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We have devised a continuous function of interresidue contacts in globular proteins such 
that the X-ray crystal structure has a lower function value than that of thousands of 
protein-like alternative conformations. Although we fit the adjustable parameters of the 
potential using only 10,000 alternative structures for a selected training set of 37 proteins, a 
grand total of 530,000 constraints was satisfied, derived from 73 proteins and their 
numerous alternative conformations. Tn every case where the native conformation is 
adequately globular and compact, according to objective criteria we have developed, the 
potential function always favors the native over all alternatives by a substantial margin. 
This is true even for an additional three proteins never used in any way in the fitting 
procedure. Conformations differing only slightly from the native, such as those coming from 
crystal structures of the same protein complexed with different ligands or from crystal 
structures of point mutants, have function values very similar to the native’s and always 
less than those of alternatives derived from substantially different crystal structures. This 
holds for all 95 structures that are homologous to one or another of various proteins we 
used. Realizing that this potential should be useful for modeling the conformation of new 
protein sequences from the body of protein crystal structures, we suggest a test for deciding 
whether a nearly correct approximation to the native conformation has been found. 

Keywords: protein structure prediction; protein folding; amino acid residue contacts; 
conformational potential functions: globular proteins 

1. Introduction 

The classical protein folding problem is to predict 
the three-dimensional conformation of a protein 
given only its amino acid sequence. Here, we con- 
sider a restricted version that we might call the 
multiple choice “recognition problem”: given the 
amino acid sequence of a protein and a large selec- 
tion of globular conformations that includes the 
correct native fold, choose the one native conforma- 
tion. Such a situation naturally arises in att.empting 
to predict a protein’s conformation by homology 
modeling, where there may be several different ways 
to arrange variable loops. Other applications are the 
assessment of alternative conformations of a protein 
derived from nuclear magnetic resonance (n.m.r.t) 
experiments, or choosing between different chain 
tracings through the electron density in the early 
stages of determining a protein’s X-ray crystal 
structure. 

t Abbreviations used: n.m.r., nuclear magnetic 
resonance; PDB, Brookhaven Protein Data Bank; 
r.m.s.d., root-mean-square deviation; CTS, complete 
training set; RTS, reduced training set’. 

A number of different researchers have suggested 
various criteria for the recognition problem, such as 
the number of hydrophobic contacts (Bryant & 
Amzel, 1987). Novotny and co-workers (Novotny rt 
al., 1984, 1988) analyzed the accessible surface area 
in terms of its polar/apolar ratio and the distribu- 
tion of this ratio for different amino acid side- 
chains, as well as atomic packing and empirical 
energy and free energy functions, in order to differ- 
entiate between a few examples of correct vertwcY 
intentionally misfolded struct’ures. Chiche and co- 
workers related solvation free energy (Eisenberg 8r 
McLachlan, 1986) to the correctness of a protein 
fold using the observed approximately linear depen- 
dence of the solvation energy on the protein chain 
length (Chiche ct al.. 1990). One of the latest and 
most, successful examples of the t’hree-dimensional 
profile approach (Liithy et al., 1992) discriminat’ed 
between the correct and an incorrect, fold for seven 
different proteins. judging from their relative scores 
and from the general relation between t’hr scores of 
correct crystal structures and their chain lengths. 
Moreover, they were able to detect an incorrectly 
folded segment in an otherwise correct structure, 

In the approaches cited so far. the goal ha,s been 
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to recognize the correct fold as better in some sense 
than only one or two alternative folds. We believe it 
is much more difficult to favor the native fold over 
large numbers of alternatives. Sippl and co-workers 
(Sippl, 1990; Hendlich et al., 1990) constructed a 
potential of mean force for the interactions among 
C8 atoms from a survey of protein crystal structures 
that’ tended to prefer the native conformation of 
several proteins over some thousands of alterna- 
tives, but not in all cases. In our initial look at the 
problem (Crippen, 1991), we concluded that a 
discrete function of interresidue contacts could be 
constructed for some simple model cases t,hat 
preferred the native conformation over absolutely 
all possible alternatives. When it came to extending 
this to real protein conformations, we produced a 
discrete contact potential based on the native and 
alternative conformations of only eight proteins 
that correctly preferred the native over tens of 
thousands of alternative for another 37 proteins. 
However, the remaining 11 proteins in our study 
were incorrectly predicted. For this level of success, 
it was important to define a contact’ in the way 
reiterated below, and to use relatively few adjust- 
able parameters. In agreement with Sippl, 
extremely small proteins or oligopeptides, such as 
avian pancreatic peptide, were consistently difficult 
to account for, but the remaining erroneous proteins 
could be treated by including them in the training 
set, thereby producing a similar number of other 
proteins t’hat would not fit. 

In this study, we have increased the total set of 
protein crystal structures from 56 to 109, thereby 
creating a much more difficult fitting problem 
because each protein is presented with many more 
alternatives to choose from. Nevertheless, we are 
able to account for all the proteins we examined by 
learning to identify the kinds of protein native 
conformations that can be treated this way and by 
correctly dealing with homologous proteins. 

2. Methods 
The approach is basically the same as before (Crippen, 

1991). Given a protein crystal atructSure, we note which 
residues are in contact, according to a carefully chosen 
definition. The correct crystal structure of a protein is 
taken to be its native or reference conformation, and 
many alternative conformations are generated by taking 
the atomic co-ordinates of all possible contiguous 
segments of the correct length from all bhe larger proteins 
in the data set. In each of these alternatives, there are a 
different set of contacts, of course, but if the native 
sequence is imposed on each alternative. we seek some 
potential function of the contacts that has a lower value 
for the reference than for any alternative. 

(a) Protein structure data 

The total set of protein crystal structures we considered 
were the 109 polypeptide chains in the 15 October 1990 
release of t’he Brookhaven Protein Data Bank (PDB) 
(Abola et (al., 198’7) with co-ordinates of pu’, C’, C’, C? and 0 
atoms, and no obvious chain breaks in the middle, as in 
our previous study (Crippen, 1991). Ilisordered or unre- 

Table 1 
List of the reference proteins used in this work, 

sorted by PDB code 

PT)R Red. No. Chain 
code (AH residues IDS Title and source 

155~ 2.5 

I ahp 24 

lacx 20 
lbds - 

lbp2 1.7 

lcc5 25 
leer 1.5 
lcrn I.5 
lcse 1.2 

lctf 1.7 

1cts 2.7 
Icy3 2.5 

lecd 1.4 

1 est 2.5 
Ifdx 2.0 
lfxl 24 
lgcn 30 
lgcr 1% 
lhip 2-o 

lhmg 3.0 

lhmq 2.0 

lhoe 2.0 
lhvp - 
1 lh4 2.0 

lip 2-O 
llzl 1.5 
lrnba 1.6 
lmbd 1.4 
lpaz 1.z 

IPCS I-6 
Ipfk 24 
lphh 23 

lPP2 2.5 

‘PPb 1.37 
1PYP 3.0 
lrei 2.0 

lrhd 2.5 
lm3 1.45 
lsn3 1.8 

Itim 2.5 

lwrp 252 
2abx 2.5 

2act 1.7 

121 

306 

108 
43 

123 

83 
111 
46 
63 

274 

ti8 

437 
118 

136 

240 
54 

147 
29 

174 
85 

175 

328 
113 

74 
99 

153 

129 
130 
146 
153 
120 

99 
320 
394 

122 

36 
280 
107 

293 
124 
65 

247 

102 
74 

218 

Cytochrome ~550. 
r. danitn~ficann 

L-Arabinoue-binding protein, 
E. coli 

Actinoxanthin, A. gEobisporus 
Sea anemone anti- 

hypertensive anti-viral 
protein 

Bovine pancreatic 
phospholipase A2 

Cytochrome c5, Azotobmter 
Cytochrome c, rice 
Crambin, Ahgasinian cabbage 

I Eglin C (complexed with 
subtilisin Carlsberg) 

E Subtilisin Carlsberg 
(complexed with eglin C) 

L7jLl2 50 S rihosomal 
protein (C-terminal 
domain), E. coEi 

Pig citrate synthasr 
Cytochrome c3. 

