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We have devised a continuous function of interresidue contacts in globular proteins such
that the X-ray crystal structure has a lower function value than that of thousands of
protein-like alternative conformations. Although we fit the adjustable parameters of the
potential using only 10,000 alternative structures for a selected training set of 37 proteins, a
grand total of 530,000 constraints was satisfied, derived from 73 proteins and their
numerous alternative conformations. In every case where the native conformation is
adequately globular and compact, according to objective criteria we have developed, the
potential function always favors the native over all alternatives by a substantial margin.
This is true even for an additional three proteins never used in any way in the fitting
procedure. Conformations differing only slightly from the native, such as those coming from
crystal structures of the same protein complexed with different ligands or from crystal
structures of point mutants, have function values very similar to the native’s and always
less than those of alternatives derived from substantially different crystal structures. This
holds for all 95 structures that are homologous to one or another of various proteins we
used. Realizing that this potential should be useful for modeling the conformation of new
protein sequences from the body of protein crystal structures, we suggest a test for deciding
whether a nearly correct approximation to the native conformation has been found.
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1. Introduction

The classical protein folding problem is to predict
the three-dimensional conformation of a protein
given only its amino acid sequence. Here, we con-
sider a restricted version that we might call the
multiple choice ‘“‘recognition problem’: given the
amino acid sequence of a protein and a large selec-
tion of globular conformations that includes the
correct native fold, choose the one native conforma-
tion. Such a situation naturally arises in attempting
to predict a protein’s conformation by homology
modeling, where there may be several different ways
to arrange variable loops. Other applications are the
assessment of alternative conformations of a protein
derived from nuclear magnetic resonance (n.m.r.})
experiments, or choosing between different chain
tracings through the electron density in the early
stages of determining a protein’s X-ray ecrystal
structure.

t Abbreviations used: n.m.r., nuclear magnetic
resonance; PDB, Brookhaven Protein Data Bank;
r.m.s.d., root-mean-square deviation; CTS, complete
training set; RTS, reduced training set.
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A number of different researchers have suggested
various criteria for the recognition problem, such as
the number of hydrophobic contacts (Bryant &
Amzel, 1987). Novotny and co-workers (Novotny et
al., 1984, 1988) analyzed the accessible surface area
in terms of its polar/apolar ratio and the distribu-
tion of this ratio for different amino acid side-
chains, as well as atomic packing and empirical
energy and free energy functions, in order to differ-
entiate between a few examples of correct versus
intentionally misfolded structures. Chiche and co-
workers related solvation free energy (Eisenberg &
McLachlan, 1986) to the correctness of a protein
fold using the observed approximately linear depen-
dence of the solvation energy on the protein chain
length (Chiche et al., 1990). One of the latest and
most successful examples of the three-dimensional
profile approach (Liithy et al.. 1992) discriminated
between the correct and an incorrect fold for seven
different proteins, judging from their relative scores
and from the general relation between the scores of
correct crystal structures and their chain lengths.
Moreover, they were able to detect an incorrectly
folded segment in an otherwise correct structure.

In the approaches cited so far, the goal has been
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to recognize the correct fold as better in some sense
than only one or two alternative folds. We believe it
is much more difficult to favor the native fold over
large numbers of alternatives. Sippl and co-workers
(Sippl, 1990; Hendlich et al., 1990) constructed a
potential of mean force for the interactions among
(? atoms from a survey of protein crystal structures
that tended to prefer the native conformation of
several proteins over some thousands of alterna-
tives, but not in all cases. 1n our initial look at the
problem (Crippen, 1991), we concluded that a
discrete function of interresidue contacts could be
constructed for some simple model cases that
preferred the native conformation over absolutely
all possible alternatives. When it came to extending
this to real protein conformations, we produced a
discrete contact potential based on the native and
alternative conformations of only eight proteins
that correctly preferred the native over tens of
thousands of alternative for another 37 proteins.
However, the remaining 11 proteins in our study
were incorrectly predicted. For this level of success,
it was important to define a contact in the way
reiterated below, and to use relatively few adjust-
able parameters. In agreement with Sippl,
extremely small proteins or oligopeptides, such as
avian pancreatic peptide, were consistently diffieult
to account for, but the remaining erroneous proteins
could be treated by including them in the training
set, thereby producing a similar number of other
proteins that would not fit.

In this study, we have increased the total set of
protein crystal structures from 56 to 109, thereby
creating a much more difficult fitting problem
because each protein is presented with many more
alternatives to choose from. Nevertheless, we are
able to account for all the proteins we examined by
learning to identify the kinds of protein native
conformations that can be treated this way and by
correctly dealing with homologous proteins.

2. Methods

The approach is basically the same as before (Crippen,
1991). Given a protein crystal structure, we note which
residues are in contact, according to a carefully chosen
definition. The correct crystal structure of a protein is
taken to be its native or reference conformation, and
many alternative conformations are generated by taking
the atomic co-ordinates of all possible contiguous
segments of the correct length from all the larger proteins
in the data set. In each of these alternatives, there are a
different set of contacts, of course, but if the native
sequence is imposed on each alternative, we seek some
potential function of the contacts that has a lower value
for the reference than for any alternative.

(a) Protein structure daia

The total set of protein crystal structures we considered
were the 109 polypeptide chains in the 15 October 1990
release of the Brookhaven Protein Data Bank (PDB)
(Abols, et al., 1987) with co-ordinates of N, C*, ¢, Cf and O
atoms, and no obvious chain breaks in the middle, as in
our previous study (Crippen, 1991). Disordered or unre-

Table 1
Last of the reference proteins used in this work,
sorted by PDB code

PDB  Resol. No. Chain

code (A} residues ID} Title and source

155¢ 25 121 Cytochrome ¢550,
P. denitrificans

labp 24 306 L-Arabinose-binding protein,
E. coli

lacx 20 108 Actinoxanthin, 4. globisporus

Ibds — 43 Sea anemone anti-
hypertensive anti-viral
protein

lbp2 17 123 Bovine pancreatic
phospholipase A2

lees 25 83 Cytochrome ¢5, Azotobacter

leer 15 111 Cytochrome ¢, rice

lern I-5 46 Crambin, Abyssinian cabbage

lcse 1-2 63 T Eglin C (complexed with
subtilisin Carlsberg)

274 E Subtilisin Carlsberg

(complexed with eglin C)

letf 17 68 L7/L12 50 S ribosomal
protein (C-terminal
domain), E. coli

lets 27 437 Pig citrate synthase

leyd 25 118 Cytochrome ¢3,
D. desulfuricans

leed 14 136 Hemoglobin (erythrocruorin,
deoxy), C. thumms thummi

lest 25 240 Porcine tosyl-elastase

Hdx 20 54 Ferredoxin, P. aerogenes

1fx1 2:0 147 Flavodoxin, D. vulgaris

lgen 30 29 Porcine glucagon

lger 16 174 Calf y-1T crystallin

lhip 20 85 High potential iron protein
(oxidized), (', vinosum

lhmg 30 175 B Haemagglutinin, influenza
virus

328 A

lhmgq 20 113 Hemerythrin (met),
sipuneulid worm

lhoe 20 74 a-Amylase inhibitor, S. tendae

lhvp — 99 Retrovirus HIV-1 protease

11h4 2:0 153 Leghemoglobin (deoxy),
yellow lupin

Llyz 20 129 Hen egg-white lysozyme

11z1 1-5 130 Human lysozyme

lmba 16 146 Sea hare myoglobin

Imbd 14 153 Sperm whale myoglobin

lpaz 1956 120 Pseudoazurin (oxidized, Cu®*.
A. faecalis)

