature phase might be detected. Intermittently energized adiabatic calorimetry, which allows long equilibration periods, is a very sensitive technique for such a purpose. In addition, the post-transitional heat capacity is measured and discussed phenomenologically, using a Helmholtz-energy modelling for the phase transformation. The results of the calculations can also be compared with the transitional heat capacity of fast ionic conductors. Thermodynamic properties are evaluated and compared with previous results.

2. Experimental

SYNTHESIS AND STRUCTURAL CHARACTERIZATION

 Ni_3S_2 was prepared directly from the elements: nickel as 5 mm diameter rods >99.998 mass per cent pure and sulfur as 99.9999 mass per cent pure crystals from Koch-Light Laboratories, Colnbrook, England. Stoichiometric amounts of the elements were heated in an evacuated and sealed vitreous silica tube, constricted at the middle by a smaller diameter tube. Nickel was placed in one part of the tube, sulfur in the other, and the tube was put into a reclining tube furnace with the sulfur-containing compartment protruding. The nickel was heated to 870 K and the sulfur was allowed to melt and react with nickel in the hotter part of the tube. When most of the sulfur had combined with the nickel (2 d), a heating pad was wound around the exterior end of the vitreous silica tube so that the remaining sulfur was brought into reaction. This was accomplished overnight. The empty half of the silica tube was sealed off and discarded before the sample was equilibrated at 1270 K for 3 h. The sample was then finely crushed and transferred to the calorimetric ampoule.

 $Ni_{2.9}S_2$ was prepared from the Ni_3S_2 sample by addition of sulfur. The mixture was heated slowly to 710 K in a vitreous silica tube and kept at this temperature for 12 h. The temperature was then raised to 1120 K. After 3 h the temperature was lowered to 770 K. The sample was kept at this temperature for 7 d and cooled with the furnace.

X-ray powder photographs of Ni₃S₂ and Ni_{2.9}S₂ were taken in Guinier-type cameras of 8.0 cm diameter. Cu (K α_1) radiation was used with Si as internal standard.⁽²²⁾ The lattice parameters of heazlewoodite in Ni₃S₂ and Ni_{2.9}S₂ are $a = (408.1 \pm 0.1)$ pm and $\alpha = (0.4969 \pm 0.0001) \cdot \pi$ and $a = (408.1 \pm 0.1)$ pm and $\alpha = (0.4969 \pm 0.0001) \cdot \pi$ and $a = (408.1 \pm 0.1)$ pm and $\alpha = (0.4970 \pm 0.0001) \cdot \pi$, respectively. This is in good agreement with the parameters obtained by Parise: $a = (407.18 \pm 0.06)$ pm and $\alpha = (0.49708 \pm 0.00005) \cdot \pi$.⁽²⁴⁾ The diagram for Ni_{2.9}S₂ included in addition a number of weak diffraction lines, most of which could be indexed in accordance with those of α -Ni₇S₆.⁽²⁵⁾

CALORIMETRIC TECHNIQUE

The cryogenic heat-capacity measurements at Ann Arbor were made in the Mark X adiabatic cryostat, which has been described previously.⁽²⁶⁾ The sample was

contained in a gold-plated copper calorimeter (laboratory designation W-139). The calorimeter had a mass of 13.21 g and internal volume of 23 cm³. The temperature of the calorimeter was measured with a Leeds & Northrup platinum encapsulated resistance thermometer in an entrant well. The thermometer was calibrated by the U.S. National Bureau of Standards against IPTS-68 and was considered to reproduce the thermodynamic scale within 0.03 K from 5 K to 300 K. About 150.58 g of sample were put in the calorimeter. To facilitate rapid thermal equilibration, 2.53 kPa at 300 K of helium gas was introduced after evacuation. The calorimeter was then sealed, placed in the cryostat, and cooled. The heat capacity of the empty calorimeter represented 27 per cent of the total heat capacity at temperatures below 50 K and decreased from about 25 to 18 per cent at higher temperatures.

The high-temperature calorimetric apparatus and measuring technique at Oslo have been described in detail previously.⁽²⁷⁾ The computer-operated calorimeter was intermittently heated, and surrounded by electrically controlled adiabatic shields. The sample was enclosed in an evacuated vitreous silica tube of about 50 cm³ volume, tightly fitted into the silver calorimeter. A central entrant well in the tube served for the heater and platinum resistance thermometer. The resistance thermometer was calibrated locally, at the ice, steam, tin, zinc, and antimony points. Temperatures were judged to correspond with IPTS-68 to within 0.05 K at 900 K and within 0.1 K above. The heat capacity of the empty calorimeter was determined in a separate series of experiments with a standard deviation of a single measurement from the smoothed heat-capacity curve of about 0.15 per cent. Corrections were applied for differences in mass of the silica containers. The masses of the samples used were about 138.7 g and 133.5 g for Ni₃S₂ and Ni_{2.9}S₂, respectively.

3. Results

HEAT CAPACITIES

The experimental heat capacities for Ni_3S_2 and $Ni_{2.9}S_2$ are given in chronological order in table 1 and presented graphically in figures 1(a) and 1(b). The approximate temperature increments used in the determinations can usually be inferred from the adjacent mean temperatures in the table. In table 2 the heat capacities in the transitional region are given together with the enthalpy increments. The experimental heat capacities for the low- and high-temperature regions were fitted to polynomials in temperature by the method of least squares. In the lowest temperature region the heat capacity of Ni₃S₂ was fitted by assuming a linear $C_{p,m}/T$ against T^2 relation. It was extrapolated to T = 0, giving an electronic heat capacity constant equal to zero within experimental accuracy. The analysis is made difficult by two abnormally low heat-capacity values in the low-temperature range. The estimated standard deviation of a single heat-capacity measurement in the lowtemperature region is about 1 per cent at 7 K, decreasing to 0.1 per cent over the range 30 K to 350 K. The results for Ni₃S₂ in the range 300 K to 780 K were joined with the low-temperature results over the region 249 K to 348 K with a common standard deviation of 0.21 per cent. A single result was omitted in the fitting process.