D. desulfuricam 
Hemoglobin (erythrocruorin, 

deoxy), C. thummi thummi 
Porcine tosyl-elastase 
Ferredoxin, P. aerogenes 
Flavodoxin, Ilr. vulgaris 
Porcine glucagon 
Calf y-IT cr@allin 
High potential iron protein 

(oxidized), f’. ~1:nosum 
B Haemagglutinin. influenza 

virus 
A 

Hemerythrirt (mrt)! 
sipunculid worm 

cr-Amylase inhibitor, S. tendae 
Retrovirus HIP-l protease 
Leghemoglobin (deoxy), 

yellow lupin 
Hen egg-while lysuzyme 
Human lysozyme 
Sea hare myoglobin 
Sperm whale myoglobin 
Yseudoazurin (oxidized, Cu2+ 

A. fuscalisj 
Plast,ocyanin (Cu’ ‘), poplar 
Phosphofructokinase, E. coli 
p-Hydroxybenzoate 

hgdroxylase, P. fluorescens 
Calcium-free phospholipase 

A-2, rattlesnake 
Avian pancreatic polypeptide 
Yeast pyrophosphatase 
Human Bence-Jones 

immunoglohulin variable 
portion 

Bovine rhodanese 
Bovine ribonuclease A 
Kcorpion neurotoxin. variant 

3 
Chicken triose phosphate 

isomerase 
Bacterial TRP repressor 
a-Bungarotoxin, braided krait 

venom 
Actinidin. kiwi fruit 
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Table 1 (continued) Table 1 (continued) 

PDB Resol. No. Chain 
code (AH residues IDS Title and source 

2alp 

2aza 

1.7 198 

1.8 129 

2b5c 2.0 85 
2c2c 20 112 

2cab 2.0 256 

2ccy 

2cdv 
2cna 
2CYP 

2fb4 

1.67 127 

1.8 107 
2.0 237 
1.7 293 

1.9 216 

2gn5 

2hhb 

2.3 87 

1.74 

21hb 2.0 

141 
146 
149 

21zm 1.7 164 
2mlt 2.0 26 
2ovo 1.5 56 

Ppab 
2pka 

Prhe 

1% 
2.05 

1.6 

114 
80 

152 
114 

2sga 1.5 181 
2sns 1.5 141 
2sod 2.0 151 

2ssi 2.6 107 

2stv 2.50 184 

2taa 30 478 
351c l-6 82 

3adk 2.1 194 
3ebx 1.4 62 
3fab 20 207 

3fxc 2.5 
3fxn 1.9 

219 
98 

138 

3w 

%pd 

3grs 
3icb 

25 

35 

1.54 
23 

1.5 

25 

1.9 
21 
1.7 

1.9 
25 

208 

334 

461 
75 

3ins 

3pgk 

21 
30 

415 

3rp2 
4ape 
4dfr 

224 
330 
159 

4fdl 
4mdh 

106 
333 

a-Lytic protease, 
L. enzywwgenes 

Azurin (oxidized), 
A. denitrificans 

Bovine cytochrome b5 
Cytochrome e2 (oxidized), 

R. rubrum 
Human carbonic anhydrase 

(form B) 
Cytochrome c’, 

R. molischianam 
Cytochrome ~3, D. vulgaris 
Concanavalin A, jack bean 
Yeast cytochrome c 

peroxidase 
Human immunoglobulin light 

chain 
Bacteriophage gene :i 

DN&binding protein 
Human hemoglobin (deoxy) 

Sea lamprey hemoglobin V 
(cyano, met) 

T4 phage lysozyme 
Bee melittin 
Ovomucoid (third domain), 

pheasant 
Human prealbumin 
Porcine kallikrein A 

Human 1 immunoglubulin 
variable domain 
(Bence-Jones) 

Proteinase A, 8. griseus 
Staphylococcal nuclease 
Bovine Cu,Zn superoxide 

dismutase 
Streptomyces subtilisin 

inhibitor 
Tobacco necrosis virus coat 

protein 
Taka-amylase A, A. oryzae 
Cytochrome ~551 (oxidized). 

P. aeruginosa 
Porcine adenylate kinase 
Sea snake erabutoxin B 
Human 1 immunoglobulin 

FAB’ 

Ferredoxin, S. plalensis 
Flavodoxin (oxidized), 

Clostridium 
Catabolite gene activator 

protein, E. c&i 
Human D-glyceraldehyde- 

3-phosphate dehydrogenase 
Human glutathione reductase 
Bovine calcium-binding 

protein 
Pig insulin 

Yeast phosphoglycerate 
kinase 

Rat mast cell protease 
Endothiapepsin, fungal 
Dihydrofolate reductase, 

E. coli 
Azotobacter ferrodoxin 
Porcine cytoplasmic malate 

dehydrogenase 

PDB RaeQl. X0. Chain 
code t&t residues ID: Title and murce 

4pti 1.5 58 Bovine pancreatic trypsin 
inhibitor 

4rhv 3.0 40 4 Human rhinovirus 14 coat 
protein 

236 3 
255 3 
273 1 

4sbv 2.X 199 Southern bean mosaic virus 
coat protein 

4tln 2.3 316 Bacterial thermolysin 
5cpa 1.54 307 Bovine carboxypeptidase A a 
5cpv 1.6 108 Carp calcium-binding 

parvalbumin B 
.5cyt 
5rxn 

1.5 
I.20 

103 
54 

(:ytochrome e (reduced), tuna 
Rubredoxin (oxidized, Fe3+). 

Clostridium 
61dh 1-O 329 Dogfish lactate dehydrogenase 
Tapi 30 36 13 Human modified 

a- I -antitrypsin 
339 A 

Xadh 24 374 Horse apo-liver alcohol 
dehydrogenase 

Scat 2.5 498 
%w 1.65 212 

Bovine catalase 
Papain ((~~~2.5 oxidized). 

Papaya 
Ywga I.8 170 Wheat-germ agglutinin 

t $ - sign denotes n.m.r. (lbds) and model (I hvp) protein 
structures for which the notion of the resolution is not applicable. 

$ In the case of more than 1 chain in a PDB file. the chain 
identifiers are given. 

solved residues at the K or C termini are not included in 
the polypeptide chains we consider here. For brevity, we 
will refer to those chains by their PDB code and the chain 
identifier in the PDB file (e.g. 3ins.A is the A chain of 
insulin). The full name of each protein can be found in 
Table 1. Generally, we included only the accurately deter- 
mined (2 2.5 A nominal resolution: 1 A = @l nm) struc- 
tures, although some lower-resolution structures, having 
no interior chain breaks. were included in this study. 
sometimes to increase the number of alternative con- 
formations we could generate, and sometimes to increase 
the number of short protein chains considered. We also 
included 2 other PDB entries that technically did not 
fulfil the 2.5 A resolution criterion: lbds is a structure 
determined by n.m.r. and distance geometry having 
unknown accuracy, and lhvp is a hypothetical conforma- 
tion built by homology modeling. In the final analysis, 
these 2 caused no special problems. The 109 protein 
structures ranged from 21 residues for the shorter insulin 
chain 3ins.A to 498 residues for 8cat.A. However. we used 
only the smallest 86 chains as reference structures because 
these all had 255 or fewer residues. The limit of 255 is due 
to the database packing scheme we used, where each 
contact in each alternative encodes its sequence separa- 
tion in one &bit byte. Even so, our total database of all 
contacts for all 691,165 alternatives of all the reference 
proteins required a few hundred megabytes of storage. 
Thus, the 23 largest structures (2cab, 4rhv.l. 1csr.E. 
lpyp, lrhd, 2cyp, labp, 5cpa, 4tln, lpfk.A, 1hmg.A. 61dh. 
4ape, 4mdh.A, 4gpd.G, lapi.A, Sadh, lphh. 3pgk, lets. 
Sgrs, 2tta.A and 8cat.A) were used only for building 
alternative structures. 