Ipey 16 99 Plastocyanin (Cu®*), poplar

Ipfk 24 320 Phosphofructokinase, K. coli

Iphh 23 394 p-Hydroxybenzoate
hydroxylase, P. fluorescens

lpp2 25 122 Calcium-free phospholipase
A-2, rattlesnake

Ippt 137 36 Avian pancreatic polypeptide

lpyp 30 280 Yeast pyrophosphatase

Irei 2:0 107 Human Bence—Jones
immunoglobulin variable
portion

Irhd 25 293 Bovine rhodanese

Irn3 145 124 Bovine ribonuclease A

lsn3 L8 65 Scorpion neurctoxin, variant
3

Itim 25 247 Chicken tricse phosphate
isomerase

lwrp 22 102 Bacterial TRP repressor

2abx 25 74 a-Bungarotoxin, braided krait
venom

2act 17 218 Aectinidin, kiwi fruit
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Table 1 (continued )

Table 1 (continued)

PDB  Resol. No. Chain PDB  Resol. No. Chain
code (A)t residues ID} Title and source code (A) residues 1D} Title and source
2alp 17 198 a-Lytic protease, 4pti 15 58 Bovine pancreatic trypsin
L. enzymogenes inhibitor
2aza 18 129 Azurin (oxidized), 4rhv 30 40 4 Human rhinovirus 14 coat
A. denitrificans protein
2bbe  2:0 85 Bovine cytochrome b5 236 3
2¢2¢ 20 112 Cytochrome c2 {oxidized), 255 2
R. rubrum 273 1
2cab  2:0 256 Human carbonic anhydrase 4sbv 28 199 Southern bean mosaie virus
{form B) coat protein
2ccy 167 127 Cytochrome ¢', 4tln 23 316 Bacterial thermolysin
R. molischianum 5cpa 154 307 Bovine carboxypeptidase A o
Zedv 18 107 Cytochrome ¢3, D. vulgaris 5cpv 16 108 Carp calcium-binding
2ena 20 237 Concanavalin A, jack bean parvalbumin B
2cyp 17 293 Yeast cytochrome ¢ Seyt 15 103 Cytochrome ¢ (reduced), tuna
peroxidase S5rxn  1-20 54 Rubredoxin (oxidized, Fe3*),
2fb4 19 216 L Human immunoglobulin light Clostridium
chain 6ldh 20 329 Dogfish lactate dehydrogenase
2gnb 2-3 87 Bacteriophage gene 5 7api 30 36 B Human modified
DNA-binding protein a-1-antitrypsin
2hhb 174 141 A Human hemoglobin (deoxy) 339 A
146 B 8adh 24 374 Horse apo-liver alcohol
2lhb  2:0 149 Sea lamprey hemoglobin V dehydrogenase
(cyano, met) Bcat 2:5 498 Bovine catalase
2lzm 1-7 164 T4 phage lysozyme 9pap 165 212 Papain (Cys25 oxidized).
2mlt 20 26 Bee melittin Papaya
2ovo 15 56 Ovomucoid (third domain), 9wga 18 170 Wheat-germ agglutinin
pheasant
2pab 18 114 Hum.an prealbumin t+ A — sign denotes n.m.r. {lbds) and model {1hvp) protein
2pka  2:05 80 A Porcine kallikrein A structures for which the notion of the resolution is not applicable.
152 B ) I In the case of more than 1 chain in a PDB file, the chain
2rhe 16 114 Human A immunoglubulin identifiers are given.
variable domain ’
(Bence—Jones)
2sga 15 181 Proteinase A, S. griseus . . . . .
2%mns 15 141 Staphylococeal nuclease solved residues at the N or C termini are not included in
2sod 20 151 Bovine Cu,Zn superoxide the polypeptide chains we consider here. For brevity, we
dismutase will refer to those chains by their PDB code and the chain
2ssi 26 107 Streptomyces subtilisin identifier in the PDB file (e.g. 3ins.A is the A chain of
inhibitor insulin). The full name of each protein can be found in
sty 250 184 TObath‘? necrosis virus coat Table 1. Generally, we included only the accurately deter-
protein : i : L — o ..
staa 30 48 Taka.amylase A, 4. oryzae ;nlned (lsh 25 1?1 nomlnlal resolut;on., 1A=01 nm)hstrg(,
351c 16 89 Cytochrome ¢551 (oxidized). ure.s, a.t oug .some ower-reso gtlon struptureg, aving
P. aeruginosa no interior chain breaks, were included in this study,
3adk 21 194 Porcine adenylate kinase sometimes to increase the number of alternative con-
3ebx 14 62 Sea snake erabutoxin B formations we could generate, and sometimes to increase
3fab 20 207 L Human A immunoglobulin the number of short protein chains considered. We also
FAB' included 2 other PDB entries that technically did not
219 H ) ) fulfil the 2-5 A resolution criterion: lbds is a structure
3fxe 25 98 Ferredoxin, 8. platensis determined by n.m.r. and distance geometry having
3fxn 19 138 Flavodoxin (oxidized), unknown accuracy, and 1hvp is a hypothetical conforma-
Clostridium . . . N .
3 925 208 Catabolite gene activator tion built by homology modeling. In the final analysis,
gap g ; ;
protein, E. coli these 2 caused no special Problems. The 109 prote}n
3gpd 35 334 Human p-glyceraldehyde- structures ranged frorn. 21 residues for the shorter insulin
3-phosphate dehydrogenase chain 3ins.A to 498 residues for 8cat.A. However. we used
3grs 1-54 461 Human glutathione reductase only the smallest 86 chains as reference structures because
3icb 23 75 Bovine calcium-binding these all had 255 or fewer residues. The limit of 255 is due
protein to the database packing scheme we used, where each
3ins 15 21 A Pig insulin contact in each alternative encodes its sequence separa-
30 B tion in one 8-bit byte. Even so, our total database of all
3pgk 25 415 Yeast phosphoglycerate contacts for all 691,165 alternatives of all the reference
kinase proteins required a few hundred megabytes of storage.
3rp2 19 224 Rat mast cell protease Thus, the 23 largest structures (2cab, 4rhv.l. lcse E.
dape 21 330 Endothiapepsin, fungal lpyp, Irhd, 2cyp, labp, 5cpa, 4tln, 1ptk.A, thmg. A, 6idh,
“dfr 17 159 Dibydrofolate reductase, dape, 4mdh.A, 4gpd.G, 7api.A, 8adh. Iphh, 3pgk, lets,
4fd1 19 106 Azotobacter ferrodoxin zlgt,l;zslzn::it\i;tt:lnc%uf::t.A) were used only for building
4mdh 25 333 Porcine cytoplasmic malate :

dehydrogenase

The 86 reference structures are those in Table 1 which
have chain length less than 256 (also listed in Table 4 in
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Table 2
The 19 reference proteins used in the present work
and their 95 homologues