T/K	$C_{p,\mathrm{m}}/R$	T/\mathbf{K}	$C_{p,\mathrm{m}}/R$	T/K	$C_{p,\mathrm{m}}/R$	T/K	$C_{p,m}/R$	T/\mathbf{K}	$C_{p,m}/R$	T/K	$C_{p,\mathrm{m}}/R$
			Ι	M{(1/5)N	i_3S_2 = 4	8.040 g ·	mol ⁻¹				
			High-te	mperatu	re results	—Unive	ersity of C	Oslo			
Ser	ies I	416.77	3.136	541.78	3.328	669.13	3.514	860.45	4.564	995.71	4.614
300.44	2.864	427.21	3.152	552.30	3.342	679.91	3.548	870.53	4.569	Ser	ies III
311.38	2.903	437.60	3.170	562.85	3.358	Sei	ies II	880.74	4.573	781.12	3.753
322.15	2.931	447.96	3.188	573.40	3.366	715.45	3.600	891.04	4.542	ΔH	detn. B
332.79	2.956	458.33	3.205	583.93	3.383	726.27	3.619	901.47	4.550	843.02	4.590
343.43	2.982	468.70	3.225	594.49	3.398	737.10	3.645	911.83	4.546	Ser	ies IV
353.97	3.007	479.09	3.237	605.06	3.416	747.94	3.665	922.98	4.548	639.18	3.454
364.45	3.031	489.49	3.250	615.66	3.431	758.85	3.683	935.04	4.562	649.86	3.473
374.91	3.055	499.91	3.269	626.30	3.466	769.74	3.731	946.94	4.537	660.54	3.489
385.37	3.075	510.34	3.286	636.97	3.458	ΔH	detn. A	959.07	4.562	671.21	3.500
395.83	3.096	520.81	3.300	647.66	3.476	840.40	4.592	971.24	4.584	681.88	3.519
406.30	3.116	531.28	3.314	658.38	3.496	850.47	4.603	983.45	4.579	692.38	3.526
Low-temperature results—University of Michigan											
Ser	ies V	27.17	0.09441	69.30	0.8300	134.96	1.899	208.33	2.494	291.09	2.821
8.65	0.00417	29.69	0.1225	73.86	0.9202	141.18	1.972	215.01	2.525	298.33	2.840
10.60	0.00646	32.51	0.1581	77.80	0.9999	147.43	2.037	221.69	2.562	305.56	2.860
11.75	0.00811	35.38	0.1983	83.12	1.102	153.69	2.101	228.37	2.593	312.78	2.884
13.36	0.00497	38.36	0.2440	88.46	1.205	159.98	2.158	235.07	2.622	319.51	2.902
14.82	0.01094	41.44	0.2944	93.86	1.299	166.28	2.214	241.76	2.653	326.79	2.921
15.84	0.01828	44.58	0.3490	99.45	1.393	172.59	2.266	248.62	2.683	334.03	2.940
17.28	0.02363	47.78	0.4073	105.18	1.486	178.88	2.312	255.64	2.709	341.27	2.968
19.02	0.03175	51.40	0.4756	110.88	1.573	185.23	2.356	262.66	2.735	347.90	2.972
20.75	0.04161	55.43	0.5539	116.62	1.658	191.68	2.398	269.68	2.764		
22.74	0.05508	59.81	0.6402	122.58	1.741	198.13	2.445	276.72	2.783		
24.94	0.07323	64.52	0.7352	128.75	1.822	201.66	2.459	283.85	2.807		
			M	{(1/4.9)N	$i_{2.9}S_2$ =	47.823 g	g∙mol ⁻¹				
			High-te	mperatu	re results-	-Unive	rsity of C	Oslo			
Seri	es VI	401.01	3.067	514.64	3.270	628.99	3.476	743.35	3.858	907.47	4.694
301.46	2.841	411.41	3.090	525.00	3.295	639.43	3.501	753.84	3.934	917.88	4.658
310.84	2.869	421.78	3.107	535.27	3.383 4	649.86	3.525	763.40	4,746	928.30	4.656
320.10	2.884	432.15	3.115	545.49	3.345 4	660.44	3.575	772.96	3,999	939.50	4.646
329.30	2.908	442.50	3.132	555.84	3.330	671.00	3.644	783.39	4.014	951.51	4.651
338.48	2.925	452.81	3.152	566.30	3.348	681.32	4.412	ΔH	letn. C	963.61	4.659
348.43	2.950	463.11	3.166	576.76	3.366	690.94	4.054	856.69	4.754	975.77	4,667
359.07	2.973	473.37	3.191	587.22	3.384	701.21	3.744	866.70	4.730		
369.62	2.997	483.69	3.208	597.67	3.404	711.73	3.768	876.77	4.711		
380.12	3.019	494.00	3.229	608.12	3.431	722.27	3.795	886.95	4.694		
390.59	3.043	504.32	3.249	618.55	3.453	732.81	3.810	897.20	4.692		

TABLE 1. Molar heat capacities of $(1/5)Ni_3S_2$ and $(1/4.9)Ni_{2.9}S_2$ ($R = 8.31441 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$)

^a Not included in the curve-fitting procedure (trace of NiO, Ni₃S₄, or cristobalite?).

