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Synthetic aperture imaging using a catheter based, circular phased array providing 
high resolution, dynamic focusing has been explored. Due to the high input impedance 
and low signal-to-noise ratio (SNR) f  o a c assic single element synthetic aperture system, 1 
multi-element synthetic aperture processing has been proposed with SNR improvement 
of about 8 dB for a 33 element aperture. Reconkuction in this case uses an optimal 
filtering approach based on minimizing the mean square error between filter output and 
desired beam pattern. This approach, however, does not directly control both mainlobe 
beamwidth and sidelobe levels. To overcome this problem, a Lagrange based filter design 
technique has been developed that not only satisfies the minimum energy criterion, but 
also constrains sidelobe levels under a certain threshold. The new technique provides 
better spatial and contrast resolution. Both the mathematical formulation and simulation 
results are presented. 0 1992 Academic Press, Inc. 

key words: Catheter-based imaging; circular array: Lagrange multiplier; medical ultra- 
sound; synthet,ic aperture. 

1 INTRODUCTION 

Catheter based, circular phased arrays have been investigated a.nd developed as a 
diagnostic tool for coronary artery disease. The operating frequency and aperture size of 
ultrasonic intravascular imagers is basically determined by a tradeoff between depth of 
field and resolution [I --81. I n addition, the degree of control over dynamic beam forming 
is constrained by the requirement of minimal electrical interconnection to the array at the 
catheter tip. Consequently, high resolution, dyna.mic beam forming over a large depth of 
field with minimal interconnection requires some form of synthetic aperture processing 
of catheter array data. 

In a classic synthetic aperture imaging system, a single eleruc~nt of the circular array 
is used as both transmitter and receiver on each firing. Due t,o the geomeky of the 
circular array, the output of a particular beam direction is the coherent sum over a, set 
of elements satisfying an acceptance criterion on the propagation angle. The time delay 
for each individual element in the coherent sum is determined by both the normal focus 
delay and the circular geometry [9]. Note that the received radio frequency (rf) signal 
can be baseband demodulated using a simple digital baseband circuit. [IO]. By assuming 
the time delay does not vary dramatically over the pulse envelope function, synthetic 
aperture reconstruction ca,n be expressed as 

(1) 
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Fig. 1 Block diagram for range dependent, complex filtering. 

where O,(t) is the complex baseband output formed by the coherent sum of 2M + 1 
firings representing the imaging aperture and M is determined by a minimum f/number 
criterion. The complex baseband signal from the kth element, bk(t), is weighted by 

e2-3 Tk , 4bk)lR,2 ’ where w. is the angular carrier frequency, a(&) is the kth element’s angular 

response and Q, R; are the propagation time and distance from the kth element to the 
reconstructed point respectively [9]. A s s h own in Eq.( l), reconstruction is simply a 
range dependent complex filtering operation on the baseband signal for each firing. 

The basic block diagram for performing this type of complex filtering operation is 
shown in figure 1. Note that a pipeline structure is used for these range-dependent filters 
and the complex filter coefficients are pre-calculated and stored in the filter bank. Hence, 
this architecture is suitable for real time application. 

Although producing spatial and contrast resolution comparable to a full phased array 
system, a single element synthetic aperture imaging system produces images with low 
electronic signal to noise ratio (SNR). The SNR is low, first, because the electrical im- 
pedance of each individual element is very high, and second, because the acoustic power 
delivered to the body is very small. At very high frequencies, SNR losses make this kind 
of imaging system impractical. 

An alternative synthetic aperture system using n (n 2 2) elements in the array as 
the transceiver on each given firing can greatly improve the SNR. For this system, the 
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electrical impedance becomes 1. of the single element impedance and approximately /I 
times the acoustic power is del&ered for the same drive voltage. SNR improvements are 
gained, however, at the expense of beam quality. It is possible, however, to use complex 
filtering to compensate for degradation of a synthetic focus. As described in reference [9]. 
the overall SNR improvement can be defined as 

(2) 

where Ifiltered/ stands for the magnitude of the filter output, lsinglt elemenll represents 
the magnitude of the unfiltered single element signal and lP;l is the magnitude of the 
jth filter coefficient. Note that for the complex filtering operations described here, the 
details of the filter coefficients can affect the overall SNR of the system. 

