
Progress in Nuclear Energy, Vol. 25, No. 2-3, pp. 291-305, 1991, 0149-1970/91 $0-00 + .50
Printed in Great Britain. All rights reserved. Copyright © 1991 Pergamon Press pie

V E C T O R I Z A T I O N A N D P A R A L L E L I Z A T I O N O F A P R O D U C T I O N R E A C T O R
A S S E M B L Y C O D E

JASMINA L. VUJIC* and WILLIAM R. M A R T I N

Laboratory for Scientific Computation and the Department of Nuclear Engineering, The University of Michigan,
Ann Arbor, MI 48109, U.S.A.

Abstract - In order to efficiently use new features of supercomputers, production
codes, usually written 10 - 20 years ago, must be tailored for modern computer
architectures. We have chosen to optimize the CPM-2 code, a production reactor
assembly code based on the collision probability transport method. Substantional
speedups in the execution times were obtained with the parallel/vector version of the
CPM-2 code. In addition, we have developed a new transfer probability method,
which removes some of the modelling limitations of the collision probability method
encoded in the CPM-2 code, and can fully utilize parallel/vector architecture of a
mulfiprocessor IBM 3090.

1. I N T R O D U C T I O N

Most of the software which the nuclear industry uses routinely is written 10 to 20 years ago.
It was developed for serial mainframe computers with much less power and memory. With the
present generation of supercomputers it is possible to achieve substantial improvements in
performance by using large real and virtual memory, and vector/parallel processing. In order to
efficiently use what is available, computer software must be tailored for modern computer
architectures. There are two ways to achieve this goal. One can start from the beginning and
develop new methods and numerical algorithms that can fully utilize advanced computer
architectures. This way is very attractive for method and software developers, but can be very
expensive. No one in nuclear industry is willing to forget about the existing software, with many
man-years incorporated into it, and finance the development of the new software whenever there is
some breakthrough in computer industry. The old software has been simply transferred to each
new generation of computers, with minimum changes needed to make it useable. In the most cases
no effort has been made to optimize the old codes for the new architectures. Consequently,
modem supercomputers have not been used efficiently, and improvements in performance over the
previous computer generations are barely noticeable. We have taken somewhat different approach
m order to accomplish the following two goals:

• Transfer a production code to a particular supercomputer, and make all necessary changes
in the existing numerical algorithms to optimize them for a given advanced architecture. This also
includes usage of all available tools for efficient vector and parallel processing.

• Extend the existing theoretical methods by removing the modelling limitations which were
mostly consequences of the limited amount of memory and low speed of the previous generation of
computers. Develop accurate and cost effective parallel/vector algorithms by taking advantage of
the large virtual memory in addition to vector and parallel processing on a multiprocessor IBM
3090.

Transport theory codes are typically applied to assembly-level calculations but in principle
could be used in place of the multigroup diffusion (MGD) codes for global reactor calculations.
With the Boltzmann transport equation as their theoretical basis, these codes are very accurate, but
time-consuming. As a consequence, MGD codes are still the main methodology for reactor design
and analysis, even in applications where diffusion theory has little mathematical or physical basis.
However, advances in nuclear engineering often demand the use of more accurate physical models
and it is becoming increasingly important to have accurate and efficient computational algorithms

* Present Address: Argonne National Laboratory, Engineering Physics Division, Argonne, IL 60439, U.S.A.

291

292 J.L. VuJIC and W. R. MARTIN

for solving global transport problems, such as in the design of advanced reactor cores. A specific
example is the CPM-2 code (CPM-2, 1987), a multigroup collision probability code based on the
integral transport equation, that solves the 2-D neutron transport equation for light water (BWR
and PWR) reactor assemblies. Due to exorbitant demands on central processor unit (CPU) time,
this very accurate code is mostly used for benchmarking only.

In the first part of this paper we present an efficient parallel-vector transport algorithm based
on the collision probability (CP) transport method employed in the CPM-2 code, which can fully
utilize advanced IBM 3090 architecture. An order of magnitude reduction in CPU time and a factor
of 20 reduction in wallclock time are obtained with this modified vector-parallel version of CPM-2.

