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Electron photodetachment from a Dirac bubble potential. 
A model for the fullerene negative ion CG 
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A model for the fullerene anion C, is proposed in which the outer electron moves in an attractive deltafunction potential in 
the shape of a spherical bubble. Exact solutions for this “Dirac bubble potential” were previously worked out. On the basis of this 
model, the photodetachment cross-section and its angular distribution are computed as functions of photoelectron energy, for the 
electron in both S-like and P-like bound states. Secondary maxima and minima in the cross section appear at higher energy values, 
somewhat analogous to the scattering of radiation from a conducting sphere. 

1. Introduction 

The current high level of interest in the nearly spherical close-polyhedral forms of carbon such as fullerene 
CbO (symmetry I,,) has prompted us to consider an exactly soluble model for such systems. Specifically we have 
considered an application of the “Dirac bubble potential” model to both the bound and continuum states of 
an electron in the open-shell anion C,. In this model, the potential energy is represented as a Dirac delta- 
function in the radial coordinate r. The potential energy is assumed to equal zero for all r except T= ro, at which 
radius it is infinitely negative, corresponding to a very short-range attractive force. Previously one of us derived 
exact solutions for this quantum-mechanical problem [ 11. In the present study we consider an attractive bubble 
potential and compute, in addition to energy eigenvalues, radiative transition moments, photodetachment cross- 
sections and angular distribution parameters as functions of photon energy. 

There are other exactly soluble spherical models which might be considered but which lack some of the de- 
sirable features of the bubble potential. The model of a particle confined to the surface of a sphere lacks the 
important radial degree of freedom. The spherical square well defined by I’= - V0 for b c r < a is more realistic; 
the Dirac potential is, in fact, the limiting case of this well as a-+b while T/,~co. The related three-dimensional 
square-well potential, with V= - V0 for O<r<a, has been applied to bound-continuum state (photodetach- 
ment ) spectra of electrons trapped in metal-ammonia solutions [ 21. This model, however, permits too much 
electron probability near the center of the sphere (rx0) and is thus inappropriate for the Cc, system. 

We should note that, in common with free-electron models for conjugated systems, we are not taking account 
of the planar nodes in the R orbitals which these mobile electrons occupy. Moreover, since a deltafunction model 
cannot adequately represent the long-range Coulomb attraction, we restrict our application to an electron, bound 
or detached, in the field of a neutral Go molecule - thus to photodetachment from CG,. 

The electron affinity (EA ) of Cb,,, determined by UV photoelectron spectroscopy [ 3 1, is 2.7 + 0.1 eV. Several 
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ab initio and semi-empirical computations #’ have agreed that the LUMO of C6,,, corresponding to the SOMO 
of C,, transforms as t,, in the group I,,. 

2. Dirac bubble potential 

The Schrijdinger equation for a particle in a spherical deltafunction well can be written: 

( - gv2+ $$ 6(r-ro) v(r) =Eyl(r) . 
0 ) (1) 

Spherical symmetry allows the factorization w(r) =Rk,( r) Y,,( 0, @) . The radial equation can be rearranged to 

(2) 

having defined 

Emh2k2/2m, A=ma/2nfi2ro, 

For negative energies we write 

Ic= -ik, E= -A2K2/2m. 

Eq. (2) has been solved exactly [ 1 ] by exploiting isomorphisms with free-particle partial-wave Green func- 
tions. For Iz<O, corresponding to an attractive deltafunction potential, there exists one and only one bound 
state for each angular momentum 1 for which the condition 

IAl>2f_rl (3) 

is fulfilled. There are no bound states for 1 values not satisfying (3). The bound-state eigenfunctions are given 

by 

R&r) =N&(K~, )k,(Kr,) , (4) 

where r, and r< are, respectively, the larger and smaller of r, r,. Modified spherical Bessel functions are defined 
as follows [ 81: 

i,(z)? (~/2z)‘~*Z~+~,~(z)=i-Ij(iz), 

k,(z)~(2/l~z)‘~~K~+,,~(z)=-i~Jlj’~(iz). 

Those explicitly used in this paper are 

(5) 

&(z)=z-‘sinh(z), i,(z)=z-‘cash(z)-zm2sinh(z), 

k,(z) =z-l exp( -z), k,(z) = (z-l +ze2) exp( -z) 

The normalization constants for 1= 0 and I= 1 are, respectively, 

N _ l-(2Kr0+1)exp(-2Kro) --I” 
s- 

( 4u5r2 0 ) 

and 

(6) 

” For a simple Hiickel computation, see ref. [ 41; CNDO/S, ref. [ 51; SCF-DV-LD, ref. [6] and free-electron model with icosahedral 

crystal field, ref. [ 71. 
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N,={[~Zr~-3+(2K3r~+5K2r~+6K~O+3)exp(-2Kr,)]/4K7r~}-“2. 