As noted above, synthetic aperture reconstruction is basically a complex filtering 
operation [9]. 0 ne optimal approach to this problem is to minimize t,he mean square 
error between the desired beam pattern and the filter output. In other words, let, d(i) 
represent the ith sample of the desired beam pattern, b(i) be the complex baseband 
sample from the ‘th z firing of the array and f(i) stand for the Ch optimal filter coefficient: 
the mean square error can be defined as 

nfhl 
E = c w(n)[d(n) - c b( k)f( k - II)]” 

n k=n-M 

. (Y) 

where the complex filter has 2M + 1 lags and wfn) is the weighting term defined as 

where y  is chosen to avoid numerical instability. Hy setting t,he partial derivative of i 
with respect to both real and imaginary parts of the filter coefficients to zero! the optima,1 
filter can be obtained. Since this minimizes I,otal error, overall image quahty is greatl) 
improved as shown in reference [9]. 

Over all imaging ranges in the far field of an individual sub-aperture (i.e., n elr- 
ments), the multi-element system is a great improvement over classic synthetic aperture 
processing. Nevertheless, this approach can provide relatively high peak sidelobe levels 
since only the error energy is minimized. Also, the mainlobe beamwidth in this case is 
not independently controllable. That is, we do not have simultaneous control over both 
resolution and peak sidelobe levels. 

Recently, a new optimal window design algorithm has been proposed [ll]. l%is 
frequency domain window defines optimality by an efficient tradeoff between the least- 
squares solutions, e.g., prolate-spheroidal windows, and minimax solutions, e.g., Cheby- 
shev windows. Briefly! this efficient tradeoff is achieved by introducing a quadratic pro- 
gramming problem with linear constraints. As such, it can be solved using Lagrange 
multipliers. 

We note that the frequency domain optimal window design problem is equivalent to 
the space domain filter design-problem in some senses. First, to increase resolution, the 
snace domain mainlobe beamwidth should be reduced. On the other hand, sidelobe levels 
should be kept under some acceptable threshold. These criteria can be viewed as the 
minimax condition in the window design problem. Second, improving SNR is equivalent. 
to the least square criterion in the window design problem. One of the main differences 
between these two problems, however, is that the mainlobe beamwidth and sidelobe level 
are defined in the frequency domain in the window design problem, while in the synthetic 
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aperture problem they are defined in the space domain. This Lagrange based technique 
has also been applied to coded excitation systems [12]. 

In the following section, we will present a formal statement of the problem. Some 
simulation results will be shown in section 3, and the results are discussed in section 4. 

2 A LAGRANGE BASED FILTERING TECHNIQUE 

Within the region of interest of the circular array, the range is divided into several 
focal zones. The goal of this design problem is to choose an independent complex filter, f ,  
for each zone such that after a.pplication of this filter to the discrete baseband signal b, the 
resultant output y  satisfies certain design criteria, i.e., mainlobe beamwidth and sidelobe 
level S specified in dB. Note that due to the array geometry, the filtering operation is 
performed as a circular convolution. Let the discrete signals b and f  be defined as 

b %f [b(O), . . , b(n - l)]” 

f  !Zf [f(-M),...,f(M)]t ) 

then y  = b @ f  where @ stands for circular convolution, and this convolution can be 
represented in ma.trix form as 

y=Bf . (5) 

B de’ 

b(n - M) b(?L - M + 1) b(n - M + 2) . . . b(M) 
b(n - M $1) b(n - M + 2) b(n - M t 3) ... b(M t 1) 

b(i) b(i) . . . . b(2’M) 

b(n - i4 - 1) b(n l M) ... . . b(M’- 1) 

For convolution processing, sidelobe energy can be represented by 

def 
&= 

itridcl~ region ““’ = yHAy ’ 

where yH stands for y’s Hermitian conjugate and A is defined as 

1 

. . 0 
1 

0 

. . 
0 

1 

0 . . 
I 

. (6) 

(8) 

i.e., A is a square matrix of dimension 71 with all zero elements except along the diagonal 
in the sidelobe region. 
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Using Eqs. (5)-(8) the sidelobe energy can be expressed as 

def 
E= c 

IyJ2 = yHAy = fHB”ABf 
&sidelobe region 

If we define a new matrix Q as 

Q sf BHAB 

(9) 

then the energy becomes 
E ‘!z+ fHQf 

where Q is an 2M + 1 x 2M + 1 Hermitian matrix, i.e., Q = QH 

(10) 

To constrain peak-sidelobe levels, a set of control points in the sidelobe region is 
prespecified. All control points are forced to have amplitude equal to or less than 6. 
Consequently, these linear constraints can’also be represented in mat.rix form as 

Cf = c (11) 

where 1 is the number of control points and C is an I x 2h4 + 1 matrix performing circular 
convolution on the control points. On the other hand, the magnitude of each element in 
c is simply 5 expressed as a fraction of the overall filter gain. Since both the baseband 
signal and the filter are complex, however, c is also complex. Therefore, choosing the 
optimal phase for c is an important issue, as discussed below. 