Our new transfer probability method is presented in the second part of this paper. Two major
limitations, infinite lattice geometry and isotropic scattering, which inhibited the use of CPM-2 for
global reactor calculations, were removed. The method is based on the integral transport equation
and use of collision, escape and transmission probabilities, together with linearly anisotropic
scattering, for assembly level calculations. In order to compare the efficiency of these two
methods in utilizing the advanced IBM 3090 architecture, we will only present results for isotropic
scattering.

2. V E C T O R I Z A T O N AND P A R A L L E L I Z A T I O N OF T H E CPM-2 CODE

The neutron transport equation is a linearized form of the more general Boltzmann equation
from gas dynamics. Knowing that the analytical solution of this equation can be found only for
several idealized problems, many methods have been developed to find approximate numerical
solutions. These methods are usually divided into two broad groups: stochastic (Monte Carlo) and
deterministic. In Monte Carlo methods, the history of each particle is followed (i.e., simulated on
a computer). In the case of the deterministic methods, approximate equations are derived from the
transport equation, and the resulting system of algebraic equations is solved on a computer.
Depending on the form of the neutron transport equation chosen as a starting point, the
deterministic methods can be divided into three large groups (Sanchez, 1982):

• those based on the integro-differential form,
• those based on the surface-integral form, and
• those based on the integral form of the neutron transport equation.
The major idea behind the integral transport methods is to integrate out the angular

dependence and to solve the transport equation for the scalar neutron flux directly. The method is
very accurate and relatively simple to apply, if isotropic scattering can be assumed.

The integral transport equation is based on a global neutron balance in a given direction,
leading to a strong coupling of all regions, which is opposite of the case with the integro-
differential transport equation which is based on a local neutron balance, leading to a coupling
between the neighboring regions in space only. Although the treatment of the spatial variables in
2-D or 3-D in the integral transport equation leads to the discretized matrices that are full (dense),
integral transport methods can treat very complicated geometries, usually treated by Monte Carlo
methods only. The strong spatial coupling and large, dense matrices, which put strong demands
on computer memory and CPU time in the early years of applications of these methods, are not
prohibitive any more for today's very fast supercomputers with large virtual memory.

Derivation of the integral transport equations for the volumetric flux and outgoing current for
two-dimensional geometries can be found elsewhere (Lewis, 1984). To obtain the discretized
integral transport equations, the area A and boundary L are partitioned into NR subareas and NB
subboundaries, respectively, such that

NR bib

A = y~A i, L=~__L,~.
i=1 a r= l

giving, in the mulfigroup form

Ai,E~,,,~,.~ = Z A i , Q~,,,Pg(A~ e-- A~,) + ZL~,,J~",~,Pg(Ai e-- L~,,). (1)
i" tX"

Vectorization and parallelization 293

L~,J,°~ E AiQ, i, P,(L,~ ~ Av) + E i. L = L,~,Js.a.P,(~ ~-- La,),
i" ¢t"

(2)

where

Pg(A i ~- Av)- is the volume-to-volume collision probability,
Pg(A~ ~-- Lw)- is the surface to volume collision probability,
Pg(L~ ~-- A v)- is the escape probability,
Ps(L~ ~ Lw)- is the transmission probability,

and the spatially averaged quantities are defined as follows

1 fdA q~ (~),

1 ~dA, fds~ -, - = Qs(r ,g-2),

1
i, = Js (rL"12)'

L a . ~'-£I <0

1 faL fail

The total neutron source is given as

G
1 ~

Qg(? '~) = E sg,_.,,(F,~)+ ~-zgs.~= lFg,(r, 1-2),
g"

and k is the effective multiplication factor. The general isotropic fission neutron source is given
a s

1 v,V,f,.(~) q~,.(F), F ~' , .O) = 4---~

and the scattering neutron source as

d~'2J,,_,,(Y,/.t o) g~,£2"), S , , _ , , (L ~) = f • •
4 g

/do = 12 • 12 .

The most time-consuming part of the entire collision/transfer probability formalism is the
evaluation of the coefficients of the collision, escape, and transmission probability matrices. The
calculation time increases rapidly with the increase in the number of energy and space meshes. The
usefulness of the collision/transfer probability method is closely related to the efficiency with
which the collision, escape and transmission probability matrices are numerically calculated.