The consistency condition on eq. (3) at r=ro, viz., 

-?IKr()&(Kro)~,(Kro) = 1 

provides a transcendental equation determining the bound-state eigenvalues. 

(7) 

(8) 

Let us identify the t,, orbital of C& with a p( I= 1) bound state of our model. Ep= -2.7 eV corresponds to 
~~~0.4455 bohr-‘. We take the mean radius of C6,, as 3.55 A #2, or r,=6.709 bohr. With these values in eq. 
(S), we identify A= - 6.696 in the bubble potential. This value of ,I also implies the existence of a lower S 
bound state with K,=O.4985 or Es= - 3.38 eV. The condition (3) admits just one other bound state, with 1~2, 
Kd=0.3256, Ed= - 1.44 eV. 

The continuum eigenfunctions can be represented as follows: 

Rk,l(r)=(2klA)1’21i,(kr,) cos&y,(kr,) sin4Mkr,)/jl(kro) , 

where j, and J+ are spherical Bessel functions. The phase shifts S, are determined by 

(9) 

cot 6, = ytkro) 1 -- 
#ro) ~kro[.UkrO) I2 ’ 

(10) 

These functions are deltafunction-normalized on the energy scale according to 

co 

s 
Rk,,( r)Rkt,[(r)r2 dr=G(E-E’) . (11) 

0 

Figs. 1 and 2 show bound and continuum eigenfunctions for I=0 and 1. Note that these functions all have a 

a’ The authors of ref. [9] determined a mean radius of 3.532(2) A by X-ray diffraction at I 10 K, those of ref. [ 101 report a mean radius 
of 3.556( 5) A by gas-phase electron diffraction. 

r/boht 
Fig. I. Radial functionsR(r) for bound S state (solid curve) and continuums state (dashedcurve, l/10 scale) withk= 1 (E= 13.6 eV). 
Note thediscontinuous derivatives at r=roz 6.7 bohr. 
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r/bohr 

Fig. 2. Radial functions R(r) for bound P state (solid curve) and continuum p state (dashed curve, l/2 scale) with k= I. 

discontinuity in the derivative at r= r,, this being necessary to get a deltafunction from the second derivative. 

3. Photodetachment cross sections 

Differential cross sections for photoelectron processes were derived by Bethe [ 111. From the bound s state 
(designated S) to the p continuum (designated p) 

= - (p]r]S)2c0S2e. (12) 

Analogously, from the bound p state (P) to the continuum of s and d states 

27r2 vu i 
-- [(s~r~P)2-2cos(6~-6~)(s~r~P)(d~r~P>(3cos28-1)+(d~r~P)2(3cos2~+1)] . (13) 

9c 

In ( 12 ) and ( 13 ) , v is the radiation frequency and a, is the Bohr radius, such that the matrix elements are 
to be expressed in atomic units. The coordinates 8, $ are defined with reference to the direction of polarization 
of the incident radiation. The magnetic sublevels of the initial state are assumed to be equally populated. With 
use of the wavefunctions (4) and (9), all of the above matrix elements are real. 

The angular dependence of the cross section can be represented in a form suggested by Cooper and Zare 

[121> 

~+1+Bp,(cose)l, (14) 

where G is the total cross section. For photodetachment from an s state 

% 27c2 va i 
-_= ~ (Plrls>2, 41c 3c A=2 9 (15) 
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For a p state, eq. ( 13) corresponds to 

0, 27c2 vai -=- 
4x 9c [(sl~lP>‘+2~dl~lP>*1 

and 

B _ 2(dIrlP)2-4coS(Sz-6,) CslrlP)<dlrlP) 
P- 2(d]r]P)2t(s]r]P)2 

(16) 

(17) 

The range of /.I is - 1 to +2. 

4. Computations 

The dipole matrix elements were evaluated analytically as functions of electron energy using Mathematics 63. 
Following are the input formulas: 

=Nsm 
[ 

Mm,) [ cosd, -sin6,)+(kr,)/j,(kr,)] 1 &(lcr)j,(kr)r3dr 
0 

m m 

+io(uo) cos8, k,,(rcr)j,(kr)?dr-sin6, 
( 1 1 kg(Kr)yl(kr)r3dr , m ro (18) 

=N,J2kIll h (Krd [ cos&-sin&yO(krO)/jO(krO)] 3 i,(rcr)jo(kr)r3dr 
0 

co co 

+i,(Kro) cos& k,(Kr)jo(kr)r3dr-sin~o ( J s kl(Kr)yo(kr)r3dr I , rg fn 
<dlrlP)=(j! + ~)R~.~tr)R,,(r)r’dr 

0 Jo 

=&Jkln h (Kro) [ cos&-sin82YZ(kro)/j2(kro)] 7 i,(rcr)jz(kr)r3dr 
0 

(19) 

00 co 

+il(Kro) cos& k,(Kr)j,(kr)r’dr-sin& ( 5 s kl(Kr)y2(kr)r3dr >I . (20) m ro 
The cross sections in megabams (Mb), when the matrix elements are expressed in au, are given by 

~J4rr=0.1070(K2tk2)(p]r]S)2, (21) 