PDB codes and chain identifiers

No. rm.s.d.
residues Referencet Homologous} (Al
58 4pti 5pti 0-59
62 3ebx 5ebx§ 015
82 351¢ 451c 0-03
99 lpcy 2pcy 3pcy 4pey Spey 012
6pcy
106 4141 1fd2 2fd2 020
108 5cpv ledp 4cpv 027
112 2¢2¢ 3ec2¢ 009
124 1rn3 5rsa Grsa Trsa 015
129 lyz llzt 2lym 2lyz 2122 2]zt 035
3lym [3-8jlyz llym.A
136 leced leca lecn leco 0-06
138 3fxn 4fxn 0-21
146 Imba 2mba 3mba 4mba 021
153 11h4 11h[1-3] 11h[5-7] 21h{1-7) 012
153 Imbd 5mbn 1mb5 Imbe Imbn 041
Imbo 4mbn
159 4dfr.A 7dfr 074
164 2lzm 1}01-02] 11[04-10] 012
11[12-25]} 11[27-35]
llyd 3lzm
170 9wga. A Iwge.A 2wge. A Twga. A 021
212 9pap Ippd 018
237 2cna 3cna 074

t The following reference proteins having homologies were
excluded from the reduced training set: lpcy, 4fd1, Sepv, 3fxn,
Imba, 1mbd, 4dfr.A, 2lzm, 9pap, 2cna (see Table 4).

t Digits in square brackets mean the whole range of numbers,
e.g. [3-8]lyz is 3lyz, 4lyz, .. ., 8lyz.

§ Even though neurotoxin B, Inxb, is homologous to
erabutoxins 3ebx and 5ebx, it nevertheless was excluded from
this list because of noticeable shape distortion: e; =117 and
ey = 1:54.

|| This is the C*~C* distance r.m.s.d. (eqn (9)), averaged over all
the homologous structures.

order of chain length). In addition, 19 of these reference
structures have one or more homologous structures, by
which we denote other crystal structures of proteins
having the same chain length and strong sequence iden-
tity or the same proteins in different crystal environments
and/or complexed with different ligands. These were not
used in any training set and served only to assess the
quality and predictive power of the deduced contact
potentials. In all, there are 95 homologous structures, as
listed in Table 2 with their corresponding 19 reference
structures. As in our previous work, we derived alterna-
tive conformations for each reference structure from all
larger references and from the 23 very large structures.
Consequently, the smallest references had more alterna-
tives (16,521 for 3ins.A), but even the largest, 4rhv.2, had
2127. The total number of alternatives for all reference
proteins was 691,165, an order of magnitude more than in
our previous work.

(b) Compactness

As before, the goal is to construct a function of the
interresidue contacts such that each reference structure
has a lower function value than any of its alternatives,
just as the native conformation of a real protein has a

lower free energy than any kinetically accessible alterna-
tive conformation. Although we make no claim that the
function we determine in this work resembles the real free
energy, we will loosely refer to our function as the contact
energy. Preliminary studies indicated that some proteins
are particularly difficult to bring into agreement with our
goal, perhaps because they are not adequately compact or
globular, certainly necessary conditions for lattice models
of proteins (Crippen, 1991). For example, if a polypeptide
chain crystallizes as a dimer with many interchain
contacts, it is unreasonable to use the co-ordinates of a
monomer in isolation as a reference structure in deve-
loping our energy function, because the contacts that
stabilize the conformation would not be included in our
calculations.

In order to develop a quantitative criterion to decide
the suitability of a structure for use as a reference, and
generally in order to distinguish between compact and
non-compact structures, we examined 2 functions of a
conformer’s radius of gyration, r,, and number of
contacts, N.: (1) the ratio e, of the radius of gyration of
the putative reference structure to the minimal radius of
gyration r(min) over the set of all its alternatives:

€y = T4/7,(min) (1)

and (2) the ratio of the maximal number of contacts for
all alternatives, N (max), to the number of contacts for
the reference structure in question:

ey = N .(max)/N,. (2)

Here, N, corresponds to the discrete form of the contact
function, as described below. The values of r (min) and
N,(max) were determined by examining all the alterna-
tives corresponding to the given reference structure, all of
which have the same number of residues, of course. We
find by linear regression over all our reference structures
that the minimal radius of gyration depends on the
number of amino acid residues N, as follows:

rg(min) = —1-26 4+ 279(N,,,)'"> (3)

with correlation coefficient of 0-997. Another way to esti-
mate the minimal possible radius of gyration as a function
of N, is to model a globular protein as an ellipsoid of
rotation (Damaschun et al., 1969) with mean partial
volume of 134 A3/residue. Then the minimal radius of
gyration is achieved at unit eccentricity, i.e. spherical
shape, giving the same functional form as eqn (3), but
changing the coefficients from —1-26 and 279 to 0 and
2:46, respectively. The r (min) values resulting from the 2
functions differ by less than 69, over the range of N
considered, but the ellipsoid model curve fits the data
slightly worse. Consequently, we used the empirical
eqn (3) as our estimated minimal radius of gyration.
Similarly, we find that the maximal number of contacts
fits the linear regression equation:

N (max) = —5317+425N,,, 4)

with correlation coefficient 0-992. Note that the slope
value of 4-25 indirectly bears out the correctness of the
cutoff distances described below for specifying contacts;
we really have something like the first co-ordination
sphere for each residue in a contact.

We find that the position of a given protein structure
on the e, versus ey diagram (Fig. 1) accurately reflects the
degree and nature of its compactness. Most interesting
here is the clear evidence for the existence of 2 types of
non-compactness: one characterized by noticeably larger
values of r, compared with its minimal value, and the
second type marked by a definitely smaller number of
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Figure 1. Diagram of e, versus ey (see the text) to
characterize the compactness of the 86 reference protein
structures in terms of radius of gyration and number of
contacts. The 16 non-compact structures exceeding the
marked limits ey <150 and e; <130 are indicated by
their corresponding PDB codes and chain identifiers. One
more extremely non-compact structure, 4rhv 4, is off scale
at ey =452 and ¢, = 2:54.

contacts N, compared with the maximum possible for a
polypeptide chain of the given length. These 2 types of
non-compactness may both oceur separately, e.g. high
radius of gyration for 2mlt.A (ey =128, ¢, =173) and
lhmg.B (ey = 1:47, ¢, = 1-92); or low number of contacts
for 2gn5 (ey=195, ¢,=125) and ley3 (ey=198,
e, =1-23); and simultaneously, e.g. for lgen (ey =226,
e, =2:09) and 7api.B (ey =250, e, =177), as shown in
Fig. 1. Clearly, most of the proteins are rather compact,
being clustered in the lower left part of the diagram, while
17 proteins obviously have non-compact conformations.
We chose:

ey<1l'5 and e, <13 (5)

as the requirements for compactness. We realize that the
distribution in Fig. 1 is fairly continuous throughout the
diagram, and therefore these limits are somewhat arbi-
trary. However, we employ them in this work because
such a differentiation helps us determine the desired
energy function, and it is also in good agreement with
visual inspections of the protein folds. Note that while we
require the reference structures to be compact according
to this definition, the alternative conformations have no
such constraint. In fact, 10 to 209, of the alternatives for
each reference protein turn out to be compact.