2.1. The simplified collision probability method

The simplified collision probability method employed in CPM-2 is based on the integral form
of the Boltzmann transport equation assuming infinite lattice geometry, isotropic scattering, and
steady state. In this case, the discretized set of equations in 2-D (Eqs. (I) and (2)) collapses into
one equation:

A~ 22,,~ ~ gi = Z Av P~(A, ~-- A,,) Qg.,,, (3)
i"

294 J.L. VuJic and W. R. MARTIN

stored to be expanded to vector variables where all results of particular calculations can be stored.
The amount of storage required by the program increases due to the data restructuring and scalar
expansions. Use of 31-bit addressing in VM/XA extends the virtual address space from 16
Mbytes to 2 Gbytes, therefore satisfying even the most extreme storage requirements. The track
intercept data were originally kept in scalar or one-dimensional vector variables, so that the data

fl ec ~eutr::uP:tohn Direction

~ Base System

Fig. 1 Neutron path reflections on boundaries

e¢~ .:~ ~ X
/ " k \

I'\\\.44
"E,i~/ /

• i~ii !IEI Z E:: / /) / /
/ /

4 ~ ~ q9 n

,,," /
j f / , / /

/ I / I . , / ' / / /

4 Z/ / / /
/ /
/

/ / A y
/

/

Fig. 2 Calculation of collision probabilities

Vectorization and parallelization 295

from one array of intercepts had to be immediately written into a logical unit, which totaled
approximately 30,000 WRITEs per calculation (per each energy group and time step). In the
subroutine CPC, where the CP matrix is calculated, these data had to be read in (30,000 READs)
for each energy. To remedy this, two- or three-dimensional arrays were created for these
variables, so that all track intercept data from all arrays of intercepts could be stored. All WRITEs
and READs are thus eliminated, data handling became more efficient, and the basis for
parallelization of the CP matrix calculation was created.

Virtual Memory_ Utilization. To save storage in the original CPM-2 code, a one-dimensional
array was used to store only the lower triangular part of the CP matrix, thus requiring indirect
addressing. Since there are large number of energy groups and spatial meshes for two-
dimensional applications, the CP array was partitioned into several arrays, which made the solution
of the eigenvalue equations extremely complicated, and even gave inconsistent results.

In our new algorithm, we again take advantage of the large virtual memory on the IBM 3090
and use large arrays to store and transfer data among the code segments, removing the major
bottleneck of reading/writing to main memory. All collision probabilities are kept in one large
three-dimensional array which simplified the data manipulation considerably, and allowed use of
the same numerical algorithm regardless of the number of meshes. Due to the reciprocity relation
among the collision probabilities, the CP matrix is symmetric in its two leading dimensions,
allowing it to be accessed always column-wise in matrix-matrix or matrix-vector operations.
Figure 4 shows how complicated the matrix-vector multiplication had to be in the original coding,
due to a fact that only the lower triangular part of the CP matrix was stored in a one-dimensional
array. Different, even more complicated coding was used when the CP matrix had more that
32,131 elements. Figure 4 also shows the simple and efficient new coding, where the entire CP
matrix is stored in the one three-dimensional array. This results in the total eliminating of indirect
addressing.

400

13.
O

300

200

100

0
1

C P M - 2 S E G M E N T S

INDATA
RESCAL

GCXY
CPXY
FLUXY
EDIT1
EDIT2

[] BURN

Figure 3 The Execution-Time Profile for CPM-2

296 J.L. VUJlC and W. R. MARTIN

The CP Matrix is Stored in 1-D Array

B(1) COM(13) *

o

o

SR(J) [1-
The CP Matrix has less than 32131 elements The CP matrix has more than 32131 elements

C O M M O N / A S E 0 0 5 / C O M (32131)

NI~LEM = NEL (1)
R E A D (L U 5) C O M
D O 2 0 1 = I , N R G
S U M = 0 .

D O 10 J = 1 , N R G
11 = M A X 0 (l i ~
12 = M I N 0 (l . J)
13 = I A D R (11) + 12
S U M = S U M + C O M (13) * SR (J)

10 C O N T I N U E
B (I) = S U M

2 0 C O N T I N U E

C O M M O N / A S E 0 0 5 / C O M (32131)

~/~Aa =o
R E W I N D L U 4
D O 1 0 1 = 1 , N R G
B(I) =0.