13 Software published by Wolfram Research, Inc., Champaign, IL. 
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Fig. 3. Average photodetachment cross section versus photoelectron energy from bound S state to continuum p States. 
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Fig. 4. Average photodetachment cross section versus photoelectron energy from bound P state to continuum s and d states. Dotted 
curve: P+s contribution; dashed curve: P+d contribution; solid curve: total cross section. 
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Fig. 5. Cross section versus energy from bound P state on extended energy scale, showing secondary maxima and minima, 

Energy (evl 

and 

Fig. 6. Asymmetry parameter& versus photoelectron energy from P state. 

ap/47c=0.03567(~2+k2)[(s~r~P)2+2(d~r~P>2]. (22) 

A note on the dipole-velocity form of the above matrix elements. For exact eigenfunctions, as we have been 
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using, these ought to give the same photodetachment cross sections as the dipole-length form. This is not pre- 
cisely true in the present instance, however, because of the discontinuous derivatives of the wavefunctions at 
r=r,. To demonstrate this, integrate the commutation relation [r, H] =i@ between two eigenfunctions, say 
vi and vr. This gives (in au) 

(23) 

Integration by parts twice in the second term above turns the Hamiltonian over onto wf, but it also introduces 
nonvanishing boundary terms. The relation between dipole-length and dipole-velocity matrix elements works 
out to 

I <flVli> I=(&-4) I (fldi) I +rjo[Rf(r)R:(r)-R;(r)Ri(r)I~; + (24) 

However, the boundary terms contribute at most 10e4 the magnitude of the r and V matrix elements and thus 
are entirely negligible. 

5. Results and discussion 

For reference purposes we show in fig. 3 the average cross section 0,/4x plotted as a function of photoelectron 
energy for S+p transitions. The asymmetry parameter ps has the constant value 2 for this case. In common 
with an analogous atomic photodetachment process (e.g. H- +H), the cross section increases from zero at 
threshold to a maximum, then decreases. An anomaly, however, is the non-monotonic decay of a,. In fact, the 
cross section goes through a nearly periodic pattern of zeros. This behavior has an analog in the scattering of 
electromagnetic waves from a conducting sphere (see, for example, ref. [ 13]), considering only the electric 
part of the radiation field. In this instance, scattering maxima occur for values of the radiation wavenumber 
given by k=nlr/r,,, n= 1, 2, 3, . . . . 

Of greater relevance for C, is the process P-s+ d, which models the photodetachment from the t,, SUMO. 
The average cross section as a function of photoelectron energy is shown in figs. 4 and 5. The asymmetry pa- 
rameter 8, is likewise plotted as a function of photoelectron energy in fig. 6. 

We note in fig. 5 cross section maxima and minima similar to those in fig. 3 for the S+p process. However, 
while the minima for S+p correspond to zero values of cross section, those for P+s + d are nonzero minima 
because of the overlap of two final-state channels. Note also in fig. 6 that &, passes through zero at several values 
of photoelectron energy below 5 eV. While the zero value of &, at threshhold corresponds to a vanishing of the 
P+d matrix element, the other zeros reflect destructive interference between the two photodetachment channels. 

The photodetachment of a t,, electron from the SOMO of C,$,, as modeled by the ejection of an I= 1 electron 
from the attractive Dirac bubble potential, resembles the detachment of a p electron from an atomic anion 
such as a halide (see, for example, ref. [ 14 ] ), for example, Cl- --t Cl + e. In both instances, interference between 
s- and d-photoelectron channels is exhibited. The novel feature for the fullerene is the appearance of secondary 
maxima and minima in the cross section, 
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