In order to use eqn (5) for a particular protein structure
having chain length N,,,, one needs to know r,(min) and
N (max). The direct way is to generate the many thou-
sands of alternative structures and calculate r, and N, for
each. Not only is this tedious, but for large N,,, there are
sometimes substantial deviations from the very regular
trend shown for smaller proteins. The reason is that the
number of alternatives decreases as the chain length
increases, simply because we are dealing with a fixed
number of proteins from which to generate alternatives.
Consequently, now that we have established the accurate
relations given in eqns (3) and (4), we use them in all
subsequent calculations to quickly obtain 7,(min) and
N_(max).

(¢) Calculations

As in our previous study, we have evaluated conforma-
tions according to the interresidue contacts formed. The

exact definition of a contact we continue to use (see Table
3) is designed to be applicable even if the sequence of a
given conformation is changed. We consider only the
backbone N, (' and O atoms plus the side-chain C?, even
building in an artificial C* if the original residue is Gly.
Then a backbone-backbone contact is counted whenever
d(0,N)<324A and d(C,N)>394; a backbone-side-
chain contact requires d(N or O, () < 5-0 A and no other
atom between the interacting pair closer than 1-4 A to the
line segment joining them; and a side-chain—side-chain
contact requires d(C#, (f) <90 A and similarly no inter-
fering atom between them. Interactions must be between
residues differing by at least 3 in sequence. Backbone
atoms involved in contacts are ascribed to residue type
Gly, but side-chain atoms correspond to their correct
residue types.

Throughout this work we have assumed the contact
potential function E for a given protein conformation is a
sum of the values ¢ assigned to the individual contacts:

E= g(class (¢), class (), [e—jl). (6)

contactresidues
iandj

where the terms depend on the same very detailed stan-
dard classification according to sequence separation and
residue type classes proposed earlier (Table 2 in Crippen
(1991) and Table 5, here). This classification is a plausible
one that groups together helix-formers wversus helix-
breakers for short-range (i.e. sequence separation <4)
interactions, and hydrophobic versus hydrophilic residues
for long-range interactions. We assume the importance of
a contact does not depend on which residue is higher in
sequence, so the interaction matrices in Table 5 are all
symmetric, and there are a total of 84 parameters to
adjust (4 separation ranges, each having 21 interaction
parameters among 7 classes of amino acid).

In the preceding work (Crippen, 1991) we required only
that:

E(reference) < E(alternative) (7)

for each reference and all alternatives of each reference.
Now we demand that strict inequality hold by a margin
T, for the kth alternative given by:

Ty =qb. (8)

Here, ¢ is an empirically adjusted coefficient (see below),
and D, is the root-mean-square distance deviation
(r.m.s.d.) between the reference and the kth alternative
structure:

Z (dij"d;'j)z 112
= = _ ¢
b Nieo( Ve —1)/2 ’ ®)

res

where d;; and dj; are the distances between the ith and jth
C* atoms in the reference and alternative structures.
respectively. Of course, one may use the co-ordinate-
based r.m.s.d. (McLachlan, 1979) instead of eqn (9), but
because it makes no difference in this work, we chose the
more easily calculated distance r.m.s.d. Thus, for a given
reference structure and its kth alternative, we require:

E(kth alternative) — E(reference) > T,. (10)

The underlying idea here is to make the energy of an
alternative lie above that of the corresponding reference
structure by at least some minimal margin that increases
linearly with their conformational difference. Test compu-
tations showed that choosing a very small positive value
for ¢ reduces eqn (10) to approximately eqn (7), makes
the set of inequalities easier to solve, leads to very similar
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energies for the reference structure and some of its alter-
natives, and leaves no room on the energy scale between
the reference structure and the lowest alternative for the
homologous proteins, which are expected to scatter in this
range. On the other hand, too large a ¢ caused a marked
increase in the computer processor unit time required to
find a solution for the set of inequalities. A reasonable
compromise was ¢ =3, the value used throughout this
work. Although our potential function is required to have
the free energy-like property of favoring the native con-
formation, eqn (10) has no relation to physical energy or
temperature scales. Therefore the units for £ and ¢ are
arbitrary. It turned out that the method used in our
previous work to solve homogeneous sets of inequalities
(Jurs, 1986), as in eqn (7), could be applied to sets of
inhomogeneous inequalities, as in eqn (10}, and was there-
fore used in all that follows.

Our procedure for determining the terms consists of the
following 3 steps. (1) Simply directly solving the entire set
of 690,000 linear inequalities of the form in eqn (10) is
hopelessly slow. At the solution, only a relatively small
number of inequalities are active, as shown earlier
(Crippen, 1991), particularly those inequalities arising
from the more challenging compact alternatives.
Therefore, we selected the first 49 alternatives for each
reference that obeyed the compactness criteria of eqn (5),
using eqn (3) for the minimal radius of gyration and
eqn (4) for the maximal number of contacts. In the
optimization procedure, all the starting values were set to
the arbitrary value of —0-1, and the ¢ terms rapidly
converged to a set of first approximation values. (2) Next,
we “combed’ through the full list of alternatives to each
reference for any alternative that violated eqn (10).
Adding these to the previous list of inequalities increased
the size of the problem only slightly, and the first approxi-
mation & terms were a good starting point for calculating
the second approximation. Actually, this is a very effi-
cient way to extract all alternatives that are essential
from the contact energy difference viewpoint and are
missed at the first step. The clever selection of alterna-
tives in the first 2 steps is the key to being able to treat
much larger sets of inequalities than before. (3) It was
found that sometimes a 3rd step of refinement of the
potentials is required because some alternatives that
satisfy eqn (10) before step 2 do not at the end of the step.
The remedy is to return to the basic set of inequalities in
the st step, repeat the combing, and produce a 3rd set of
¢ terms from the 2nd approximation. A 4th step was never
required.

\(d) Two forms of contact function

We used the above procedure to deduce contact poten-
tials for a training set consisting of all 69 compact pro-
teins, excluding all homologous structures (see Table 2).
(Incidentally, note that Table 2 does not list neurotoxin
B, Inxb, as homologous to erabutoxins 3ebx and 5ebx, in
spite of strong sequence similarity because of its notice-
able shape distortion: e, =1-17 and ey = 1-54.) However,
we subsequently found that on rare occasions the
resulting E for some of the homologous structures was
greater than that of the lowest alternative. For example,
for the reference bovine pancreatic trypsin inhibitor
crystal structure 4pti, there is the homologous 5pti
differing in r.m.s.d. by only 0-59 A, yet E(5pti) is an
appreciable 26:7 arbitrary units greater than E(4pti) and
9-8 above E of the lowest alternative. Since the assign-
ment of ‘‘reference” and “homologous” structures is
absolutely arbitrary, this outcome ought to be considered

a violation of eqn (10). Although this happens to be the
only violation of this kind, we were compelled to eliminate
it.