The 86 reference structures are those in Table 1 which 
have chain length less than 256 (also listed in Table 4 in 
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Table 2 
The 19 reference proteins used in the present work 

and their 95 homologues 

PDB codes and chain identifiers 

No. r.m.s.d. 
residues Referencet HomologousS (411 

58 4pti 
62 3ebx 
82 35lc 
99 1PCY 

106 4fdl 
108 5cpv 
112 2c2c 
124 lm3 
129 llyz 

136 lecd 
138 3fxn 
146 lmba 
153 1 lh4 
153 lmbd 

159 4dfr.A 
164 21zm 

170 9wga.A 
212 9PaP 
237 2cna 

5pti 
5ebx§ 
451c 

2PCY 3PCY 4PCY 5PCY 
~PCY 

lfd2 2fd2 
lcdp 4cpv 
3c2c 
5rsa 6rsa 7rsa 
llzt 21ym 21~2 2122 21zt 

31ym [3-8]lyz 1lym.A 
leca lecn leco 
4fxn 
2mba 3mba 4mba 
llh[l-31 llh[5-71 21h[l-71 
5mbn lmb5 lmbc lmbn 

lmbo 4mbn 
7dfr 
ll[Ol-021 11[04-lo] 

11[12-251 11[27-351 
llyd 31zm 

1wgc.A 2wgc.A 7wga.A 
1Ppd 
3cna 

059 
0.15 
0.03 
@12 

0.20 
@27 
@09 
0.15 
@35 

0.06 
0.21 
0.21 
@12 
0.41 

074 
0.12 

0.21 
@18 
0.74 

t The following reference proteins having homologies were 
excluded from the reduced training set: lpcy, 4fd1, 5cpv, 3fxn, 
lmba, lmbd, 4dfr.A, 2lzm, Spap, 2cna (see Table 4). 

$ Digits in square brackets mean the whole range of numbers, 
e.g. [3-8]lyz is 31yz, 41yz. ., 81yz. 

0 Even though neurotoxin II, lnxb, is homologous to 
erabutoxins 3ebx and 5ebx, it nevertheless was excluded from 
this list because of noticeable shape distortion: eg = 1.17 and 
eN = 1.54. 

11 This is the V-c” distance r.m.s.d. (eqn (9)), averaged over all 
the homologous structures. 

order of chain length). In addition, 19 of these reference 
structures have one or more homologous structures, by 
which we denote other crystal structures of proteins 
having the same chain length and strong sequence iden- 
tity or the same proteins in different crystal environments 
and/or complexed with different ligands. These were not 
used in any training set and served only to assess the 
quality and predictive power of the deduced contact 
potentials. In all, there are 95 homologous structures, as 
listed in Table 2 with their corresponding 19 reference 
structures. As in our previous work, we derived alterna- 
tive conformations for each reference structure from all 
larger references and from the 23 very large structures. 
Consequently, the smallest references had more alterna- 
tives (16,521 for Sins.A), but even the largest, 4rhv.2, had 
2127. The total number of alternatives for all reference 
proteins was 691,165, an order of magnitude more than in 
our previous work. 

(b) Compactness 

As before, the goal is to construct a function of the 
interresidue contacts such that each reference structure 
has a lower function value than any of its alternatives, 
just as the native conformation of a real protein has a 

lower free energy than any kinetically accessible alterna- 
tive conformation. Although we make no claim that the 
function we determine in this work resembles the real free 
energy, we will loosely refer to our function as the contact 
energy. Preliminary studies indicated that some proteins 
are particularly difficult to bring into agreement with our 
goal, perhaps because they are not adequately compact or 
globular, certainly necessary conditions for lattice models 
of proteins (Crippen, 1991). For example, if a polypeptide 
chain crystallizes as a dimer with many interchain 
contacts, it is unreasonable to use the co-ordinates of a 
monomer in isolation as a reference structure in deve- 
loping our energy function, because the contacts that 
stabilize the conformation would not be included in our 
calculations. 

In order to develop a quantitative criterion to decide 
the suitability of a structure for use as a reference, and 
generally in order to distinguish between compact and 
non-compact structures, we examined 2 functions of a 
conformer’s radius of gyration, rg, and number of 
contacts, N,: (1) the ratio e, of the radius of gyration of 
the putative reference structure to the minimal radius of 
gyration r,(min) over the set of all its alternatives: 

eg = r,/r,(min) (1) 

and (2) the ratio of the maximal number of contacts for 
all alternatives, N,(max), to the number of contacts for 
the reference structure in question: 

eN = N,(max)/N,. (2) 
Here, N, corresponds to the discrete form of the contact 
function, as described below. The values of r,(min) and 
NJmax) were determined by examining all the alterna- 
tives corresponding to the given reference structure, all of 
which have the same number of residues, of course. We 
find by linear regression over all our reference structures 
that the minimal radius of gyration depends on the 
number of amino acid residues N,,, as follows: 

r,(min) = - 1.26+2.79(N,,,)1’3 (3) 

with correlation coefficient of 0.997. Another way to esti- 
mate the minimal possible radius of gyration as a function 

of Nr,, is to model a globular protein as an ellipsoid of 
rotation (Damaschun et al., 1969) with mean partial 
volume of 134 A3/residue. Then the minimal radius of 
gyration is achieved at unit eccentricity, i.e. spherical 
shape, giving the same functional form as eqn (3), but 
changing the coefficients from - 1.26 and 2.79 to 0 and 
2.46, respectively. The r,(min) values resulting from the 2 
functions differ by less than 6% over the range of N,, 
considered, but the ellipsoid model curve fits the data 
slightly worse. Consequently, we used the empirical 
eqn (3) as our estimated minimal radius of gyration. 
Similarly, we find that the maximal number of contacts 
fits the linear regression equation: 

N,(max) = -53.17+425Nr,, (4) 

with correlation coefficient 0992. Pjote that the slope 
value of 425 indirectly bears out the correctness of the 
cutoff distances described below for specifying contacts; 
we really have something like the first co-ordination 
sphere for each residue in a contact. 

We find that the position of a given protein structure 
on the e, zIersus eN diagram (Fig. 1) accurately reflects the 
degree and nature of its compactness. Most interesting 
here is the clear evidence for the existence of 2 types of 
non-compactness: one characterized by noticeably larger 
values of rg compared with its minimal value, and the 
second type marked by a definitely smaller number of 
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eN 

Figure 1. Diagram of es versus eN (see the text) to 
characterize the compactness of the 86 reference protein 
structures in terms of radius of gyration and number of 
contacts. The 16 non-compact structures exceeding the 
marked limits eN < 150 and ex < 1.30 are indicated by 
their corresponding PDB codes and chain identifiers. One 
more extremely non-compact structure, 4rhv.4, is off scale 
at eN = 4.52 and e8 = 254. 

contacts N, compared with the maximum possible for a 
polypeptide chain of the given length. These 2 types of 
non-compactness may both occur separately, e.g. high 
radius of gyration for 2mlt.A (eN = 1.28, es = 1.73) and 
1hmg.B (eN = 1.47, eB = 1.92); or low number of contacts 
for 2gn5 (eN= 1.95, es= 1.25) and lcy3 (eN = 1.98, 
es = 1.23); and simultaneously, e.g. for lgcn (eN = 2.26, 
es= 2.09) and 7api.B (eN = 2.50, e8= 1.77), as shown in 
Fig. 1. Clearly, most of the proteins are rather compact, 
being clustered in the lower left part of the diagram, while 
17 proteins obviously have non-compact conformations. 
We chose: 

e,<1*5 and e,<1.3 (5) 

as the requirements for compactness. We realize that the 
distribution in Fig. 1 is fairly continuous throughout the 
diagram, and therefore these limits are somewhat arbi- 
trary. However, we employ them in this work because 
such a differentiation helps us determine the desired 
energy function, and it is also in good agreement with 
visual inspections of the protein folds. ru’ote that while we 
require the reference structures to be compact according 
to this definition, the alternative conformations have no 
such constraint. In fact, 10 to 20% of the alternatives for 
each reference protein turn out to be compact. 