So far, the problem can be stated as follows: 

Given baseband signal b, choose f to minimize E dGf fHQf subject to Cf = c. 

As demonstrated in [ll], a simple Lagrangian function A representing a linear com- 
bination of the energy and constraint equations, i.e., 

A(f, X) gf fHQf - XH(Cf - c) i 12) 

can be used to determine optimal filter coefficients. It can be easily shown that the 
optimal solution to Eq. (12) g iven that Q is non-singular is 

f  = Q-lCHICQ-lCH]-‘~ (13) 

This is the weighted minimum norm solution, which also can be obtained using projection 
theory. In other words, if the inner product space is defined as < x,y >Q= xHQy, it 
can be shown that the Lagrange multiplier solution is equivalent, to the minimum-norm 
solution under that inner product space. 

As noted above, choice of the phases in c is arbitrary. Since one of the design goals 
is to maximize the contrast between the energy in mainlobe and sidelobes, where a 
quantitative measure of this constraint is defined as 

CR(contrast ratio) ef 
total energy YHY - 

sidelobe energy yHAy 
(1,1) 

the set of optimal phases at the control points should maximize this CrR. 

According to Eq. (13) and defining 

x gf BQ-~cH[cQ-~cH]-~ (15) 
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eq. (14) can be rewritten as 

CRkf CHXHXC 
cH[CQ-~CF]-~C 

Finally, defining 

and 
D ef [UCQ-‘CHUH]-’ 

the CR can be simply expressed as: 

C’HC’ CR - 
c’~Dc’ 

(16) 

Determining the phases in Eq. (17) is equivalent to the eigenvalue problem described 
in [13]. Th’ 1s ec ni t h q ue starts by expressing CR as a function of c’. Setting &CR = 
0 with respect to c’, it can be shown that the maximum CR is obtained if c’ is the 
eigenvector corresponding to the smallest eigenvalue of D. Hence, the suboptimal solution 
in our design problem can be obtained by, first, finding the phases of the eigenvector 
corresponding to the smallest eigenvalue in D and then performing a backward linear 
transformation of the phases by 

phase of c dgf phase of (U-rc’) (18) 

In this study, the control points are initially set to be edge points of the mainlobe. 
If  the resultant complex filter does not satisfy peak sidelobe conditions, an iterative 
algorithm is then applied. This iterative algorithm updates the constraint matrix C at 
each iteration such that the control points are the extrema in the sidelobe region of the 
previous iteration. The iterative procedure will not terminate until the peak sidelobe 
constraints are globally satisfied (i.e., all sidelobes are below the threshold). In general, 
most stable solutions converge at the first iteration. 

3 SIMULATION RESULTS 

In our simulation, we assume a 1.2 mm diameter array consisting of 256 half 
wavelength elements operating at 50 MHz with 40 % fractional bandwidth. The broad- 
band response for each focal zone is estimated from point sources located at ranges of 
0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0 and 2.2 mm from the origin of the circular array. This 
simulated rf signal is then baseband demodulated for each of the 256 firings. In order 
to derive an optimal filter at each range, a representative complex beam pattern (i.e., 
b), is determined by choosing the complex point for each beam line corresponding to the 
maximum amplitude along that beam line within a given focal zone. After obtaining the 
coefficients, this filter is independently applied at each range along the zone. The filter 
length in all examples is chosen to be 33. This choice is based on the effective angle of 
acceptance for a circular array, reconstruction complexity and the filter performance. In 
other words, the imaging aperture consists only of those array elements within 45 degrees 
of the reconstructed beam direction. One negative consequence of longer filters is that 
they may produce larger motion artifacts because of the increased data acquisition time. 
Nevertheless, filter performance is better for longer filters. 

In the first example, four elements are tied together per firing. The complex filter 
coefficients at range 1.4 mm are shown in figure 2, where the top panel shows the amp- 
litude of the filter and the bottom panel shows the unwrapped phase (unwrapped relative 
to the center of the synthetic aperture). In all figures, beam index is defined as the in- 
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Fig. 2 Complex filter for four element synthetic aperture at range 1.4 mm. The top panel 
shows the magnitude and the bottom panel the unwrapped phase. 

lex for discretized beam angles in the reconstruction plane. Note that the phase of the 
ilter has a parabolic shape similar to that of a lens. The magnitude, however, is not 
nonotonic and differs significantly from the single element case where the magnitude has 
t Gaussian shape corresponding to the inverse Fourier transform of an ideal Gaussian 
learn pattern [9]. Due to the matrix operation in equation( 13), coefficients generally 
ve not exactly symmetric about the center of the filter. 