The difficulty arises from the all-or-nothing definition of
a contact, as described above. We could rewrite eqn (6)
as:

E= Z Vid;, Uej. (11)
contacts
i

where V is the value of a contact depending on d;;, the
relevant interatomic distance, and U, the cutoff value.
The discrete contact function we have been using
(Crippen, 1991) has:

1 ifdy<U

12
0 otherwise. (12)

V(dijs U)= {

Even slight changes in interatomic distances between 2
homologous structures may cause significantly different
lists of contacts. The solution is to use a continuous
contact function where V becomes a smooth sigmoidal
function of d;;, going from 1 below a lower cutoff distance
L to 0 above an upper cutoff U:

(d;—U)*(2d;—3L+U)

if L<d;;<

(U—-L) ifL<d,;<U

Vidy, U, L) = if dy<L (13)
0 if d;>U.

Note that eqn (12) is a limiting case of the eqn (13) when
U = L. For contacts involving side-chain atoms, we still
include the effect of possible interfering atoms k near the
line segment joining the interacting atoms i and j by
defining the modified contact strength V,, to be:

Valdij, U, Ly=V(d;;, U, L) [ [1 = V(di, U, L)), (14)
k

where d;;, is the distance from atom k to the line segment
joining atoms ¢ and j.

In order to determine suitable cutoff values for the
continuous contact definition, we chose a limited training
set of reference structures, their alternatives, and their
homologous structures, namely, 4pti (12,701 alternatives
and 5pti), 3ebx (12,316 alternatives and 5ebx) and 351c
(10,483 alternatives and 451c¢). Then the cutoffs were
adjusted so that each reference and its homologous struc-
ture spanned a small range of energies, while there was a
large increase in energy going from the highest homo-
logous structure to the lowest alternative. This is the only
role the homologous structures played in the fitting
because, otherwise, Table 2 makes it clear that homo-
logous structures are extremely similar to their corre-
sponding reference structures (from 006 to 074 A
r.m.s.d.), making their energies so easy to fit they were
not needed in the training sets. It was found that con-
tinuity of the contact function is of critical importance
only for contacts involving side-chain Cf atoms, while the
contact function form for other types of contacts may
remain discrete, as shown in Table 3. Similarly, we also
used only the discrete form of the contact function term
responsible for possible interfering atoms near the line
segment joining the interacting pair of atoms (eqn (14)),
as indicated by the last line of Table 3, where the con-
tinuous U =L =14 A. In what follows, we will refer to
this hybrid form of the function as the “continuous
contact function’” and to the old version as the “‘discrete”
one. Note that in determining the & terms, the very
approximate first step of the procedure uses the discrete
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Table 3
Boundary parameters of the discrete and continuous
contact functions (see the text)

Cutoff distances (A)f

Continuous
Discrete

From atom To atom or line L=U L U
N 0 3-20 3-20 3-20
Nt C 390 360 360
NorO c# 500 300 500
cf (o4 9-00 6-00 9-00
Any atom  Line joining 2 1-41 1-41 1-41

contact atoms

T Because the definition of a backbone—backbone contact
requires & short N-O distance but a long N-C distance in order to
stipulate a roughly linear hydrogen bond, the sense of these
limits is reversed, compared to egns (12) and (13).

{ L and U denote the lower and upper distance cutoffs of the
contact function, eqns (12) to (14).

form of contact function, while the more accurate con-
tinuous form was employed in the following 2 steps.

Except for treating the homologous structures, there is
not a big difference between the discrete and the con-
tinuous contact functions. For example, the relationship
between the discrete number of contacts and the “effec-
tive number of contacts”, defined to be the sum of all
contact values (eqn (13)) for the conformer according to
the continuous form of the contact function, is quite
linear (N (discrete) = 0-65N,(continuous)+4-56) and has
a correlation coefficient of (0-997.

3. Results
(a) Complete training set (CTS)

Our first question was whether we could satisfy
equation (10) even by including in the training set
all 69 compact structures having readable chain
length less than 256. For each reference structure we
selected the first 49 compact alternatives, which
produced a set of 3381 inequalities for the whole
training set. After 1521 iterations of optimization
the solution for the first step was found and used as
the start for the next step. On the second step,
11,336 constraints were added as described above,
making altogether 14,717 inequalities. The
optimization converged to a solution after 5888
iterations. Finally, on the third step only 72 new
constraints were added to the 3381 from the first
step (for a total of 3453 inequalities) and 1938
iterations completed the procedure. Checking the
final potential against the whole data base showed
perfect agreement with equation (10) for all 69
references and all their alternatives. Thus, the
14,789 constraints (=3381+11,336+72) used in all
in the CTS were sufficient to predict correctly
530,062 constraints from a total of 73 proteins
(including 4 non-compact structures, 3fab.L,
2fb4.L, 3fab.H and 4rhv.3 which, of course, were
not in the CTS), for an average “predictive signifi-
cance”’ of 530062/14789 =358. Also, all the 95

homologous structures in Table 2 had contact ener-
gies less than the lowest alternative of the corre-
sponding reference structure.

(b) Reduced training set (RTS)

Having seen that it is possible to fit all the
proteins, we next tried to reduce the training set,
seeking to determine the minimum number of pro-
teins necessary to deduce a potential that could
make a prediction of the same quality. Going on the
theory that small and medium-sized proteins
provide the most effective constraints, we first tried
all reference structures having 150 residues or less.
This failed in that one of the compact proteins,
2pka.B, had a number of alternatives’ energies
violating equation (10) and one of them was below
the reference structure energy by 18-3 units.

On the other hand, when we excluded from the
training set the 32 structures (Table 4) having refer-
ence energies in the CTS potential more than 100
units below the lowest alternative, we were
successful. The amount of information about inter-
residue interactions contained in the remaining 37
structures (whose alternatives correspond to a total
of 10,088 constraints) was sufficient to make correct
predictions for exactly the same proteins as before
with the complete training set. Note that the
average ‘‘predictive significance” of a constraint in
this calculation is 509 better than with the CTS:
530062/10088 = 52-54.

The values of the resulting RTS parameters seem
to have clear physical meaning (Table 5). For
example, for sequence separations of eight residues
and more (4th separation range) the largest positive
(1.e. unfavorable) values are observed for inter-
actions between pairs of positively charged side-
chains of Lys and/or Arg residues {(group 5 and
group 5 €=921) or between pairs of negatively
charged/polar Asp, Asn, Glu and Gln residues
(group 7 and group 7 &£=433), in agreement with
the obvious electrostatic repulsion between side-
chains having like charges. On the other hand, the
largest negative interaction parameters are for pairs
of the hydrophobic residues Leu, Ile, Cys, Met and
Phe (group 3 and group 3 &= —846) or for these
hydrophobic residues and non-polar side-chains of
Ala and Val (group 2 and group 3 ¢ = —6:59), thus,
reflecting the tendency of these residues to form
favorable hydrophobic interactions with each other.

In general, there is an apparent correlation in
contact energies of native structures and their chain
lengths (Fig. 3) that fits:

E(native) = 47-17—4-37N,,, (15)

with a correlation coefficient of —0-932. This rela-
tion may be helpful in predicting the eonformation
of a novel protein sequence. If the lowest proposed
conformation of a protein still gives an energy well
above the value expected for such a chain length,
then the correct native conformation probably has
not yet been suggested.