For $Ni_{2.9}S_2$ the standard deviation over the range 301 K to 671 K, excluding two measurements, was 0.16 per cent.

THERMODYNAMIC PROPERTIES

The enthalpy and entropy were evaluated by integrating the heat-capacity polynomials in temperature and adding the transitional enthalpies and entropies, see

FIGURE 1. (a), Molar capacity of $(1/5)Ni_3S_2$; \bigcirc , results U of M; \bigoplus , results U of O; +, molar heat capacity of $(1/4.9)Ni_{2.9}S_2$, U of O. (b), Behavior in the region 780 K to 860 K; \bigoplus , $(1/5)Ni_3S_2$; +, $(1/4.9)Ni_{2.9}S_2$.

$\frac{T}{K}$	$\frac{\Delta T}{K}$	$\frac{C_{p,m}}{R}$	$\frac{C_{p,\mathrm{m}}(\mathrm{n.t.})}{R}$	$\frac{t_{st}}{\min}$	$\frac{\Delta_{\rm trs}H_{\rm m}^{\circ}}{R\cdot {\rm K}}$	$\frac{T_{fin}}{K}$
		M3(1/5)NG	$S_{1} = 48.040 \sigma$			
Λ <i>Η</i> /(<i>R</i>	·K) detn. A		$_{3}3_{2} = 40.040 \text{ g}$	mor		
Series II. d	letns. 7 to 24					
780.42	10.5038	3.863	3.753	61	1.2	785.674
790.73	10.0728	4.063	3.782	61	2.8	795.747
800.59	9.6851	4.271	3.811	61	4.5	805.432
809.19	7.5203	6.263	3.837	645	18.2	812.952
816.97	8.0347	6.178	3.862	61	18.6	820.987
824.26	6.5511	9.174	3.884	62	34.7	827.538
829.28	3.4925	20.94	3.897	60	59.5	831.030
831.77	1.4740	56.53	3.903	61	77.6	832.504
832.83	0.6413	135.8	3.905	87	84.6	833.143
833.30	0.3106	285.6	3.908	40	87.5	833.453
833.54	0.1654	540.3	3.908	40	88.7	833.619
833.67	0.09823	912.7	3.909	40	89.3	833.717
833.74	0.04817	1874	3.909	25	90.0	833.765
833.80	0.06304	2851	3.909	35	179.5	833.828
833.86	0.06779	3963	3.909	31	268.4	833.896
833.90	0.00368	24460	3.908	18	90.0	833.900
834.66	1.5164	114.1	4.606	51	166.0	835.416
					1361.1	
$\Delta_{\rm tre} H_{\rm m}^{\circ}/(R$	(·K) detn. B					
Series III,	detns. 2 to 5		•			
803.35	33.5712	4.638	3.807	80	27.9	820.139
823.61	6.9416	8.601	3.879	57	32.8	827.081
832.52	10.8762	122.2	4.169	65	1284.2	837.957
					1344.9	
					1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
		$M\{1/4.9)Ni_2$	${}_{1.9}S_2$ = 47.823	g∙mol ⁻¹		
$\Delta_{\rm trs} H_{\rm m}^{\circ}/(R$	·K) detn. C					
Series VI, d	letns. 49 to 62					
792.90	8.5922	5.886	4.118	50	15.2	797.187
797.30	0.21623	422.0	4.143	50	90.4	797.413
800.96	7.1032	7.972	4.165	40	27.0	804.516
808.16	7.2895	7.910	4.206	35	27.0	811.806
814.93	6.2395	10.12	4.245	35	36.7	818.045
822.26	8.4330	17.33	4.288	37	110.0	826.478
828.40	3.8446	44.01	4.324	37	152.6	830.323
830.79	0.93949	95.23	4.337	30	85.4	831.262
831.88	1.2348	223.6	4.343	40	270.7	832.497
832.67	0.34236	727.8	4.348	30	247.7	832.840
833.03	0.38264	239.9	4.617	37	90.0	833.222
031.33	8.0132	6.186	4.800	40	11.9	841.835
840.70	9.8580	4.8/1	4.///	40	0.9	851.693
**					1165.5	

TABLE 2. Fractional moler enthalpy of transition for $(1/5)Ni_3S_2$ and $(1/4.9)Ni_{2.9}S_2$ $(R = 8.31441 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1})$

below. In the transitional region the heat capacity was read from large-scale plots and integrated manually. The thermodynamic values are given in table 3 at selected temperatures.

Low-temperature heat-capacity values for Ni_3S_2 by Weller and Kelley⁽¹⁷⁾ deviate from those obtained here by +11 per cent at 50 K and by about -0.3 per cent in the

TABLE 3. Integral thermodynamic properties of $(1/5)Ni_3S_2$ and $(1/4.9)Ni_{2.9}S_2$ $(R = 8.31441 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1})$