10 CONTINUE
D O 4 0 N = 1, N R E C
M I N R A D = M I N R O W (N)
M A X R A D = M A X R O W (N)
N E L E M = N E L (N)
R E A D (L U 5) C O M
WRITE (LU4) C O M

D O 30 I = M I N R A D , M A X R A D
D O 2 O J = 1 , 1
K = I A D R (1) + J - N K L A R
B (1) = B (1) + COM (K) * SR (J)
IF (I . E Q J) G O T O 20
B (J) = B (J) + COM (K) * SR (J)

~ CO~rr~uE
C O N T I N U E

N K L A R = N K L A R + N E L E M
4 0 C O N T I N U E

The CP Matrix is Stored in 3-D Array

B(I) COMT(I,J,IG)

C O M M O N / C 1 / C O M T (500 .500 ,12)

~ 2 0 1 = 1, N R G
S U M = 0 .

D O 10 J = l , N R G
S U M = S U M + C O M T (J,I , IG) * SR (J)

10 C O N T I N U E
B (1) = S U M

20 C O N T I N U E

SR(J)

Fig. 4 Matrix-vector multiplication for original and new storing
o f the col l is ion probability matrix

Vectorization and parallelization 297

Modified Numerical Method. For segment FLUXY, the subroutine SOLV1, which is
responsible for the inner iterations in the solution scheme for the coupled systems of linear
equations, was the most time-consuming. In the original (scalar) version of the SOR method in
CPM-2, the new values of ~ i (Eq. 4) are used as soon as they are calculated, by storing the new
and old values in the same vector,

i - I NRG

f i) (m + l) ~,,+~, = ~ ") + c o (b _ L a , , " ,, _ ~ a , i , ~ y ~) / a , , . (4)
i '=1 i '=i

This is a clever way of coding for serial machines, but it introduces recurrences on vector
machines. Due to the lack of memory, the elements of the matrix A were not stored in the original
CPM-2 code, but recalculated for each iteration. In the new coding, the elements of A are
precalculated and stored. In the matrix-vector multiplications, the elements of A are fetched by
column, with stride 1, and the inner DO loops are vectorized, producing a decrease in the CPU
time.

Parallelizati0n. The new programming features of Parallel FORTRAN (IBM, 1988) available
on the IBM 3090 were used to perform the CP matrix calculations for different energy groups on
up to six processors simultaneously, reducing the wallclock time, or turnaround time for CPM-2.
We have used the PARALLEL TASKS construct, which is a subroutine-level parallelism. In this
case, parallelism is coarse grained, i.e. each processor has a large amount of work to do. Creating
the three-dimensional array for the CP matrix, where the third dimension was energy group, not
only removed a need for many I/Os in CPC and the FLUXY segment and simplified data access,
but also allowed parts of this matrix for a given energy group to be PRIVATE for each parallel task
(Fig. 5). Although the parallel tasks are permitted to have parallel I/Os (IBM, 1988), they have to
wait in line, because there is only one "real" processor doing I/O. The best performance, in our
experience, is obtained if there are no I/Os in parallel tasks.

Because of the 16 Mbyte memory limit for the root code, all static arrays and scalar variables,
as well as multiple copies of parallel tasks, all shared and private variables which are used in the
parallel tasks are allocated at run time through dynamic COMMON. The calculation of the CP
matrix for one energy group was assigned to one parallel task. By careful planning in restructuring
of the algorithm, all parallel tasks are doing exactly the same amount of work, so that load
balancing is perfect. In spite of these numerous changes (vectorization and parallelization), it was
always assured that the results (effective multiplication factor, flux and power distributions, group
constants) were EXACTLY the same for the original CPM-2 code and the parallel-vector
(modified) code.