Note that all the smallest structures in the list
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Table 4
Contact energy and contact energy difference for the 86 reference proteins and their 95 homologues calculated

with the final (RTS) potential of Table 5

Contact energy (arbitrary units)

Homologous
PDB
code No. res No. alts Ref. Alts Diff.§ No. Min. Max. Diff.}
*3ins. A 21 16521 —590 —91-8 —328
*2mlt.A 26 15980 —-376 —92-2 -54'6
*1gen 29 15658 —-11-3 —91-8 —80-5
*3ins.B 30 15551 —-513 —1193 —679
*lppt 36 14920 —354 —86-1 -50-7
*7api.B 36 14919 —852 —122-9 —-377
*4rhv .4 40 14506 7-8 —-122-5 -130:3
1bds 43 14199 —-13717 -1217 159
lern 46 13895 —184-2 —166-7 175
1fdx 54 13094 —2338 —211-2 226
5rxn 54 13093 —1731 —1367 36:5
2o0vo 56 12896 —192-5 —1751 174
4pti 58 12701 —2133 —192-8 205 1 —~2028 —202-8 10-0
3ebx 62 12316 1977 —179-8 179 1 —196-8 —-196:8 17-0
lese.l 63 12220 —150-4 —1333 171
Isn3 65 12031 —204-6 —1780 266
-letf 68 11751 —302-9 —221-8 811
lhoe 74 11198 —-2199 —1965 23-4
*2abx.A 74 11197 —2060 —229.7 —237
-3icb 75 11106 —3586 —241-0 1176
*2pka.A 80 10660 —182-3 — 2547 —725
351c 82 10483 — 2834 —274:3 361 1 —302-1 —302:1 548
leeh 83 10395 —2765 —2552 213
thip 85 10222 —2789 —255'5 234
2b5c 85 10221 —303-6 —249.9 537
*2gn5 87 10052 —205'5 —276:9 714
-3fxc 98 9138 —4481 -316-2 1319
lhvp.A 99 9055 —-3739 - 3468 271
-1pey 99 9054 —4955 —324-1 1713 5 —4936 —480'5 1564
*lwrp.R 102 8813 — 3497 —354'1 —44
5cyt.R 103 8733 —3731 — 3560 17:1
—4fd] 106 8498 —500-1 —3579 142-1 2 —512'5 —492-2 134-3
Irei. A 107 8420 —3329 —3150 179
Zedv 107 8419 —317-2 —293-2 24-1
2ssi 107 8418 —3734 —3434 29-9
laex 108 8343 —3358 —290-2 455
~5epv 108 8342 —600-4 —4492 1512 2 —620-3 —-6020 1528
—lcer 111 8125 —376:2 —2783 979
2¢2¢ 112 8053 —370-4 — 3459 24-6 1 —3850 — 3850 391
lhmq.A 113 7982 —3754 —3536 21-8
2pab.A 114 7912 —426-2 —3785 477
2rhe 114 7911 —-3733 —3699 34
*ley3 118 7642 —2193 —3741 —1548
-1paz 120 7509 —568-4 —394:0 1744
155¢ 121 7443 —3589 —3232 358
1pp2.R 122 7378 —4227  —3851 375
-1bp2 123 7314 —493-4 —389:6 103-8
Irn3 124 7251 — 3997 —3286 711 3 —443°1 —-401-8 732
-2cey. A 127 7067 —552'1 —4386 1135
~liyz 129 6946 —673°1 —5780 951 14 —7232 —633-3 55'3
2aza.A 129 6945 —488-1 —4235 64-6
—1lz1 130 6886 —7432 —3784 3648
leed 136 6543 —532-3 - 5059 26:5 3 —-572:3 — 5554 495
-3fxn 138 6430 —807-5 —4997 3078 1 — 8497 —849-7 3500
2hhb.A 141 6264 —5283 —501-8 265
2sns 141 6263 —4180 —3759 421
-1mba 146 5997 —668-2 — 5500 1181 3 —7404 —696-2 146-2
2hhb.B 146 5996 — 5486 —4930 556
—1fx1 147 5944 —7153 —451-3 2640
—2lhb 149 5843 —800-1 —5217 2785
—280d.0 151 5744 —600-4 —3824 2179
2pka.B 152 5695 —462'5 —424'8 377
11h4 153 5647 —587-8 - 5586 293 13 —647-2 —581-8 232
—~1mbd 153 5646 —1733-8 —5829 150-8 6 —809-5 —-7542 171-3
—4dfr.A 159 5375 —6586 - —4673 1913 1 —5841 —584-1 1168
-2lzm 164 5154 —821-0 —549-6 271-4 34 —867-1 —7955 2459
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Table 4 (continued )

Contact energy (arbitrary units)

Homologous
PDB
code No. res No. alts Ref. Alts Diff .+ No. Min. Max. Diff.}
9wga. A 170 4895 —511-9 —4723 396 3 —529-1 —499-3 270
~lger 174 4726 —816:0 —457-8 358-3
*1hmg.B 175 4684 —363-3 —560-5 —-197:2
~2sga 181 4443 —7257 —5356 190-1
2stv 184 4325 —740:1 —653-5 86-6
3adk 194 3944 —666-1 —598:7 67-4
—2alp 198 3795 — 8474 —634-8 212-6
—4sbv.A 199 3758 —-7694 —~6180 1514
*3fab.L 207 3477 —637-1 —5358 101-2
~3gap.A 208 3442 —8390  —17235 1155
—Opap 212 3309 —834'1 —5131 321-0 1 — 8751 — 8751 362-0
*2fb4. L, 216 3180 —634:0 —454-6 1794
—2act 218 3117 —8550 —~5574 2976
*3fab. H 219 3086 —653-2 —543-3 1099
—3rp2.A 224 2940 —1005-9 —8188 1870
*4rhv.3 236 2603 — 8849 —~7581 126-8
—2cna 237 2575 —1033-6 —643-2 390-3 I —10358 —-10358 392:6
—lest 240 2496 —963-4 —687-2 2761
~1tim.A 247 2320 —10881 —7985 289-6
—4rhv .2 255 2127 —993-7 —7382 2555

The 17 non-compact structures are marked by an asterisk. A — marks the 32 proteins that had large contact energy differences with all
the preliminary and intermediate potentials and were therefore removed from complete training set to form the reduced one.

T Ref. is the energy of the reference structure; Alts refers to the lowest contact energy over all the alternatives and Diff. is the
difference between the contact energy of the reference structure and the lowest energy over all of the alternatives.

1 Min. and Max. are the minimal and maximal contact energies over the list of homologues corresponding to a given reference
structure (see Table 2). Diff. is the difference between the contact energy of the highest homologous structure and the lowest alternative.