In order to use eqn (5) for a particular protein structure 
having chain length Nr,,, one needs to know r,(min) and 
N&max). The direct way is to generate the many thou- 
sands of alternative structures and calculate r8 and N, for 
each. Pu’ot only is this tedious, but for large N,,, , there are 
sometimes substantial deviations from the very regular 
trend shown for smaller proteins. The reason is that the 
number of alternatives decreases as the chain length 
increases, simply because we are dealing with a fixed 
number of proteins from which to generate alternatives. 
Consequently, now that we have established the accurate 
relations given in eqns (3) and (4), we use them in all 
subsequent calculations to quickly obtain r,(min) and 
N,(max). 

(c) Calculations 

As in our previous study, we have evaluated conforma- 
tions according to the interresidue contacts formed. The 

exact definition of a contact we continue to use (see Table 
3) is designed to be applicable even if the sequence of a 
given conformation is changed. We consider only the 
backbone N, C’ and 0 atoms plus the side-chain C?. even 
building in an artificial C? if the original residue is Gly. 
Then a backbone-backbone contact is counted whenever 
d(0, N) < 32 A and d(C, N) > 3.9 A; a backboneeside- 
chain contact requires d(Pu‘ or 0, CB) < 50 A and no other 
atom between the interacting pair closer than 1.4 A to the 
line segment joining them; and a side-chain-side-chain 
contact requires d(CB, CB) < 90 A and similarly no inter- 
fering atom between them. Interactions must be between 
residues differing by at least 3 in sequence. Backbone 
atoms involved in contacts are ascribed to residue type 
Gly. but side-chain atoms correspond to their correct 
residue types. 

Throughout this work we have assumed the contact 
potential function E for a given protein conformation is a 
sum of the values E assigned to the individual contacts: 

E= 1 E(class (i), class(j), Ii-,il). (6) 
contactresidues 

iand j 

where the terms depend on the same very detailed stan- 
dard classification according to sequence separation and 
residue type classes proposed earlier (Table 2 in Crippen 
(1991) and Table 5, here). This classification is a plausible 
one that groups together helix-formers versus helix- 
breakers for short-range (i.e. sequence separation 54) 
interactions. and hydrophobic versus hydrophilic residues 
for long-range interactions. We assume the importance of 
a contact does not depend on which residue is higher in 
sequence, so the interaction matrices in Table 5 are all 
symmetric, and there are a total of 84 parameters to 
adjust (4 separation ranges. each having 21 interaction 
parameters among 7 classes of amino acid). 

In the preceding work (Crippen, 1991) we required only 
that: 

E(reference) I E(alternativr) (7) 

for each reference and all alternatives of each reference. 
Now we demand that strict inequality hold by a margin 
Tk for the kth alternative given by: 

T,, = qD, (8) 

Here, p is an empirically adjusted coefficient (see below). 
and D, is the root-mean-square distance deviation 
(r.m.s.d.) between the reference and the kth alternative 
structure: 

(‘3) 

where d,, and dij are the distances between the ith and ,jth 
C” atoms in the reference and alternative structures. 
respect’ively. Of course, one may use the co-ordinate- 
based r.m.s.d. (McLachlan. 1979) instead of eqn (9), but 
because it makes no difference in this work, we chose the 
more easily calculated distance r.m.s.d. Thus, for a given 
reference structure and its kth alternative. we require: 

E(kth alternative) - E(reference) 2 Tk (10) 

The underlying idea here is to make the energy of an 

alternative lie above that, of the corresponding reference 
structure by at least some minimal margin that’ increases 
linearly with their conformational difference. Test compu- 
tations showed that choosing a very small positive value 
for q reduces eqn (10) to approximately eqn (7). makes 
the set of inequalities easier to solve, leads to very similar 
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energies for the reference structure and some of its alter- 
natives, and leaves no room on the energy scale between 
the reference structure and the lowest alternative for the 
homologous proteins, which are expected to scatter in this 
range. On the other hand, too large a q caused a marked 
increase in the computer processor unit time required to 
find a solution for the set of inequalities. A reasonable 
compromise was q = 3, the value used throughout this 
work. Although our potential function is required to have 
the free energy-like property of favoring the native con- 
formation, eqn (10) has no relation to physical energy or 
temperature scales. Therefore the units for E and q are 
arbitrary. It turned out that the method used in our 
previous work to solve homogeneous sets of inequalities 
(Jurs, 1986) as in eqn (7), could be applied to sets of 
inhomogeneous inequalities, as in eqn (lo), and was there- 
fore used in all that follows. 

Our procedure for determining the terms consists of the 
following 3 steps. (1) Simply directly solving the entire set 
of 690,000 linear inequalities of the form in eqn (10) is 
hopelessly slow. At the solution, only a relatively small 
number of inequalities are active, as shown earlier 
(Crippen, 1991), particularly those inequalities arising 
from the more challenging compact alternatives. 
Therefore, we selected the first 49 alternatives for each 
reference that obeyed the compactness criteria of eqn (5), 
using eqn (3) for the minimal radius of gyration and 
eqn (4) for the maximal number of contacts. In the 
optimization procedure, all the starting values were set to 
the arbitrary value of -01, and the E terms rapidly 
converged to a set of first approximation values. (2) Next, 
we “combed” through the full list of alternatives to each 
reference for any alternative that violated eqn (10). 
Adding these to the previous list of inequalities increased 
the size of the problem only slightly, and the first approxi- 
mation E terms were a good starting point for calculating 
the second approximation. Actually, this is a very effi- 
cient way to extract all alternatives that are essential 
from the contact energy difference viewpoint and are 
missed at the first step. The clever selection of alterna- 
tives in the first 2 steps is the key to being able to treat 
much larger sets of inequalities than before. (3) It was 
found that sometimes a 3rd step of refinement of the 
potentials is required because some alternatives that 
satisfy eqn (10) before step 2 do not at the end of the step. 
The remedy is to return to the basic set of inequalities in 
the 1st step, repeat the combing, and produce a 3rd set of 
E terms from the 2nd approximation. A 4th step was never 
required. 

‘(d) Two forms of contact function 

We used the above procedure to deduce contact poten- 
tials for a training set consisting of all 69 compact pro- 
teins, excluding all homologous structures (see Table 2). 
(Incidentally, note that Table 2 does not list neurotoxin 
B, lnxb, as homologous to erabutoxins 3ebx and 5ebx, in 
spite of strong sequence similarity because of its notice- 
able shape distortion: e8 = 1.17 and eN = 1.54.) However, 
we subsequently found that on rare occasions the 
resulting E for some of the homologous structures was 
greater than that of the lowest alternative. For example, 
for the reference bovine pancreatic trypsin inhibitor 
crystal structure 4pti, there is the homologous 5pti 
differing in r.m.s.d. by only @59A, yet E(5pti) is an 
appreciable 26.7 arbitrary units greater than E(4pti) and 
98 above E of the lowest alternative. Since the assign- 
ment of “reference” and “homologous” structures is 
absolutely arbitrary, this outcome ought to be considered 

a violation of eqn (10). Although this happens to be the 
only violation of this kind, we were compelled to eliminate 
it. 

The difficulty arises from the all-or-nothing definition of 
a contact, as described above. We could rewrite eqn (6) 
as: 

E = 1 V(d,,, U)qj. 

i.i 

where V is the value of a contact depending on d,, the 
relevant interatomic distance, and U, the cutoff value. 
The discrete contact function we have been using 
(Crippen, 1991) has: 

V(d,,, U) = 
1 if dij I U 
0 otherwise. 