$\frac{T}{K}$	$\frac{C_{p,m}}{R}$	$\frac{\Delta_0^T S_{\rm m}^{\circ}}{R}$	$\frac{\Delta_0^T H_{\rm m}^{\circ}}{R \cdot {\rm K}}$	$\frac{\varPhi_{\rm m}^\circ}{R}$	$\frac{T}{K}$	$\frac{C_{p,m}}{R}$	$\frac{\Delta_0^T S_{\rm m}^{\circ}}{R}$	$\frac{\Delta_0^T H_{\rm m}^{\circ}}{R \cdot {\rm K}}$	$\frac{\Phi_{\rm m}^{\circ}}{R}$
			M {(1/	$(5)Ni_3S_2$	$= 48.040 \text{ g} \cdot \text{m}$	ol^{-1}			
				Heaz	lewoodite				
0	0	0	0	0	270	2.760	2.926	438.32	1.303
5	0.000	0.000	0.000	0.000	280	2.792	3.027	466.09	1.363
10	0.004	0.001	0.010	0.000	290	2.821	3.126	494.16	1.422
15	0.015	0.005	0.053	0.001	298.15	2.844	3.204	517.2	1.469
20	0.037	0.012	0.176	0.003	300	2.848	3.222	522.5	1.480
25	0.073	0.023	0.444	0.006	320	2.907	3.408	580.1	1.595
30	0.126	0.041	0.935	0.010	340	2.967	3.586	638.9	1.707
35	0.193	0.065	1.727	0.016	360	3.015	3.757	698.8	1.816
40	0.271	0.096	2.883	0.024	380	3.061	3.921	/59.5	1.922
45	0.356	0.133	4.448	0.034	400	3.102	4.079	821.2	2.026
50	0.448	0.175	6.457	0.046	420	3.141 2.177	4.232	883.0	2.128
55	0.540	0.223	8.941	0.000	440	3.177	4.579	940.0	2.221
00 70	0.044	0.274	10.257	0.070	400	3.210	4.520	1075.2	2.323
70	0.845	0.589	19.337	0.112	460	3.241	4.030	1075.2	2.410
00	1.045	0.514	20.002	0.134	520	3 200	4.791	1206.0	2.510
90 100	1.250	0.040	53 35	0.202	540	3 3 2 5	5.044	1200.0	2.000
110	1.405	0.787	68.18	0.255	560	3 352	5 166	1339.0	2.007
120	1.502	1.070	84 53	0.366	580	3 378	5 284	1406 3	2.859
130	1 838	1 212	102.26	0.425	600	3.405	5.399	1474.1	2.942
140	1.957	1.353	121.25	0.487	620	3.432	5.511	1542.5	3.023
150	2.064	1.491	141.36	0.549	640	3.461	5.620	1611.4	3.103
160	2.159	1.628	162.49	0.612	660	3.492	5.727	1681.0	3.181
170	2.245	1.761	184.52	0.676	680	3.526	5.832	1751.1	3.257
180	2.320	1.892	207.35	0.740	700	3.563	5.935	1822.0	3.332
190	2.388	2.019	230.90	0.804	720	3.603	6.036	1893.7	3.406
200	2.449	2.143	255.08	0.868	740	3.648	6.135	1966.2	3.478
210	2.504	2.264	279.85	0.931	760	3.697	6.233	2039.5	3.549
220	2.554	2.382	305.14	0.995	780	3.751	6.330	2113.9	3.620
230	2.602	2.496	330.93	1.057	800	3.810	6.425	2189.6	3.688
240	2.646	2.608	357.17	1.120	820	3.869	6.520	2266.5	3.756
250	2.687	2.717	383.33	1.181	833.90	3.909	6.585	2320.5	3.802
260	2.725	2.823	410.89	1.242					
			ŀ	ligh-tem	perature phase				
833.90	4.608	8.198	3665.3	3.802	920	4.546	8.652	4058.5	4.241
840	4.599	8.237	3693.4	3.840	940	4.551	8.749	4149.4	4.335
860	4.576	8.345	3785.1	3.944	960	4.563	8.845	4240.6	4.428
880	4.560	8.450	3876.5	4.045	980	4.585	8.940	4332.1	4.519
900	4.550	8.552	3967.6	4.144	1000	4.614	9.033	4424.0	4.609

$\frac{T}{K}$	$\frac{C_{p,m}}{R}$	$\frac{\Delta_{298.15\mathrm{K}}^T S_\mathrm{m}^\circ}{R}$	$\frac{\Delta_{298.15\mathrm{K}}^{T}H_{\mathrm{m}}^{\circ}}{R\cdot\mathrm{K}}$	$\frac{T}{K}$	$\frac{C_{p,m}}{R}$	$\frac{\Delta_{298.15\mathrm{K}}^T S_\mathrm{m}^\circ}{R}$	$\frac{\Delta_{298.15\mathrm{K}}^{T}H_{\mathrm{m}}^{\circ}}{R\cdot\mathrm{K}}$
		$M\{$	$(1/4.9)N_{2.9}S_2$	= 47.823 g·m	nol ⁻¹		
			$(Ni_3S_2 + Ni_3S_2 + Ni_3S_2)$	₇ S ₆) phases			
298.15	2.836	0	0	600	3.410	2.173	948.1
300	2.838	0.0175	5.249	620	3.449	2.286	1016.7
320	2.883	0.2024	62.46	640	3.502	2.396	1086.2
340	2.931	0.3784	120.6	660	3.578	2.505	1156.9
360	2.972	0.5476	179.7	680	3.636	2.612	1229.1
380	3.021	0.7095	239.7	685	3.651	2.639	1247.3
400	3.060	0.8655	300.6	685	3.651	2.661	1262.2
420	3.097	1.016	362.1	700	3.733	2.741	1317.6
440	3.132	1.161	424.4	720	3.777	2.846	1392.7
460	3.168	1.300	487.5	740	3:856	2.951	1469.0
480	3.203	1.436	551.1	760	3.947	3.055	1547.0
500	3.230	1.567	615.6	780	4.012	3.158	1626.5
520	3.275	1.696	680.7	800	4.160	3.261	1708.2
540	3.310	1.820	746.5	820	4.276	3.365	1792.6
560	3.344	1.941	813.0	833	4.350	3.433	1848.7
580	3.376	2.059	880.3				100 A
			Ni ₃₊	$_{x}S_{2}$			
833	4 818	4.850	3016.2	920	4.673	5.319	3425.0
840	4.797	4.890	3047.8	940	4.652	5.419	3518.3
860	4.742	5.002	3143.2	960	4.644	5.517	3611.3
880	4.699	5.110	3237.6	980	4.667	5.613	3704.4
900	4.685	5.216	3331.4				

TABLE 3-continued

100 K to 300 K range. The standard entropy at 298.15 K is insignificantly different, although their extrapolation led to a value at 50 K that is 12 per cent higher.