(the first 7 in Table 4 and Fig. 3) are non-compact
and violate the fitting condition, equation (10).
However, only six of the remaining ten non-
compact structures of larger size have violations.
The energy margin between reference and lowest
alternative is generally substantial (Table 4) except
for the reference Bence—Jones protein 2rhe, which
has energy only 34 units below an alternative
derived from the related FAB-protein 2fb4.L

400 —

300 —

200 -

100~

O bzl | : [ =
[¢] 10 20 30

rmsd. ()

Figure 2. Contact energy difference calculated with
RTS potentials versus r.m.s.d. plot for the 2rhe reference
structure (114 residues), showing all 7911 alternatives.
Zero contact energy difference and the threshold margin
of 3x rm.s.d. (eqns (8) and (10)) are shown by dotted
lines. The alternative closest to the reference structure
(rm.s.d.=1'17 A) was generated from the crystal struc-
ture of FAB-protein 2fb4. L.

Contact energy difference (arbitrary units)

(r.m.s.d.=1-17 A). This is an unusual situation
where 2fb4.L is a close homologue of 2rhe. The next
closest alternative has r.m.s.d. =81 A and energy
521 above the reference (Fig. 2). Otherwise, Figure
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Figure 3. Contact energy of 86 reference structures
versus number of residues. The 69 compact and 17 non-
compact structures are shown by points and diamonds,
respectively, the latter being marked by their PDB code.
The PDB markers for the 7 smallest structures, 3ins.A.
2mlt.A, lgen, 3ins.B, lppt, 7api.B and 4rhv.4, are
omitted for clarity. The upper part of the plot shows
contact energy differences between the lowest energy
alternative and the reference structure for each protein as
lines from the zero energy level toward the respective
value for the 69 compact (continuous lines) and the 17
non-compact (dotted lines) proteins. The straight line
through the reference structures was determined by linear
regression to have slope —4:37, intercept 47-17 and corre-
lation coefficient —0-932.
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Table 5
Contact potentials that satisfy the 73 proteins and corresponding 95
homologous structures

Separation 3

G ALICMF VHS p RDEQ TKN Yw
1 —0-69622
2 — 402250 415407
3 451831  —215759  —1-19728
4 8:32046 —1:52758 —2:17667 —0-25318
5 —4-67793 063233 1-20919 0-55600  —3-79903
6 —0-97071  —0-89862 0-13811 174729  —834442  —6-20602
7 131923  —046381 —079571 —4-71292 —6-05593  —3-61441  —1-34488
Separation 4
G ALICMF VHS P RDEQ TKN YW
1 095207
2 —297196  —2-18647
3 051624  —546954 059592
4 943824 0-95249 117324 0-81616
5 1-42327 0-88925 3-15180  —2-08650 0-22717
6 —-303373 —1-37106 1-46070 101162 2:42066 0-41988
7 3-32498 0-98535 0-55464 003249  —0-27325 176394  —0-32876
Separations 5 to 7
G AV LICMF YHWST KR P DNEQ
1 —1-66730
2 0-83544 2:19482
3 —0-80084¢ —103313 —6-92885
4 —563378 —1-59914 —1-05550 —0-40860
5 1-32582 2:20828  —2-96523 561379 127991
6 1:94306  —0-51869 3-80413 424939 043871  —0-10825
7 —6-21464 275095  —241791  —0-24586 372012 1-57452 198596
Separation >8
G AV LICMF YHWST KR P DNEQ
1 — 040067
2 —056931 —2-62597
3 092706  —6-58525 — —846742
4 —2-44415 —0-87669 —319972 2:42480
5 —081858 —125143 —0-08153 —1-73287 9-21333
6 100735  —1-33631 004413 002409  —0-69110 4-31013
7 - 3-36539 2:14130 1-90592 051326  —3-14586 3-39357 4-33339

Potentials are deduced with only 37 proteins, the reduced training set (RTS). Classification of amino
acid residue contacts is assigned by sequence separation range and by subsets of types of residues
indicated by the single-letter residue code. For each of the 4 sequence separation ranges we show the
symmetric matrix of interaction parameters ¢ for contacts between residues of the various classes.

2 is typical of the energy distribution for all the
compact proteins.

(c) Tests of significance of a classification

To test the significance of the -classification
scheme used throughout this work (Table 5) we
attempted to deduce three additional potentials
from the same 37 proteins of the RTS. We used the
same computational protocol as described above,
only with three different classification schemes.

The first test used the best (i.e. fewest adjustable
¢ terms) contact classification found in our earlier
work (see Table 3 in Crippen, 1991). We were unable
to locate a reasonable solution even after 16,000
iterations of optimization in each of the three steps.
Perhaps a solution of the quality of cur CTS and

RTS potentials could be found after much more
computing effort, but it seems unlikely.

In the second test we used the same sequence
separation classifications and the same number of
residue classes in each as before in the CTS and RTS
potentials (Table 5), but with random assignment of
residue types to classes. The first step succeeded,
but the second step failed by exceeding our
program’s limit of 15,000 on the number of
constraints while ““‘combing’ the 17th protein of the
37 in the training set. Presumably, even with a
much greater limit on constraints, the calculation
would fail to find a solution at great computational
expense. Apparently, the classification scheme of
Table 5 is not only in general agreement with
conventional wisdom about residue type simi-
larities, but the particular classification is more
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important than merely the number of adjustable ¢
terms.

The third test was simply to interchange the
residue classifications for the first and fourth separa-
tion ranges in Table 5, and then attempt to satisfy
all the inequalities. Curiously enough, this
succeeded, resulting in what we will refer to as the
T3 parameters. With these we are able to correctly
predict the same proteins as with the RTS para-
meters. The distribution of the contact energies of
reference structures versus the number of residues
with the T3 potential is approximately the same,
with slightly different linear regression coefficients:
the intercept is 2529, the slope is —4'49, and the
correlation coefficient is — 0918, compared to 47:17,
—4-37 and —0-932, respectively, in equation (15).
The root-mean-square difference between contact
energies of compact reference structures calculated
with RTS and T3 is only 674 arbitrary units,
compared with the 1100 units for the total range of
reference energies.

We were unable to repeat the systematic search
for simpler classification schemes carried out in our
earlier work because now we treat many more pro-
teins, vastly more alternative conformations, and
we demand in equation (10) not merely that the
reference have energy less than or equal to each
alternative, but that there be a substantial margin.
Solving inhomogeneous inequalities is qualitatively
different from, and more time-consuming than,
solving homogeneous ones.

The RTS potentials were also checked against a
representative sampling of crystal structures with
fewer than 256 residues that had been added to the
Protein Data Bank since 15 October 1990: Zeti
(trypsin inhibitor II, 28 residues), 4tgf (human
growth factor, 50 residues), 1fkf (FK506 binding
protein, 107 residues) and 1ed4 (T-cell surface glyco-
protein, 173 residues). These had never been seen in
our laboratory until after the RTS potential had
been determined. Using the same list of protein
structures as before, the alternatives for each of
these structures were generated. Only the structure
of 4tgf growth factor (13,495 alternatives) with
apparent disturbance of compactness (parameters
e, =138 and ey=151 exceed the corresponding
threshold values of 1-30 and 1-50) has a number of
alternatives with contact energy less than the refer-
ence structure. The three others, 2eti (15,766 alter-
natives), 1fkf (8421 alternatives) and led4 (4769
alternatives), demonstrate obvious satisfaction of
equation (10) for all alternatives generated. While
large proteins are relatively easy to fit, the trypsin
inhibitor 2eti is a remarkably small structure that
we can nonetheless successfully predict because it
obeys our requirements for compactness and many
internal contacts.