Even slight changes in interatomic distances between 2 
homologous structures may cause significantly different 
lists of contacts. The solution is to use a continuous 
contact function where V becomes a smooth sigmoidal 
function of dij, going from 1 below a lower cutoff distance 
L to 0 above an upper cutoff U: 

(4j-U)2(24j-3L+U) ifL<d,,IU 

V(dij, u, L) = 
(U-L)3 

1 ifd..<L (13) 
0 if d:i > U. 

Note that eqn (12) is a limiting case of the eqn (13) when 
U = L. For contacts involving side-chain atoms, we still 
include the effect of possible interfering atoms k near the 
line segment joining the interacting atoms i and j by 
defining the modified contact strength V,,, to be: 

Vm’,(dij, u, L) = V(dij, [J, L) fl [l- V(dijn, G’, L’)], (14) 

where di, is the distance from atom k to the line segment 
joining atoms i and j. 

In order to determine suitable cutoff values for the 
continuous contact definition, we chose a limited training 
set of reference structures, their alternatives, and their 
homologous structures, namely, 4pti (12,701 alternatives 
and 5pti), 3ebx (12,316 alternatives and Bebx) and 351~ 
(10,483 alternatives and 451~). Then the cutoffs were 
adjusted so that each reference and its homologous struc- 
ture spanned a small range of energies, while there was a 
large increase in energy going from the highest homo- 
logous structure to the lowest alternative. This is the only 
role the homologous structures played in the fitting 
because, otherwise, Table 2 makes it clear that homo- 
logous structures are extremely similar to their corre- 
sponding reference structures (from 906 to 974 A 
r.m.s.d.), making their energies so easy to fit they were 
not needed in the training sets. It was found that con- 
tinuity of the contact function is of critical importance 
only for contacts involving side-chain CB atoms, while the 
contact function form for other types of contacts may 
remain discrete, as shown in Table 3. Similarly, we also 
used only the discrete form of the contact function term 
responsible for possible interfering atoms near the line 
segment joining the interacting pair of atoms (eqn (14)) 
as indicated by the last line of Table 3, where the con- 
tinuous U = L = 1.4 A. In what follows, we will refer to 
this hybrid form of the function as the “continuous 
contact function” and to the old version as the “discrete” 
one. Note that in determining the E terms, the very 
approximate first step of the procedure uses the discrete 
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Table 3 
Boundary parameters of the discrete and continuous 

contact functions (see the text) 

Cutoff distances (A)$ 

Discrete 
Continuous 

From atom To atom or line 

N 0 
Nt c 
N or 0 Cb 
CB I? 
Any atom Line joining 2 

contact atoms 

L= TT L I: 

3.20 3.20 320 
390 360 3.60 
500 300 500 
990 6.00 900 
1.41 1.41 1.41 

t Because the definition of a backbone-backbone contact 
requires a short N-O distance but a long N-C distance in order to 
stipulate a roughly linear hydrogen bond, the sense of these 
limits is reversed, compared to eqns (12) and (13). 

$ L and U denote the lower and upper distance cutoffs of the 
contact function, eqns (12) to (14). 

form of contact function, while the more accurate con- 
tinuous form was employed in the following :! steps. 

Except for treating the homologous structures, there is 
not a big difference between the discrete and the con- 
tinuous contact functions. For example, the relationship 
between the discrete number of contacts and the “effec- 
tive number of contacts”, defined to be the sum of all 
contact values (eqn (13)) for the conformer according to 
the continuous form of the contact function, is quite 
linear (N,(discrete) = 0+65N,(continuous) +4.56) and has 
a correlation coefficient of 0997. 

3. Results 

(a) Complete training set (GTS) 

Our first question was whether we could satisfy 
equation (10) even by including in the training set 
all 69 compact structures having readable chain 
length less than 256. For each reference structure we 
selected the first 49 compact alternatives, which 
produced a set of 3381 inequalities for the whole 
training set,. After 1521 iterations of optimization 
the solution for the first step was found and used as 
the start for the next step. On the second step, 
11,336 constraints were added as described above, 
making altogether 14,717 inequalities. The 
optimization converged to a solution after 5888 
iterations. Finally, on the third step only 72 new 
constraints were added to the 3381 from the first, 
step (for a total of 3453 inequalities) and 1938 
iterations completed the procedure. Checking the 
final potential against the whole data base showed 
perfect agreement with equation (10) for all 69 
references and all their alternatives. Thus, the 
14,789 constraints ( = 3381+ 11,336 + 72) used in all 
in the CTS were sufficient to predict correctly 
530,062 constraints from a total of 73 proteins 
(including 4 non-compact structures, Sfab.L, 
2fh4.L, 3fab.H and 4rhv.3 which, of course, were 
not in the CTS), for an average “predictive signifi- 
cance” of 530062/14789 = 358. Also, all the 95 

homologous structures in Table 2 had contact ener- 
gies less than the lowest, alternative of the corre- 
sponding reference structure. 

(b) Reduced training set (RTS) 

Having seen that it is possible to fit all the 
proteins, we next tried to reduce the training set. 
seeking to determine the minimum number of pro- 
teins necessary to deduce a potential that could 
make a prediction of the same quality. Going on the 
theory that small and medium-sized proteins 
provide the most effective constraints, we first, tried 
all reference structures having 150 residues or less. 
This failed in that one of the compact, proteins, 
2pka.B, had a number of alternatives’ energies 
violating equation (10) and one of them was below 
the reference structure energy by 183 units. 

On the other hand, when we excluded from the 
training set the 32 structures (Table 4) having refer- 
ence energies in the CTS potential more than 100 
units below the lowest alternative, we were 
successful. The amount of information about’ inter- 
residue interactions contained in the remaining 37 
structures (whose alternatives correspond to a total 
of 10,088 constraints) was sufficient to make correct, 
predictions for exact,ly the same proteins as before 
with the complete training set. Note that t,he 
average “predictive significance” of a constraint, in 
this calculation is 50% better than with the CTS: 
530062/ 10088 = 52.54. 

The values of the resulting RTS parameters seem 
to have clear physical meaning (Table 5). For 
example, for sequence separations of eight residues 
and more (4th separation range) the largest positive 
(i.e. unfavorable) values are observed for inter- 
actions between pairs of positively charged side- 
chains of Lys and/or Arg residues (group 5 and 
group 5 6 = 9.21) or between pairs of negatively 
charged/polar Asp, Asn. Glu and Gln residues 
(group 7 and group 7 E = 4.33), in agreement with 
the obvious electrostatic repulsion bet,ween side- 
chains having like charges. On the other hand, the 
largest negative interaction parameters are for pairs 
of the hydrophobic residues Leu, TIC, Cys. Met’ and 
Phe (group 3 and group 3 E = - R46) or for these 
hydrophobic residues and non-polar side-chains of 
Ala and Val (group 2 and group 3 E = -6.59). thus, 
reflecting the tendency of these residues to form 
favorable hydrophobic interactions with each other. 

In general, there is an apparent correlation in 
contact energies of native structures and their chain 
lengths (Fig. 3) that fits: 

B(native) = 47.17 - 4.37Nre8 (15) 

with a correlation coefficient of -0932. This rela- 
tion may be helpful in predicting the conformation 
of a novel protein sequence. If the lowest proposed 
conformation of a protein still gives an energy well 
above the value expected for such a chain length, 
then the correct native conformation probably has 
not yet been suggested. 

Note that all the smallest structures in the list 
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Table 4 
Contact energy and contact energy difference for the 86 reference proteins and their 95 homologues calculated 

with the find (RTS) potential of Table 5 

Contact energy (arbitrary units) 

PDB 
code No. res No. al& Ref. Alts Diff.t NO. 