The drop-calorimetric results by Ferrante and Gokcen⁽¹⁰⁾ give about 1 per cent lower heat-capacity values than those obtained here in the ambient-temperature region, about -1.6 per cent at 500 K, and -0.7 per cent at 800 K. In the posttransitional region from 834 K to 900 K, the former results are about 0.7 per cent higher than the present ones. However, a steadily decreasing heat capacity was reported by Ferrante and Gokcen⁽¹⁰⁾ also above 900 K, while the presently obtained results show a minimum around 920 K. Thus, we have found a 2.2 per cent higher heat capacity for Ni₃S₂ at 1000 K than that reported by Ferrante and Gokcen.⁽¹⁰⁾ The enthalpy increment $\Delta_{298.15 \text{ K}}^{1000 \text{ K}}$ is lower than ours by 0.6 per cent, and that by Conard *et al.*⁽⁸⁾ is lower than ours by 1.0 per cent over the same region.

4. Discussion

 Ni_3S_2

No major heat-capacity effects were observed for the low-temperature phase of Ni_3S_2 , heazlewoodite, between 10 K and the decomposition temperature 834 K. A smooth regular increase was observed up to 760 K, where a more strongly increasing trend starts. This increase is probably connected with the observed change (see

 $\operatorname{Rau}^{(7)}$ in the homogeneity range of heazlewoodite near its decomposition temperature.

The transformation of heazlewoodite into the high-temperature β_1 -Ni_{3±x}S₂ phase occurs over a range in temperature. Two-thirds of the enthalpy increment is found within a 0.76 K interval around 833.67 K and 90 per cent is found within 4.4 K (see table 2, $\Delta_{trs}H_m^{\circ}$ determination A). The molar heat capacity rises to a maximum of $2 \cdot 10^5 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$ during the transition, with a resulting enthalpy of transition for (1/5)Ni₃S₂ of 11317 J · mol⁻¹.

Determination B gives a $135 \text{ J} \cdot \text{mol}^{-1}$ lower value, which is chosen here. It is based upon the observation that most of the difference arises in the 790 K to 820 K region where traces of nickel might react slowly. Furthermore, the long time required for reaching equilibrium in this temperature range (up to 645 min) also impairs the accuracy of determination A.

The transitional enthalpy obtained here agrees well with the earlier determinations by Conard *et al.*⁽⁸⁾ and by Ferrante and Gokcen⁽¹⁰⁾ and also with the evaluations by Mah and Pankratz⁽²⁸⁾ and Pankratz *et al.*,⁽²⁹⁾ see table 4. The transition temperature varies from 826 K to 840 K. In the assessment of the thermodynamic properties of the binary mixture by Lin *et al.*⁽¹¹⁾ the transitional enthalpy is about 7 per cent lower than the two newest experimental determinations, and is presumably in error.

The enthalpy and entropy of transition are surprisingly large, and exceed those observed for the fast-ionic-conductor transitions in Ag₂S,⁽³⁰⁾ Cu₂S,⁽³¹⁾ and AgI,⁽³²⁾ (see table 5). In addition, the molar heat capacity in the post-transitional region is also large: $\approx 38 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$. The origin of these anomalous features is not known. The isobaric expansivity changes but little at the transition, being $4.7 \cdot 10^{-5} \text{ K}^{-1}$ below and $6 \cdot 10^{-5} \text{K}^{-1}$ above the transition temperature,⁽⁵⁾ The dilational contribution will, hence, not be much larger for the high-temperature phase than for heazlewoodite, provided that the compressibilities of the two structures are comparable. The transition from heazlewoodite to the high-temperature phase. The transition is, hence, much more complicated than pure order-disorder. Knowledge about the structures is limited. Although the low-melting highly non-stoichiometric Ni_{3+x}S₂ phase is very important, being the cause of rapid corrosion of Ni in a sulfur-containing atmosphere, the heazlewoodite structure is much more

Authors	Ref.	Year	$T_{\rm trs}$	$\Delta_{\rm trs} H^{\circ}_{\mathfrak{m}} / (R \cdot \mathbf{K})$	$\Delta_{ m trs} S^{\circ}_{ m m}/R$
Conard et al.	8	1977	826	1343	1.626
Mah & Pankratz	28	1976	838	1346.5	1.612
Lin et al.	11	1978	838	1252.6	1.495
Ferrante & Gokcen	10	1982	834	1341	1.607
Pankratz et al.	29	1984	840	1346	1.602
Present		1990	834	1344.9	1.613

TABLE 4. Transformation molar enthalpies and entropies for $(1/5)Ni_3S_2$ ($R = 8.31441 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$)

Compound	Authors	Ref.	Year	T _{trs}	$\Delta_{\rm trs} H^{\circ}_{\rm m}/(R\cdot {\rm K})$	$\Delta_{ m trs} S_{ m m}^{\circ}/R$
(1/3)Ag ₂ S (1/3)Cu ₂ S (1/2)AgI (1/5)Ni ₃ S ₂	Grønvold & Westrum Grønvold & Westrum Shaviv <i>et al.</i> Present	30 31 32	1986 1987 1989 1990	450 376 420 834	162.8 462.7 378.9 1344.9	0.362 1.231 0.902 1.613