4, Discussion

It is interesting to compare our results with that
of Hendlich et al. (1990), the most similar work
outside our group that we are aware of. They
derived many different potentials of mean force for

(#-C? interactions only by surveying a database of
101 separate chains in protein X-ray crystal struc-
tures, listed in their Table 3. To make predictions of
the folding for one protein, they would remove it
from the database and use the remaining 100 to
derive the effective energy of interaction as a func-
tion of distance between side-chains, broken down
into 15 sequence separation classes and for each of
these, all 210 residue pair type classes. Then they
generated a set of alternative conformations in the
same way we do, and compared their calculated
energies of the native versus all its alternatives. One
view of their potentials is that they consist of
210 x 15 = 3150 different histograms as a function of
C#-C? distance, while we have only 84 ¢ terms in our
Table 5. However, we adjusted our ¢ terms empiri-
cally to satisfy a large number of inequalities, but
their histograms are not adjustable parameters. In
return, we get much greater predictive power: a
training set of 37 compact proteins invariably
favors the native structure of 73 proteins over all
alternative conformations. By way of comparison.
their Table 7 lists 53 proteins that we would con-
sider compact, ranging between 21 and 199 residues
in length. Of these, the two corresponding potentials
of mean force (denoted in their work as potentials S
and A), derived apparently from 100 crystal struc-
tures in each case, could favor the native over the
alternatives in both the 8 and A cases only for 34
compact proteins and two non-compact proteins.

There are a number of likely reasons for our
superior predictive power. First, we derive our ¢
terms by comparing the native conformation with
misfolded alternatives, rather than surveying only
native conformations for a potential of mean force.
In other words, the potential must be trained by
showing it what is wrong as well as what is right.
Secondly, we find it crucial to deal only with
compact native conformations, as judged both from
the radius of gyration and from the relative number
of contacts. We cannot account for the crystal
structure of an isolated non-compact polypeptide
chain when its conformation is stabilized by inter-
molecular contacts in the crystal, and we suspect
this has led to some of the difficulties experienced by
the Sippl group, since they used both compact and
non-compact native conformations. Thirdly. we find
that backbone—backbone and epecially backbone-
side-chain interactions are important (see the G
columns in Table 5), whereas they considered only
side-chain—side-chain interactions.

A priori, one might assume the classification
scheme for residue-residue interactions is very
important. The assumption is based on conven-
tional wisdom about grouping together helix-
formers versus helix-breakers for short-range inter-
actions, and grouping according to hydrophobicity
for medium and long-range interactions. Indeed,
this is the line of reasoning that led to the classifica-
tion scheme in Table 5, as previously set forth in
Crippen (1991), and subsequently used to produce
the CTS and RTS potentials. However, our classifi-
cation is certainly not unique, as demonstrated by
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the success of the T3 potential, where the classifica-
tions for the first and fourth separation ranges were
interchanged. Although the RTS potential is very
powerful in its ability to satisfy a half million
inequalities, other equally good potentials could be
found, possibly involving fewer parameters and
possibly having even better predictive power.

In our approach, we are happy to see that some
kinds of trouble simply do not arise. For example,
although lhvp.A is not an experimentally deter-
mined structure, but was rather postulated by
homology modeling (Weber ef al., 1989), it nonethe-
less can be easily accounted by our contact function,
whereas it could not be predicted by Hendlich et al.
(1990). As another example, we utterly disregard
any ligands or prosthetic groups in proteins, even
large ones covalently attached to the polypeptide
chain. Even so, we observe no correlation between
the presence or absence of prosthetic groups and the
quality of our predictions, just as long as the native
is compact according to our criteria in equation (5).

It is worth noting that the range of contact
energies for compact and non-compact alternatives
calculated with the RTS potential are approxi-
mately the same. Both types of alternatives may be
found among the very best (which are, of course,
always higher than the reference structure energy)
and the very worst. This means, in particular, that
one must consider both types of alternatives when
forming the set of inequalities, equation (10), rather
than only compact ones. This finding runs against
one’s intuition that compact structures always have
lower contact energy.

The major improvement of this work over our
previous effort (Crippen, 1991) is the introduction of
a substantial margin 7 >0 in equation (10) that
becomes small when the r.m.s.d. becomes small,
coupled with a continuous contact function that
guarantees a small difference in contacts for a small
r.m.s.d. For example, the reference structure 5cyt.R
has an alternative derived from lcer with r.m.s.d.
=047 A, 2rhe has an alternative from 2fb4.L with
rm.s.d. =1-17 A, 1lyz has an alternative from 11z1
with r.m.s.d. =193 A, and 2hhb.B has an alterna-
tive from 1mbd with r.m.s.d. =192 A. Then, quite
naturally, all these ‘homologous’ alternatives have
energies only slightly above the corresponding refer-
ence structure’s, but still satisfy equation (10) by a
small margin. The only exception is the 2hhb.A
reference structure for which the lowest energy
alternative lies 556 units above the reference, yet
has a large rm.s.d.=95A, compared with the
second lowest alternative at 707 units above the
reference, yet differing in conformation by only
1192 A. However, this result is not unexpected
because a 2 A r.m.s.d. is enough to allow a consider-
able change in the contacts.

It is especially interesting to note that the
“novel” folding pattern found in the recently deter-
mined n.m.r. and X-ray crystal structures of 1fkf,
FK506 binding protein (Michnick ef al., 1991; van
Duyne et al., 1991), is not new from the viewpoint of
interatomic contact arrangements, given that we

can correctly predict it on the basis of the reduced
training set of 37 old protein structures. This
finding allows one to hope that only minor readjust-
ments of the contact potential will be required to
keep a high level of predictive power as more pro-
teins are considered.

In spite of the encouraging results we have
obtained so far, there are two special cases we must
treat in future versions of this potential. First,
sequence homologues (see Table 2) are now correctly
handled in the analysis without even being
employed in the derivation of the potential, but we
have not paid special attention to proteins having
very similar conformation, yet low sequence iden-
tity. Instead, such pairs of proteins were used only
in the general fashion to generate alternative con-
formations for each other. Presumably, we should
demand that the two different sequences applied to
essentially the same conformation should produce
very similar contact energies. Work is in progress to
at least see what the RTS potential says about such
structural homologues.

The second case is that of non-compact native
proteins, which we have so far simply excluded from
the derivation of our potential as well as its testing.
We find that for such a reference structure there are
generally many alternatives having substantially
lower contact energies. However, there are appar-
ently very few examples of protein crystal struc-
tures where a polypeptide chain fails our
compactness test without having significant inter-
actions with neighboring chains. Work is in progress
to treat such crystal structures as multimeric aggre-
gates of polypeptide chains such that the multimer
is compact.

The results presented here on the contact energy
approach allow one to conclude that the problem of
identifying the correct fold out of a large but
discrete set of alternatives is basically solved. Given
such a powerful tool for identifying the native fold,
our next goal is to implement a method to suggest
possible ‘“native” folds for a given amino acid
sequence when the correct answer is not known and
when it is not just a segment out of an already
determined crystal structure.
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