3. A N E W P A R A L L E L - V E C T O R T R A N S F E R P R O B A B I L I T Y M E T H O D

The major limitation in the CPM-2 model is the assumption of infinite lattice geometry. With
this approximation, no "real" boundary conditions can be treated, and no more than one assembly
can be handled at a time. Reflective boundary conditions must be built into the collision
probabilities (Eq. 3), since the volume integral is over the entire lattice, while summation is taken
only over part of the assembly. The CP matrix is large and dense, which must be stored during the
calculation, requiring a large memory. This created tremendous problems for the previous
generation of computing systems, and therefore limited the use of the "exact collision probability
formalism" to infinite lattice geometries (Lewis, 1977). In addition, the original CPM-2 code was
very time-consuming and expensive to use.

Based on the collision/transfer probability formalism presented at the beginning of this paper
we have developed a new parallel/vector transport algorithm which is optimized for the
multiprocessor IBM 3090 (Vujic, 1989). The following equations have been derived from Eqs.
(1) and (2):

~___g=CP AQg+4SP J_~, (5)

LJ °'a = EP AQg + 4 TP j i , (6) - - g ~ g ~ g - - g ,

298 J.L. VuJlc and W. R. MARTIN

SHARED MEMORY

SHARED VARIABLES

READ - ONLY VARIABLES

PRIVATE /

COMT(1,1,1)

COMT(1,1,2) PRIVATE

COMT(1,1,6)

TASK 1

I G = I

TASK 2

IG=2

TASK 6

IG=6

Fig. 5 Private vs shared memory in col l is ion matrix calculation on several processors

Vectorization and parallehzation 299

where the elements of C P , S P , E P , and T P , are the volume-to-volume collision probabilities,
the surface-to-volum~==dblh'~6n ~ t b a b i l i l~J , the escape probabi l i t ies and the t ransmission
probabilities, respectively, given as

Ig,i~i'
(CPs)"--'" = A, .S ,.g., Au .S ,.g.i. '

I g,a" ~i
(EPg),~.~_ i = ai,~,,g,i ,

I
g , i ~ ' - . ~ "

(T P g) , ~ , = 1 ,.

The collision, escape, and transmission probabilities all contain similar "kernels", given as:

I s = I - ~ d y ~ (Z , .) ~ (Z .) K ~ (' C s) ,

where

I
Ki3('rg.,i, - Ki3(.c j + ~ ,,~) - Ki3(.c ,~,, + ~ ~,~,) +

+Ki3('rg ii, + ~g i + "c i,), f o r m = i a n d n = i',

K,~(~'g) /K/3(Tg,oi,)- Ki3(Tg,ca,+ Tg,i), f o r m a a n d n = i',

[Ki3(v ~ ~ ,) , f o r m = a a n d n = o~',

(7)

[ff(A~), p = i ,

[f f (La) , p = a .

and where the Bickley-Nayler functions of order n, K i . (v) , are defined elsewhere (Bickley, 1935).
It was possible to create an algori thm where contributions to all "kernels" f rom one array of
intercepts are calculated at the same t ime (Fig. 6). In order to reduce the number of the collision,

Lct

EB

$P

Fig. 6 Calculation of contributions to all transfer probabili ty
matrices f rom one array of intercepts

300 J.L. VuJic and W. R. MARTIN

escape and transmission probabilities which relate different flux and current moments, several
reciprocity and conservation relations were derived.

The transfer probabilities are independent for different energy groups, so that their calculation
can proceed in parallel on several processors (Fig. 7). Because the "real" boundary conditions are
used, the track intercepts need to be calculated for the base system only (i.e. there is no need any
more to have numerous reflections of the neutron path in the boundaries). This considerably
reduces the time spent to calculate the transfer probability matrices. The multigroup eigenvalue
system of equations is solved using an iterative scheme (Fig. 8). For the outer iterations, the
power method has been used. In the case of inner iterations, the vectorized SOR method
(explained in the first part of this paper) has been used for the flux equations (Eq. (5)), and the
vectorized ESSL routines DGEMV, DGEF and DGES (IBM, 1989) for the current equations (Eq.
(6)). No acceleration technique has been used.