TABLE 5. Transformation molar enthalpy and entropy values for some fast ionic conductors $(R = 8.31441 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1})$

precisely determined.^(3,4) The complexity of the high-temperature structure, involving large anharmonic vibrations and/or changing defect structure, is indicated by the surprisingly bad agreement between the observed and calculated structure factors for all proposed crystallographic arrangements. For related sulfide phases, complex structural models have been proposed. $Cu_{2-x}S$ with a cubic face-centered structure has been proposed to have a complex cluster-type distribution of filled and empty planes of atoms. The model is based on imaging electron-diffraction studies.^(33,34) More recently, a neutron-diffraction study of the high digenite ($Cu_{2-x}S$) structure by Oliviera *et al.*⁽³⁵⁾ has shown that the copper atom distribution is not as complex as previously supposed.^(16,36,37) The copper atoms are distributed over the 32(f) positions in space group *Fm3m* about 50 pm away from the tetrahedral centers towards the faces of the tetrahedra with strongly anharmonic vibrations. For another highly non-stoichiometric transition metal sulfide, Fe_{1-x}S, the presence of an infinitely adaptive structure has been proposed by Anderson.⁽³⁸⁾

 $Ni_{2.9}S_2$

According to Lin *et al.*⁽¹¹⁾ the non-stoichiometric $Ni_{3\pm x}S_2$ phase is actually split in two by a two-phase region near mole fraction 0.41 of S, indicated in figure 2 as β_1 + β_2 . This conclusion was based on the observed sulfur fugacities, while directly observed changes in the crystallographic structure remain to be reported. X-ray results by Fjellvåg and Andersen⁽⁵⁾ indicate a smooth continuous variation in the lattice constant of the cubic structure as a function of composition. A large contraction in the unit cell is, however, observed. The volume of $Ni_{2.8}S_2$ is 10 per cent smaller than that of $Ni_{3.4}S_2$ at 923 K. In order to detect effects with origin in the reported two-phase region, the heat capacity of $Ni_{2.9}S_2$, chosen so as to obtain an optimal composition for the purpose, was determined at high temperatures. Consequently, the sample is a two-phase mixture of Ni_3S_2 and Ni_7S_6 at room temperature.

The small transition observed for $Ni_{2.9}S_2$ at 685 K is due to transformation of the nearly stoichiometric compound $Ni_7S_6(or)$ into a non-stoichiometric hightemperature phase, here denoted as $Ni_7S_6(t)$.⁽¹¹⁾ Compositional changes of this "new" phase give rise to high heat-capacity values, relative to heazlewoodite, below 797 K. Here peritectoid formation of the β_2 -phase takes place with a transitional enthalpy of about 750 J·mol⁻¹. From 797 K to 833 K the composition of the

FIGURE 2. Phase relations of nickel sulfides in the range Ni₂S to NiS. Ni₃S₂ rhombohedral represents synthetic heazlewoodite; β_1 and β_2 the nickel-rich and the sulfur-rich parts of the high-temperature Ni_{3±x}S₂ cubic phase. Other phases are Ni(s), a nickel-rich liquid l, the orthorhombic and tetragonal forms of Ni₇S₆, and the rhombohedral and hexagonal forms of NiS.

high-temperature phase changes continuously, giving molar heat capacities on the average (20 to 40) $J \cdot K^{-1} \cdot mol^{-1}$ larger than those observed for Ni₃S₂. Finally, at 833 K, Ni_{2.9}S₂ transforms to the high-temperature phase; see figures 1(b) and 2. The transition, with a maximum molar heat capacity of only $6 \cdot 10^3 J \cdot K^{-1} \cdot mol^{-1}$, is much more gradual than that observed in Ni₃S₂. The transition temperatures is 833 K for Ni_{2.9}S₂ and the obtained enthalpy and entropy of transition are 13 per cent lower than those observed for Ni₃S₂.

According to the phase diagram proposed by Lin *et al.*⁽¹¹⁾ a high-temperature tail should be observed on the heat-capacity peak. For Ni₃S₂, an abrupt decrease in the heat capacity is observed at the transition temperature, see figures 1 and 2, and an almost constant heat capacity is observed for the high-temperature phase. The size of the effect observed in Ni_{2.9}S₂ is, however, very small, indicating that any structural changes occurring must be minor. The two-phase region, hence, may represent merely a region of changing defect structure. No structural values are at hand. Different structural regimes within a homogeneity range have, however, been proposed for wüstite,⁽³⁹⁾ and also for the more sulfur-rich non-stoichiometric nickel sulfide, Ni_{1-x}S.⁽⁴⁰⁾ No definite conclusion, as to the existence of the reported two-phase region can, however, be drawn on the basis of the present heat capacities.