Homologous 

Min. Max. Diff.1 

*3ins.A 21 
*Zmlt.A 26 
*lgcn 29 
*3ins.B 30 
*lPPt 36 
*7api.B 36 
*4rhv.4 40 

lbds 43 
lcrn 46 
lfdx 54 
5rxn 54 
2ovo 56 
4pti 58 
3ebx 62 
lcse.1 63 
lsn3 65 

-1ctf 68 
lhoe 74 

*2abx.A 74 
-3icb 75 
*2pka.A 80 
351c 82 
lcc5 83 
lhip 85 
2b5r 85 

*2gn5 87 
-3fxc 98 

1hvp.A 99 
-1PCY 99 
*lwrp.R 102 
5cyt.R 103 

4fdl 106 
1rei.A 107 
2cdv 107 
2ssi 107 
lacx 108 

-5cpv 108 
-1rcr 111 

2c2c 112 
1hmq.A 113 
2pab.A 114 
2rhe 114 

*1cy3 118 
-1paz 120 

155c 121 
lpp2.R 122 

-1bp2 123 
lm3 124 

-2ccg.A 127 
-1lYZ 129 

2aza.A 129 
~1121 130 

lecd 136 
-3fxn 138 

2hhb.A 141 
2sns 141 

-1mba 146 
2hhb.B 146 

plfxl 147 
-2lhb 149 
-2sod.0 151 

2pka.B 152 
llh4 153 

-1mbd 153 
4dfr.A 159 
-2lzm 164 

16521 - 590 
15980 - 37.6 
15658 - 11.3 
15551 -51.3 
14920 - 354 
14919 - 852 
14506 7.8 
14199 - 137.7 
13895 -1842 
13094 - 233.8 
13093 -1731 
12896 - 192.5 
12701 -213.3 
12316 - 197.7 
12220 -1504 
12031 - 2046 
11751 - 302.9 
11198 -2199 
11197 - 206.0 
11106 - 358.6 
10660 - 182.3 
10483 - 2834 
10395 - 2765 
10222 - 278.9 
10221 - 303.6 
10052 - 205.5 
9138 -448.1 
9955 - 373.9 
9054 -4955 
8813 -3497 
8733 - 373.1 
8498 -5001 
8420 - 332.9 
8419 -317.2 
8418 - 373.4 
8343 -3358 
8342 -6004 
8125 -3762 
8053 -3704 
7982 -3754 
7912 -4262 
7911 -3733 
7642 -219.3 
7509 - 568.4 
7443 - 358.9 
7378 - 422.7 
7314 - 4934 
7251 -3997 
7067 -5521 
6946 -6731 
6945 -4881 
6886 - 743.2 
6543 -5323 
6430 - 807.5 
6264 - 528.3 
6263 -418.0 
5997 - 668.2 
5996 -548.6 
5944 -7153 
5843 - 800.1 
5744 - 6004 
5695 - 462.5 
5647 - 587.8 
5646 - 733.8 
5375 -658.6 

-91.8 
- 92.2 
-91.8 

- 119.3 
-861 

-1229 
- 1225 
- 121.7 
- 1667 
-211.2 
- 1367 
-1751 
- 1928 
-1798 
- 1333 
- 1780 
-221.8 
- 1965 
-229.7 
- 241.0 
-254.7 
-2743 
-2552 
- 255.5 
-249.9 
- 27@9 
-316.2 
- 3468 
-3241 
-3541 
- 3560 
- 357.9 
-3150 
- 2932 
- 3434 
-2902 
-4492 
- 2783 
- 3459 
- 3536 
-378.5 
-3699 
- 374.1 
-3940 
- 323.2 
-385.1 
- 3896 
- 328.6 
- 438.6 
- 578.0 
- 423.5 
- 378.4 
- 505.9 
- 4997 
-501.8 
- 375.9 
- 5500 
- 493.0 
-451.3 
-521.7 
- 382.4 
-4248 
- 558.6 
-582.9 
- 467.3 

- 32.8 
- 546 
- 80.5 
- 67.9 
-507 
- 37.7 

- 13@3 
159 
17.5 
226 
36.5 
17.4 
20.5 
17.9 
17.1 
266 
81.1 
234 

-237 
117.6 

-7%5 
361 
21.3 
234 
537 

-71.4 
131.9 
27.1 

171.3 
-4.4 
17.1 

142.1 
17.9 
241 
29.9 
45.5 

151.2 
97.9 
246 
21.8 
47.7 

3.4 
- 1548 

174.4 
358 
37.5 

1038 
71.1 

1135 
951 
64.6 

364.8 
265 

307.8 
26.5 
42.1 

1181 
556 

264.0 
278.5 
217.9 

37,7 
293 

1508 
191.3 

1 - 20%8 - 202.8 10.0 
1 - 1968 - 196.8 17.0 

1 - 302.1 - 302.1 548 

5 - 493.6 -4805 1564 

2 -512.5 - 492.2 1343 

2 - 6203 - 602.0 152.8 

1 - 3850 - 38.50 391 

3 

14 

3 
1 

3 

13 - 647.2 -581.8 232 
6 - 8095 -754.2 171.3 
1 -5841 -5841 1168 

-4431 -401.8 

- 7232 - 633.3 

- 572.3 - 555.4 
- 8497 -8497 

- 740.4 - 696.2 146.2 

732 

55.3 

495 
35@0 

5154 - 821.0 - 5496 271.4 34 - 867.1 - 7955 2459 
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Table 4 (continued) 

Contact energy (arbitrary units) 

PDB 
code 

9wga.A 
-1gcr 
*lhmg.B 
-2sga 

2stv 
3adk 

-2alp 
4sbv.A 
*3fab.L 
-3gap.A 
-9Pap 
*2fb4.L 
-2act 
*3fab.H 
-3rp2.A 
*4rhv.3 
-2cna 
-lest 
-1tim.A 
4rhv.2 

No. res No. alts Ref. Alts Diff.t 

170 4895 -511.9 -472.3 39% 
174 4726 -8160 -457.8 358.3 
175 4684 - 363.3 - 560.5 - 197.2 
181 4443 -7257 - 535.6 1991 
184 4325 -7401 - 653.5 866 
194 3944 -6661 - 598.7 67.4 
198 3795 - 847.4 - 634.8 212.6 
199 3758 - 7694 -618.0 151.4 
207 3477 -637.1 -5358 101.2 
208 3442 - 8390 - 723.5 1155 
212 3309 - 834.1 -513.1 321.0 
216 3180 - 634.0 - 454.6 1794 
218 3117 - 855.0 - 557.4 297.6 
219 3086 - 653.2 - 543.3 1099 
224 2940 - 19959 -818.8 187.0 
236 2603 - 884.9 -758.1 1268 
237 2575 - 10336 - 643.2 390.3 
240 2496 - 963.4 - 687.2 276.1 
247 2320 - 10881 - 798.5 289.6 
255 2127 -9937 - 738.2 2555 

No. 

3 

1 

1 

Homologous 

Min. Max. 

-529.1 - 4993 

-875.1 -8751 

- 10358 - 1035.8 

Diff.$ 

27.0 

362.0 

392.6 

The 17 non-compact structures are marked by an asterisk. A - marks the 32 proteins that had large contact energy differences with all 
the preliminary and intermediate potentials and were therefore removed from complete training set to form the reduced one. 

t Ref. is the energy of the reference structure; Alts refers to the lowest contact energy over all the alternatives and Diff. is the 
difference between the contact energy of the reference structure and the lowest energy over all of the alternatives. 

$ Min. and Max. are the minimal and maximal contact energies over the list of homologues corresponding to a given reference 
structure (see Table 2). Diff. is the difference between the contact energy of the highest homologous structure and the lowest alternative. 