C P X Y

Track Intercept Calculations
There are no reflections

Parallel Processing

l V
Energy 1
CP(1,1,1)
EP(1,1,1)
TP(1,1,1)

Energy 2
CP(1,1,2)
EP(1,1,2)
TP(1,1,2)

Energy 6
CP(1,1,6)
EP(1,1,6)
TP(1,1,6)

Fig. 7 Calculation of transfer probability matrices in parallel

V e c t o r i z a t i o n a n d pa ra l l e l i za t i on 301

FLUXY
THE N E W A L G O R I T H M)

* C A L L FLUAPP

If a flux approximat ion is not available for the first time step,
performs the same calculation as below

* C A L L STOUT

THE FISSION S O U R C E (OUTER) ITERATIONS
* Calculate the fission source and k

L O O P O V E R THE ENERGY GROUPS

THE INNER ITERATIONS
C A L L SOLVF - VECTORIZED SOR
C A L L SOLVJ ESSL: DGEMV, DGEF, DGES

L O O P OVER THE T H E R M A L ENERGY GROUPS

THE INNER ITERATIONS
CALL SOLVF VECTORIZED SOR
C A L L SOLVJ - ESSL: DGEMV, DGEF, DGES

Fig. 8 Flow diagram for the eigenvalue problem

4. C O M P U T A T I O N A L R E S U L T S

Table 1 summarizes the timing results measured on the IBM 3090-600J VF multiprocessor
system in non-dedicated mode (VS FORTRAN V2.3 compiler and Parallel FORTRAN compiler
have been used) for:

• Original collision probability algorithm - the original CPM-2 code in scalar mode,
• Modified collision probability algorithm - the vectorized and parallelized original CPM-2

algorithm in scalar mode, and in vector/parallel mode on one, three, and six virtual processors,
• New transfer probability algorithm - the new vector/parallel algorithm (for isotropic

scattering) in scalar mode, and in vector/parallel mode on one, three, and six virtual processors.
The number of processors we are requesting for our job (virtual processors) is usually less or

equal to the number of real processors that will be, at run time, assigned to our job by the operating
system, depending on how the system is busy at that time. Our results were obtained for a
standard PWR assembly (17x17 pin cells) with high accuracy in the transfer matrix calculation and
for one burnup step. Two-dimensional assembly calculations are performed with a six energy-
group structure, with 3x3 micro-meshes per pin cell. The results with the new transport algorithm
are in a good agreement with the original results (for example, the difference in effective
multiplication factor is less than 0.1%).

302 J .L . VuJiC and W. R. MARTIN

o
o

0

eq

~q

,-- 0
O ~

< ~

t~ ._¢

O ~

*--' ,x::

.~

[-

' 4 . * - 0 ~ ~: =*~- ~ ~

• - . ~ , ~ ~'~

i.~ ° •

~!"~ I i •

~ ~ ~ ~ ~. ~ ~ , N ~ . - ~"

6

r..)

~ 0

&.A

t~

m ~

~ N
~ U

Z .

~ , ~ ~

:~ 'o ~ ~ ~ ~ 0 "~

~ ~ ~ E ~ -

° H

V e c t o r i z a t i o n a n d p a r a l l e l i z a t i o n 3 0 3

"9,..-.

e-. o

< ~

o

• ~ e- .

[.-.,

¢ q

;,r.1
,.d

[..,

¢..) . - .

v

¢ x ,
r..) t " q t " q ~

~ °

' , ,D

t",,I t",.,I t " q ¢'-,I t",,I o , I

~ . ~ ~ ~! ~ E ~ '
,...- I

i

u~ e-,

z ~

304 J .L . VuJIC and W. R. MARTIN

It can be seen that the modified CPM-2 code is an order of magnitude faster than the original
code, with overall reduction in wallclock time up to a factor of 22. The largest increase in
performance was obtained with the FLUXY module, where the factor was 180 (wallclock time)
and 12 (CPU time). The FLUXY module was 90% vectorized, giving the scalar-to-vector job
speedup of 2.2. The ESSL routines were not used in this version of the code. The CPU time in
the CP matrix calculations was reduced 9 times, whereas the wallclock time on three processors
was reduced for a factor of 37. The CP matrix calculation was efficiently parallelized, giving the
serial-to-parallel speedup of 2.69 on three virtual processor for a parallel efficiency 90%. In this
case we can be sure that three real processors were assigned to our job. The serial-to-parallel
speedup, with six virtual processors requested, was 2.48 for a parallel efficiency 41%, if we
assume that six real processors were assigned to our job.