PHENOMENOLOGY OF THE PHASE TRANSITION AND THE POST-TRANSITIONAL HEAT CAPACITY

The heat capacity of $Ni_{3\pm x}S_2$ is anomalously large and can possibly be connected with the changing disorder in the grossly non-stoichiometric phase. The large degree of disorder taking place during the solid-state transition is illustrated by the fact that the enthalpy of transition of heazlewoodite is much larger than the enthalpy of melting of $Ni_{3\pm x}S_2$. Although the high post-transitional heat capacity may be connected with the high mobility of the metal ions, this argument is weakened by the fact that the heat capacities in the fast-ionic-conductor phases of Ag_2S ,⁽³⁰⁾ Cu₂S,⁽³¹⁾ and AgI,⁽³²⁾ are much lower; see figure 3. A phenomenological interpretation of these observations can be given using a Helmholtz-energy model for the phase transition. Assuming the existence of a metastable low-temperature structure from which the high-temperature structure can be generated through formation of interstitial cations, the following molar Helmholtz energy can be formulated:⁽⁴¹⁾

$$A_{\rm m}(x, T) = x U_{\rm m} - \frac{1}{2} \lambda x^2 + RT \{ x \cdot \ln x + (1 - x) \cdot \ln(1 - x) - x \cdot \ln g \},\$$

where $U_{\rm m}$ is the molar energy required to transfer a cation to an interstitial site and λ is connected to the interaction of an interstitial cation and the strain field left behind at the vacancy,⁽⁴²⁾ x is the fraction of interstitial cations, and g is the degeneracy of the interstitial position relative to the ground-state position. Similar equations have been derived by a number of investigators,⁽⁴³⁻⁴⁵⁾ in which the interpretation of λ and

FIGURE 3. Molar heat capacities in transition regions for some fast ionic conductors and Ni_3S_2 . ---, $(1/3)Ag_2S_2^{(30)}$ ----, $(1/3)Cu_2S_2^{(31)}$ ----, $(1/2)AgI_2^{(32)}$ and \cdots , $(1/5)Ni_3S_2$.

FIGURE 4. Molar heat-capacity contributions from interstitial cation-site occupancy change for different $\lambda/U_{\rm m}$ ratios and degeneracies g above $T_{\rm c} = 834$ K. 1, $\lambda/U_{\rm m} = 1.65$ and g = 3; 2, $\lambda/U_{\rm m} = 1.60$ and g = 3; 3, $\lambda/U_{\rm m} = 1.60$ and g = 2.

g differ. Minimization of A with respect to x gives the equilibrium ratio of interstitials:

$$U_{\rm m} - \lambda x = RT[\ln\{g(x^{-1} - 1)\}].$$

First-order or continuous phase transitions result, depending on the ratio λ/U_m and the degeneracy g. For more details, see Strässler and Kittel⁽⁴¹⁾ and Rice et al.⁽⁴²⁾ The heat-capacity contribution from the order-disorder process is given by

$$C_{V,m,i} = T(d^2A_m/dx^2)(dx/dT)^2$$

$$C_{V,m,i} = R^2 T \{ 2RTx(1-x) - 2\lambda x^2 (1-x)^2 \} \\ \times (\{\ln(1-x)\}^2 x^{-1} [2U_m - 2RT \cdot \ln g - \lambda x - \lambda x(1-x) \cdot \ln\{(1-x)/x\}]^{-1})^2.$$

The condition for a first-order transition is⁽⁴¹⁾

$$\lambda/U_{\rm m} > [2\{1 + (\ln g)/2\}^{-1}],$$

and the transition temperature is given by

$$RT_{\rm trs} = (U_{\rm m} - \lambda/2)/\ln g.$$

Using these equations the heat-capacity contribution was calculated for different $\lambda/U_{\rm m}$ ratios and g values, in order to see whether the large observed heat capacities of Ni₃S₂ and Cu₂S might be modelled. In figure 4 the results of calculations for

FIGURE 5. Model variation of the fraction x of interstitial cation sites occupied for different λ/U_m ratios and degeneracies g, for $T_c = 834$ K. 1, $\lambda/U_m = 1.65$ and g = 3; 2, $\lambda/U_m = 1.60$ and g = 3; 3, $\lambda/U_m = 1.60$ and g = 2.

 $\lambda/U_{\rm m} = 1.6$ with g = 2 and 3, and for $\lambda/U_{\rm m} = 1.65$ and g = 3, are presented. They correspond to $U_{\rm m} = (24.0, 38.1, \text{ and } 43.5) \text{ kJ} \cdot \text{mol}^{-1}$, respectively, $T_{\rm trs}$ being 834 K. The three curves represent three different situations. $\lambda/U_{\rm m} = 1.65$ with g = 3 corresponds to a large and regularly increasing heat-capacity increment over the temperature interval studied. It is comparable to that observed for Ni₃S₂, while the lack of downward curvature in the observed heat capacity probably arises from increased dilational contribution. $\lambda/U_{\rm m} = 1.6$ with g = 3 gives a maximum in the heat capacity above the transition temperature, whereas reducing g to 2 results in a much smaller and steadily decreasing heat capacity. Here a maximum in heat capacity occurs for $T < T_{\rm trs}$, where the high-temperature structure is unstable. The magnitude of the contributions depends largely on the chosen $\lambda/U_{\rm m}$ ratio and degeneracy. The large post-transitional heat capacity presently observed, and the lower and continuously decreasing heat capacity described using the same model for the Helmholtz energy.

In figure 5 the corresponding variations in the interstitial fraction are shown for

S. STØLEN ET AL.

the three cases. The large discontinuity in x and the slightly decreasing interstitial fraction in the post-transitional region should be noted. The discontinuity is largest for $\lambda/U_{\rm m} = 1.65$ and g = 3, $\Delta x \approx 0.99$, and smallest for $\lambda/U_{\rm m} = 1.6$ and g = 2, $\Delta x \approx$ 0.80. Physically, the solutions represent transformations where the interstitial positions are filled discontinuously by very large fractions of the metal atoms, followed by a return of some of them to their previous positions. The solution, hence, rests on a somewhat surprising physical picture, which needs further confirmation. It does, however, explain the observed heat capacities.

The portion of this work done at the University of Michigan was supported by the Structural Chemistry and Chemical Thermodynamics Program, Division of Chemistry, National Science Foundation, whereas the work done at the University of Oslo was supported by the Norwegian Research Council for Science and the Humanities. The assistance of Bjørn Lyng Nielsen with the preparation of the samples and in the higher-temperature calorimetric measurements is gratefully acknowledged.