(the first 7 in Table 4 and Fig. 3) are non-compact 
and violate the fitting condition, equation (10). 
However, only six of the remaining ten non- 
compact structures of larger size have violations. 
The energy margin between reference and lowest 
alternative is generally substantial (Table 4) except 
for the reference Bence-Jones protein 2rhe, which 
has energy only 3.4 units below an alternative 
derived from the related FAB-protein 2fb4.L 

G 
,,.y: ::. . 

i ioo- 
.: ‘. (‘ 
. . 

2 
E 
8 O-T.““.. 1. I 1. 

0 IO 20 30 
r.m.s.d. (%I 

Figure 2. Contact energy difference calculated with 
RTS potentials versus r.m.s.d. plot for the Zrhe reference 
structure (114 residues), showing all 7911 alternatives. 
Zero contact energy difference and the threshold margin 
of 3 x r.m.s.d. (eqns (8) and (10)) are shown by dotted 
lines. The alternative closest to the reference structure 
(r.m.s.d. = 1.17 A) was generated from the crystal struc- 
ture of FAB-protein 2fb4.L. 

(r.m.s.d. = 1.17 A). Th’ is is an unusual situation 
where 2fb4.L is a close homologue of Brhe. The next 
closest alternative has r.m.s.d. = 8.1 A and energy 
52.1 above the reference (Fig. 2). Otherwise, Figure 

.: 
'xhmq ti 

1. I. 

,. 3klb i 2fb4 L 

'.. . . 
' B3tabH 

.' .., 
o&h, 3 

I.I-Lp-_~-Lyi 
50 100 150 200 250 

Number of residues 

Figure 3. Contact energy of 86 reference structures 
versus number of residues. The 69 compact and 17 non- 
compact structures are shown by points and diamonds. 
respectively, the latter being marked by their PDB code. 
The PDB markers for the 7 smallest structures. 3ins.X. 
2mlt.A, lgcn, 3ins.B, lppt, 7api.B and 4rhv.4. are 
omitted for clarity. The upper part of t’he plot shows 
contact energy differences between the lowest energy 
alternative and the reference structure for each protein as 
lines from the zero energy level toward the respertive 
value for the 69 compact (continuous lines) and the 17 
non-compact (dotted lines) proteins. The straight line 
through the reference structures was determined by linear 
regression to have slope -437, intercept 47.17 and corn- 
lation coefficient - 0932. 
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Table 5 
Contact potentials that satisfy the 73 proteins and corresponding 95 

hmnologwus structures 

885 

Separation 3 
G ALICMF VHS P RDEQ TKN YW 

1 -0.69622 
2 - 402250 415407 
3 4.51831 -2.15759 - 1.19728 
4 832046 - 1.52758 -2.17667 -625318 
5 - 467793 063233 1.20919 655600 - 379903 
6 -0.97071 - 089862 013811 1.74729 - 8.34442 - 620602 
7 1.31923 -046381 -679571 -471292 - 605593 -361441 - 1.34488 

Separation 4 
G ALICMF VHS P RDEQ TKN YW 

1 @95207 
2 - 297196 -218647 
3 0.51624 - 546954 @59592 
4 9.43824 095249 1.17324 0.81616 

ii - 303373 1.42327 - 0.88925 1.37106 315180 1.46070 - 2.08650 1.01162 022717 2.42066 0.41988 
7 332498 0.98535 0.55464 @03249 -627325 1.76394 -032876 

Separations 5 to 7 
G AV LICMF YHWST KR P DNEQ 

- 1.66730 
0.83544 2.19482 

-0.80084 - 1.03313 - 6.92885 
-563378 - 1.59914 - 1.05550 - 940860 

1.32582 220828 - 2.96523 561379 1.27991 
1.94306 -651869 380413 424939 0.43871 - 0.10825 

-6.21464 2.75095 -2.41791 - 0.24586 3.72012 157452 1.98596 

Separation 2 8 
G AV LICMF YHWST KR P DNEQ 

-040067 
-056931 - 262597 

0.92706 - 658525 - 8.46742 
- 244415 -087669 -319972 242480 
-081858 - 1.25143 -008153 - 1.73287 9.21333 

190735 - 1.33631 004413 002409 -069110 431013 
- 3.36539 2.14130 1.90592 0.51326 -314586 339357 4.33339 

Potentials are deduced with only 37 proteins, the reduced training set (RTS). Classification of amino 
acid residue contacts is assigned by sequence separation range and by subsets of types of residues 
indicated by the single-letter residue code. For each of the 4 sequence separation ranges we show the 
symmetric matrix of interaction parameters c for contacts between residues of the various classes. 

2 is typical of the energy distribution for all the RTS potentials could be found after much more 
compact proteins. computing effort, but it seems unlikely. 

(c) Tests of signi$cance of a classi$cation 

To test the significance of the classification 
scheme used t.hroughout this work (Table 5) we 
attempted to deduce three additional potentials 
from the same 37 proteins of the RTS. We used the 
same computational protocol as described above? 
only with three different classification schemes. 

The first test used the best (i.e. fewest adjustable 
E terms) contact classification found in our earlier 
work (see Table 3 in Crippen, 1991). We were unable 
to locate a reasonable solution even after 16,000 
iterations of optimization in each of the three steps. 
Perhaps a solution of the quality of our CTS and 

In the second test we used the same sequence 
separation classifications and the same number of 
residue classes in each as before in the CTS and RTS 
potentials (Table 5), but with random assignment of 
residue types to classes. The first step succeeded, 
but the second step failed by exceeding our 
program’s limit of 15,000 on the number of 
constraints while “combing” the 17th protein of the 
37 in the training set. Presumably, even with a 
much greater limit on constraints, the calculation 
would fail to find a solution at great computational 
expense. Apparently, the classification scheme of 
Table 5 is not only in general agreement with 
conventional wisdom about residue type simi- 
larities: but the particular classification is more 
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important than merely the number of adjustable E 
terms. 

The third test was simply to interchange the 
residue classifications for the first and fourth separa- 
tion ranges in Table 5, and then attempt to satisfy 
all the inequalities. Curiously enough, this 
succeeded, resulting in what we will refer to as the 
T3 parameters. With these we are able to correctly 
predict the same proteins as with the RTS para- 
meters. The distribution of the contact energies of 
reference structures versus the number of residues 
with the T3 potential is approximately the same, 
with slightly different linear regression coefficients: 
the intercept is 25.29, the slope is -4.49, and the 
correlation coefficient is -0.918, compared to 47.17, 
- 4.37 and -0.932, respectively, in equation (15). 
The root-mean-square difference between contact 
energies of compact reference structures calculated 
with RTS and T3 is only 67.4 arbitrary units, 
compared with the 1100 units for the total range of 
reference energies. 

We were unable to repeat the systematic search 
for simpler classification schemes carried out in our 
earlier work because now we treat many more pro- 
teins, vastly more alternative conformations, and 
we demand in equation (10) not merely that t’he 
reference have energy less than or equal to each 
alternative, but that there be a substantial margin. 
Solving inhomogeneous inequalities is qualitatively 
different’ from, and more time-consuming than, 
solving homogeneous ones. 

The RTS potentials were also checked against a 
representative sampling of crystal structures with 
fewer than 256 residues that had been added to the 
Protein Data Bank since 15 October 1990: 2eti 
(trypsin inhibitor II, 28 residues), 4tgf (human 
growth factor, 50 residues), lfkf (FK506 binding 
protein, 107 residues) and led4 (T-cell surface glyco- 
protein, 173 residues). These had never been seen in 
our laboratory until after the RTS potential had 
been determined. Using the same list of protein 
structures as before, the alternatives for each of 
these structures were generated. Only the structure 
of 4tgf growth factor (13,495 alternatives) with 
apparent disturbance of compactness (parameters 
eg = I.38 and eN = 1.51 exceed the corresponding 
threshold values of 1.30 and 1.50) has a number of 
alternatives with contact energy less than the refer- 
ence structure. The three others, 2eti (15,766 alter- 
natives), lfkf (8421 alternatives) and lcd4 (4769 
alternatives), demonstrate obvious satisfaction of 
equation (10) for all alternatives generated. While 
large proteins are relatively easy to fit, the trypsin 
inhibitor 2eti is a remarkably small structure that 
we can nonetheless successfully predict because it 
obeys our requirements for compactness and many 
internal contacts. 