Using the new vector/parallel transport algorithm for the case of isotropic scattering, DPo
incoming flux approximation, and reflective boundary conditions, the CPU time was reduced by a
factor of 44, with a corresponding reduction in wallclock time by a factor of 51. The reduction
factor in the CPU time for the transfer probability matrices calculation was 120, whereas the factor
for the wallclock time was 880. For the FLUXY module we have obtained vectorization speedup
of 2.45 which is much larger than in the case of the modified CPM-2 code. Since the algorithm to
calculate the collision, escape and transmission matrices is highly parallelized, the serial-to-parallel
speedup on three processors increased to 2.98, which corresponds to a parallelization efficiency of
99.3%. The serial-to-parallel speedup, with six virtual processors requested, increased to 4.81,
for a parallel efficiency of 80.2%, if we assume that six real processors were assigned to our job.
Similar results were obtained for the BWR assembly. The serial-to-parallel speedups vs number of
virtual processors for the modified and new vector/parallel algorithm are given in Fig. 9.

O'3

7.0

6.0

5.0

4.0

3.0

2.0

1.0

Ideal

• TP Algorithm f
= CP

1 2 3 4 5 6

Number of virtual processors

Fi~. 9 Serial-to parallel speedups on the IBM 3090-600J

Vectorization and parallelization 305

Table 2 gives the corresponding results on the IBM 3090 Model 600E, on one and three
processors. It can be seen that the reduction in CPU time by going from Model 600E to Model
600J for the original CPM-2 was 18%, for the modified vector/parallel CPM-2, 22%, and for the
new vector/parallel transfer probability algorithm, 30%. This means that the new algorithm can
take much larger advantage of the faster Model 600J.

4. SUMMARY

Three major goals have been accomplished: 1) decrease in the computational effort, by
optimizing the production reactor assembly code for vector and parallel processing on the IBM
3090 supercomputer; 2) improvement of the transport model to remove infinite lattice geometry
limitation, that is implicit in the CPM-2 method, and include linearly anisotropic scattering and P1
half-space expansion in the angular flux at assembly boundaries, and 3) efficient vectorization and
parallelization of the new method. Our work was motivated by both the success and accuracy of
the collision probability method in solving neutron transport problems, and its excessive demands
for computing time. For the optimized CPM-2 code with a new parallel-vector transfer probability
algorithm, the total CPU time was reduced by a factor of 44, with the corresponding reduction in
wallclock time by a factor of 51. The transfer probability calculation is two orders of magnitude
faster than the collision probability matrix calculation in the original code, with a factor of 880
reduction in wallclock time. Substantial accuracy of the new method was tested on standard PWR
and BWR assemblies and compares favorably with results of the original CPM-2 code as well as
the TWODANT code (Alcouffe, 1984).

Acknowledgment - This work was supported by the Department of Energy, Contract No.
DE-AC02-89ER 40513, and IBM Corporation (Kingston Laboratory). We would like to thank the
Cornell National Supercomputer Facility (CNSF) for providing time on their IBM 3090-600E and
assisting us with IBM Parallel FORTRAN.

REFERENCES

Alcouffe R. E., Brinkley F. W., Marr D. R. and O'Dell R. D. (1984) Rep. LA-10049-m.
Bickley W. C. and Nayler J. (1935) Phil. Mag. 20, 343.
CPM-2 (1987) EPRI RP1252-9.
IBM (1988) IBM-SC23-0431-0.
IBM (1989) IBM-SC23-0184.
Lewis E. E. (1977) Nucl. Sci. Eng. 64, 279.
Lewis E. E. and Miller W. F. Jr. (1984) Computational Methods of Neutron Transport, John

Wiley&Sons.
Sanchez R. and McCormick N. J. (1982) Nucl. Sci. Eng. 80, 481.
Soll D. B. (1986) "Vectorization and Vector Migration Techniques," IBM Technical Bulletin.
Tucker S. G. (1986) IBM Systems Journal 25, 4.
Vujic J.L. (1989) "A Vectorized and Parallelized Assembly Transport Method for Nuclear Reactor

Core Analysis," Ph.D. Thesis, University of Michigan, Ann Arbor, MI.