REFERENCES

- 1. Petterd, W. F. Catalogue of the Minerals in Tasmania. Launceston, 1889, p. 47.
- 2. Alsén, N. Geol. Föreningen Stockholm Förhandl. 1925, 47, 19.
- 3. Westgren, A. Z. anorg. allg. Chem. 1938, 239, 82.
- 4. Peacock, M. A. Am. Mineral. 1947, 32, 484; Univ. Toronto Studies Geol. Series 1947, 51, 59.
- 5. Fjellvåg, H.; Andersen, A. Unpublished results.
- 6. Kullerud, G.; Yund, R. A. J. Petrology 1962, 3, 126.
- 7. Rau, H. J. Phys. Chem. Solids 1976, 37, 929.
- 8. Conard, B. R.; Sridhar, R.; Warner, J. S. 106th AIME annual meeting, Atlanta, Georgia, U.S.A., 1977.
- 9. Sokolova, M. A. Zhur. Neorg. Khim. 1956, 1, 1440.
- 10. Ferrante, M. J.; Gokcen, N. A. U.S. Bureau of Mines Rept. Inv. 8745, 1982.
- 11. Lin, R. Y.; Hu, D. C.; Chang, Y. A. Met. Trans. 1978, 9B, 531.
- 12. Schenck, R. von; Forst, P. van der Z. anorg. allg. Chem. 1939, 241, 145.
- 13. Rosenqvist, T. J. Iron Steel Inst. 1954, 176, 34.
- 14. Liné, G.; Huber, M. C.R. Acad. Sci. Paris 1963, C256, 3118.
- 15. Lamprecht, G.; Hanus, D. Neues Jahrb. Mineral Monatsh. 1973, 236.
- 16. Rahlfs, P. Z. Phys. Chem. B. 1936, 31, 157.
- 17. Weller, W. W.; Kelley, K. K. U.S. Bureau of Mines Rept. Inv. 6511, 1964.
- 18. Cemic, L.; Kleppa, O. J. Geochim. Cosmochim. Acta 1986, 50, 1633.
- 19. Mehrotha, G. M.; Tare, V. B.; Wagner, J. B., Jr. J. Electrochem. Soc. 1985, 132, 247.
- 20. Schaefer, S. C. U.S. Bureau of Mines Rept. Inv. 8588, 1981.
- 21. Sharma, R. C.; Chang, Y. A. Met. Trans. 1980, 11B, 139.
- 22. Deslatters, R. D.; Henins, A. Phys. Rev. Lett. 1973, 31, 972.
- 23. Parise, J. B. Acta Cryst. 1980, B36, 1179.
- 24. Fleet, M. E. Am. Mineral. 1977, 62, 341.
- 25. Fleet, M. E. Acta Cryst. 1972, B28, 1237.
- 26. Westrum, E. F., Jr.; Furukawa, G. T.; McCullough, J. P. Experimental Thermodynamics, Vol. I. McCullough, J. P., Scott, D. W.: editors. Butterworths: London. 1968, p. 133.
- 27. Grønvold, F. Acta Chem. Scand. 1967, 21, 1695.
- 28. Mah, A. D.; Pankratz, L. B. U.S. Bureau of Mines Bull. 668, 1976.
- Pankratz, L. B.; Stuve, J. M.; Gokcen, N. A. U.S. Bureau of Mines Bull. 677, 1984.
 Grønvold, F.; Westrum, E. F., Jr. J. Chem. Thermodynamics 1986, 18, 381.
 Grønvold, F.; Westrum, E. F., Jr. J. Chem. Thermodynamics 1987, 19, 1183.

- 32. Shaviv, R.; Westrum, E. F., Jr.; Grønvold, F.; Stølen, S.; Inaba, A.; Fuji, H.; Chihara, H. J. Chem. Thermodynamics 1989, 21, 631.

- Conde, C.; Manolikas, C.; Dyck, D. van; Delavignette, P.; Landuyt, J. van; Amelinckx, S. Mater. Res. Bull. 1978, 13, 1055.
- 34. Dyck, D. van; Conde, C.; Amelinckx, S. Phys. Stat. Sol. 1979, a56, 327.
- 35. Oliveira, M.; McMullan, R. K.; Wuensch, B. J. Solid State Ionics 1988, 28-30, 1332.
- 36. Morimoto, N.; Kullerud, G. Am. Mineral. 1963, 48, 110.
- Gasymov, G. B.; Asadov, Yu. G.; Guseinov, G. G.; Gezalov, M. A.; Belov, N. V. Dokl. Akad. Nauk SSSR 1978, 239, 846.
- 38. Anderson, J. S. J. Chem. Soc. Dalton Trans. 1973, 1107.
- 39. Vallet, P.; Carel, C. Rev. Chim. Mineral. 1986, 23, 362.
- 40. Black, S. N.; Jefferson, D. A.; Henderson, P. J. Solid State Chem. 1984, 53, 76.
- 41. Strässler, S.; Kittel, C. Phys. Rev. 1965, 139, A758.
- 42. Rice, M. J.; Strässler, S.; Toombs, G. A. Phys. Rev. Lett. 1974, 32, 596.
- 43. Huberman, B. A. Phys. Rev. Lett. 1974, 32, 1000.
- 44. Welsch, D. O.; Dienes, G. J. J. Phys. Chem. Solids 1977, 38, 311.
- 45. Lam, L.; Bunde, A. Z. Physik B 1978, 30, 65.