In the second example, eight elements are shorted for each firing. The complex filter 
it a range of 0.8 mm is shown in figure 3. Note that the unwrapped phase shown in the 
>ottom panel does not have a parabolic shape, nor can the magnitude be approximated 
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Fig. 3 Complex filter for eight element synthetic aperture at range 0.8 mm. The top panel 
shows the magnitude and the bottom panel the unwrapped phase. 

by a Gaussian function. These filter characteristics result from operating in the near held 
of the subaperture at this range; therefore, the Fourier transform relationship between 
aperture function and beam pattern no longer applies. The optimal filter at this near 
range shows the combined effects of beamforming and decoupling the highly correlated 
signals between each channel in the subaperture. In contrast, the far field approximation 
holds at range 1.4 mm, as illustrated by the filter coefficients shown in figure 4. At 
this range, the magnitude still does not have a simple Gaussian shape since it has to 
compensate for the narrow angular response of the multi-element subaperture. Again, 
the top panel of both figures shows the magnitude and the bottom panel shows the 
unwrapped phase of the filter. 
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-! 

Fig. 4 Complex filter for eight element synthetic aperture at range 1.4 mm. The top panel 
shows the magnitude and the bottom panel the unwrapped phase. 

The broadband response of the circular array is shown in figure 5, where the two 
left-hand images use four-element synthetic aperture processing and the two right-hand 
images use eight-element synthetic aperture processing. The top image for each ease is 
the reconstructed output using the Lagrange based filter and the bottom image is the 
response of the 33 point optimal filter described in Eq. (3). All images are displayed over 
a 50 dB dynamic range. As we can see from figure 5, the mainlobe beamwidths and the 
grating lobe levels are about the same for these two filtered outputs. The Lagrange based 
filter, however, has significantly lower sidelobe levels compared to the original optimal 
filter especially for four element processing. A final quantitative demonstration of this 
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Fig. 5 Reconstructed synthetic aperture images using different filtering approaches. Two 
top images use four element synthetic aperture processing and two bottom im- 
ages use eight element synthetic aperture processing. Left hand images are for 
the Lagrange based filter, whereas right hand images are for the original optimal 
filter. All images are displayed over a 50 dB dynamic range. 

point is presented in figure 6 where beam patterns at a range of 2 mm are presented for 
the same four cases. 

4 DISCUSSION 

For single element synthetic aperture processing, complex filtering essentially per- 
forms simple focusing with Gaussian apodization. Due to the coupling effect in multi- 
element synthetic aperture processing, however, the filter tends to compensate for the 
degraded angular response as well as perform dynamic focusing. Hence, beam pattern 
and aperture function do not have a Fourier transform relationship and the phase of 
the filter no longer has simple parabolic shape. This difference is most pronounced in 
the near field of the multi-element subaperture where the assumption of isotropic inson- 
ification used in classic synthetic aperture processing is most violated, as illustrated in 
figures 2- 4. 
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Fig. 6 Beam patterns at range 2 mm. Top panel shows beam patterns for the four ele- 
ment synthetic aperture and bottom panel for the eight element synthetic aper- 
ture. Solid lines denote Lagrange based filtering results and dashed lines represent 
original optimal filtering results in both panels. 

A major issue in synthetic aperture reconstruction, as well as all imaging systerns, is 
resolution. Spatial resolution is determined by the energy within the mainlobe region of 
the reconstructed beam pattern. That is, high level sidelobes will not influence spatial 
resolution if the sidelobe energy is relatively small. Contrast resolution, however, is more 
sensitive to sidelobe levels. Consequently, the reduced sidelobe levels of Lagrange based 
filters offer better contrast resolution without sa.crifice of spatial resolution compared to 
the original optimal filters. 
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As defined in section 1, multi-element synthetic aperture imaging results in improved 
electronic SNR compared to classical single element synthetic aperture imaging. The 
SNR improvement is due to, first, the change in acoustic power delivered to the body 
from a lower input impedance transducer and, second, different complex filter gains. 
Using Eq.( 1) to analyze the specific filter presented here, SNR gains of about 8 dB were 
obtained for four or eight element subaperture reconstruction with 33 point filters. This 
level of SNR improvement is virtually identical to that obtained with the original filter 
discussed in reference [9]. Consequently, improvements in beam forming with the new 
filters do not result in reduced electronic SNR compared to the original optimal filters. 

Finally, as described in reference [12], we note that our constraint equations in the 
overall optimization procedure can be changed. However, the problem can no longer 
be solved by the Lagrange multiplier method. Instead, we will encounter a quadratic 
programming problem with nonlinear constraints. At this time, it is not known whether 
complicating the problem in this way will yield better results. 
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