4. Discussion 

It is interesting to compare our results with that 
of Hendlich et al. (1990), the most similar work 
outside our group that we are aware of. They 
derived many different potentials of mean force for 

CY-0“ interactions only by surveying a database of 
101 separate chains in protein X-ray crystal struc- 
tures, listed in their Table 3. To make predictions of 
the folding for one protein, they would remove it 
from the database and use the remaining 100 to 
derive the effective energy of interaction as a func- 
tion of distance between side-chains, broken down 
into 15 sequence separation classes and for each of 
these, all 210 residue pair type classes. Then they 
generated a set of alternative conformations in the 
same way we do, and compared their calculated 
energies of the native versus all its alternatives. One 
view of their potentials is that they consist of 
210 x 15 = 3150 different histograms as a function of 
CB-CD distance, while we have only 84 E terms in our 
Table 5. However, we adjusted our E terms empiri- 
cally to satisfy a large number of inequalities, but 
their histograms are not adjustable parameters. In 
return, we get much greater predictive power: it 
training set of 37 compact proteins invariably 
favors the native structure of 73 proteins over all 
alternative conformations. By way of comparison. 
their Table 7 lists 53 proteins that we would con 
sider compact, ranging between 21 and 199 residues 
in length. Of these. the two corresponding pot*entials 
of mean force (denoted in their work as pot,entials S 
and A), derived apparently from 100 crystal struc- 
tures in each case, could favor the native over the 
alternatives in both the S and A cases only for 34 
compact proteins and two non-compact proteins. 

There are a number of likely reasons for our 
superior predictive power. First,, we derive our c: 
terms by comparing the native conformation with 
m&folded alternatives, rather than surveying onI!, 
native conformations for a potential of mean force. 
Tn other words, the potential must) be t,rained by 
showing it what is wrong as well as what is right. 
Secondly, we find it crucial to deal only wit’h 
compact native conformations, as judged both from 
the radius of gyration and from the relative number 
of contacts. We cannot account for t,he crystal 
structure of an isolated non-compact polypeptide 
chain when its conformation is stabilized by intrr- 
molecular contacts in t,he crystal, and we suspect 
this has led to some of the difficulties experienced by 
the Sippl group, since they used both compact a.nd 
non-compact native conformations. Thirdly. we find 
that backbone-backbone and epecially backbone- 
side-chain interactions are important (see the G 
columns in Table 5), whereas they considered only 
side-chain-side-chain interactions. 

A priori, one might assume the classification 
scheme for residue-residue interact)ions is very 
important. The assumption is based on conven- 
tional wisdom about grouping together helix- 
formers versus helix-breakers for short-range inter- 
actions, and grouping according to hydrophobicit,y 
for medium and long-range interactions. Indeed, 
this is the line of reasoning that led t,o the classifica- 
tion scheme in Table 5, as previously set forth in 
Crippen (1991), and subsequently used to produce 
the CTS and RTS potentials. However, our classifi- 
cation is certainly not unique, as demonstrated by 
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the success of the T3 potential, where the classifica- 
tions for the first and fourth separation ranges were 
interchanged. Although the RTS potential is very 
powerful in its ability to satisfy a half million 
inequalities, other equally good potentials could be 
found, possibly involving fewer parameters and 
possibly having even better predictive power. 

In our approach, we are happy to see that some 
kinds of trouble simply do not arise. For example, 
although 1hvp.A is not an experimentally deter- 
mined structure, but was rather postulated by 
homology modeling (Weber et al., 1989), it nonethe- 
less can be easily accounted by our contact function, 
whereas it could not be predicted by Hendlich et al. 
(1990). As another example, we utterly disregard 
any ligands or prosthetic groups in proteins, even 
large ones covalently attached to the polypeptide 
chain. Even so, we observe no correlation between 
the presence or absence of prosthetic groups and the 
quality of our predictions, just as long as the native 
is compact according to our criteria in equation (5). 

It is worth noting that the range of contact 
energies for compact and non-compact alternatives 
calculated with the RTS potential are approxi- 
mately the same. Both types of alternatives may be 
found among the very best (which are, of course, 
always higher than the reference structure energy) 
and the very worst. This means, in particular, that 
one must consider both types of alternatives when 
forming the set of inequalities, equation (lo), rather 
than only compact ones. This finding runs against 
one’s intuition that compact structures always have 
lower contact energy. 

The major improvement of this work over our 
previous effort (Crippen, 1991) is the introduction of 
a substantial margin T > 0 in equation (10) that 
becomes small when the r.m.s.d. becomes small, 
coupled with a continuous contact function that 
guarantees a small difference in contacts for a small 
r.m.s.d. For example, the reference structure 5cyt.R 
has an alternative derived from leer with r.m.s.d. 
= 047 A, 2rhe has an alternative from 2fb4.L with 
r.m.s.d. = 1.17 A, llyz has an alternative from llzl 
with r.m.s.d. = 1.93 A, and 2hhb.B has an alterna- 
tive from lmbd with r.m.s.d. = 1.92 A. Then, quite 
naturally, all these “homologous” alternatives have 
energies only slightly above the corresponding refer- 
ence structure’s, but still satisfy equation (10) by a 
small margin. The only exception is the 2hhb.A 
reference structure for which the lowest energy 
alternative lies 556 units above the reference, yet 
has a large r.m.s.d. = 9.5 A, compared with the 
second lowest alternative at 767 units above the 
reference, yet differing in conformation by only 
1.92 A. However, this result is not unexpected 
because a 2 A r.m.s.d. is enough to allow a consider- 
able change in the contacts. 

It is especially interesting to note that the 
“novel” folding pattern found in the recently deter- 
mined n.m.r. and X-ray crystal structures of lfkf, 
FK506 binding protein (Michnick et al., 1991; van 
Duyne et al., 1991), is not new from the viewpoint of 
interatomic contact arrangements, given that we 

can correctly predict it on the basis of the reduced 
training set of 37 old protein structures. This 
finding allows one to hope that only minor readjust- 
ments of the contact potential will be required to 
keep a high level of predictive power as more pro- 
teins are considered. 

In spite of the encouraging results we have 
obtained so far, there are two special cases we must 
treat in future versions of this potential. First, 
sequence homologues (see Table 2) are now correctly 
handled in the analysis without even being 
employed in the derivation of the potential, but we 
have not paid special attention to proteins having 
very similar conformation, yet low sequence iden- 
tity. Instead, such pairs of proteins were used only 
in the general fashion to generate alternative con- 
formations for each other. Presumably, we should 
demand that the two different sequences applied to 
essentially the same conformation should produce 
very similar contact energies. Work is in progress to 
at least see what the RTS potential says about such 
structural homologues. 

The second case is that of non-compact native 
proteins, which we have so far simply excluded from 
the derivation of our potential as well as its testing. 
We find that for such a reference structure there are 
generally many alternatives having substantially 
lower contact energies. However, there are appar- 
ently very few examples of protein crystal struc- 
tures where a polypeptide chain fails our 
compactness test without having significant inter- 
actions with neighboring chains. Work is in progress 
to treat such crystal structures as multimeric aggre- 
gates of polypeptide chains such that the multimer 
is compact. 

The results presented here on the contact energy 
approach allow one to conclude that the problem of 
identifying the correct fold out of a large but 
discrete set of alternatives is basically solved. Given 
such a powerful tool for identifying the native fold, 
our next goal is to implement a method to suggest 
possible “native” folds for a given amino acid 
sequence when the correct answer is not known and 
when it is not just a segment out of an already 
determined crystal structure. 
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