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Abstract: We consider generalized linear models where a predictor is measured with error. The efficient score test for the effect of 
that predictor depends on the regression of the true predictor on its observed surrogate. Using validation data, we estimate the 
regression by nonparametric techniques. The resulting semiparametric score test is shown to be nearly asymptotically efficient. 
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1. Background 

Let X= (R, ZTjT be the (4 + 1) x 1 vector of true covariate where R is a scalar and let p = (p,, p:>’ 
where PI and p: are the regression parameters associated with R and Z respectively. Assume that given 
X, the response follows a generalized linear model taking the form 

exp[{y77 -477))/y+c(y~ r>l, 
for some function b(. > and c( .). The natural parameter 77 satisfies that 

(1.1) 

kh(~) =u(& +.‘p) and &47) =g(Po+xTP) 

where E(Y I X=x) = UC&, +x’p> and Var(Y I X=x> = rg(Po +x’/3>. Frequently some of the compo- 
nents of the true predictor X can not be observed exactly. In particular, we consider the case when one 
of the predictors, say R, is measured with error and a d-variate surrogate W of R is observed. By a 
surrogate we mean a variable W such that given X, Y is independent of W. We wish to test the 
hypothesis H,: pi = 0 based on a sample from (Y, W, Z) instead of (Y, XI. 

When there is only one predictor, i.e., X= R, the score test statistic based on a sample of size nP is 
defined by 

T, = (1.4 

where m(w) = E(R I W= w) and S, and S, are the usual sample variances of the m(W>‘s and Y’s 
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respectively. Under the null hypothesis the statistic T, has an asymptotic standard normal distribution. 
In model (l.l), for local alternatives p, = A/n, , ‘j2 Tosteson and Tsiatis (1988) show that T, is 
asymptotically normally distributed with variance 1 and mean 

(I.31 

where U(c’) = &(L;)/au, U(p,) = ti(& + x’p> I p=. and g(&> = g@, + x’p> 1 p=~. 
Suppose that W is scalar. The ‘naive’ score test is obtained by ignoring measurement error, replacing 

R by W, and computing (1.2). The preceding discussion shows that the naive test equals the score test 

whenever the regression of R on W is known to be linear. 
In cases that m(w) is neither linear nor known, Carol1 and Stefanski (1990) investigated two test 

statistics appropriate when W = R + E, where E is the measurement error. The first one is a Wald test 
based on estimators corrected for measurement error. It is shown that this test has the same local power 
as the naive test which substitutes W for m(W). The second one employs an estimate 4(w) of 

4(w) = w + a2fi!&4/f#A w as an approximate estimate of m(w), where c2 is the variance of E, fw is > 
the density function of W, and f’(w) = af(w>/aw. The test is then based on (1.2) with m(w) replaced by 

G(w). They show that this test is approximately efficient when the measurement error is small. 
When there is an auxiliary covariate Z besides R, let m(w, z) = E(R I W= w, Z = 2) and & and fi2 

be the constrained maximum likelihood estimates satisfying 

g (1, z~)Tti(~“+z/T~2)(yi-u(p^~,+z~i2))/4B”+~~~2) =o> 

j=l 

where a(@, + zTp2) = c(pO + zTp) 1 p, =a and similarly for u and g. Tosteson and Tsiatis (1988) show that 
under the null hypothesis /3, = 0, the statistic 

(1.4) 

is asymptotically normal with mean 0 and covariance D = yC, where 

Li’( PO + ZTP2) 

-1 

g(po+zTp2) (l’ ZT’T(l’ “I 
” 

(1.5) 

The efficient score test statistic is defined by T2 = L2/d’/*, where L? is a consistent estimator of D, see 
(2.3). Under the alternative pi = A/n, , ‘I2 the statistic T2 is normally distributed with variance 1 and 
mean AS/D . 1/2 They show that the score test statistics T, and T2 yield tests which are asymptotically 
equivalent to the efficient score test. When the conditional mean m of R given (W, Z) is a linear 
function of W, the naive test statistics will be asymptotically locally optimal. However, the more usual 
case is that the regression of X on (W, Z) depends on Z also, in which case the naive test will not be 
locally optimal. 

The main purpose of this paper is to use validation data to construct locally optimal tests for the 
general function m(w, 2). 

We will assume that in addition to the primary data set of size np which contains observations 

((E;, wj)yLll or ICY, y, zj>l,211> another validation data set of size n,, which contains {CR,, Wi>:~z,“r,> or 
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I& u/;, z,)::,‘“;, } is available. Examples can be found in Rosner et al. (1989 and 1990) Pepe and 
Flemming (199f) and Carroll and Wand (1991), etc. Since m(w) or m(w, z) is usually unknown, the 
estimation of m(w) or m(w, z) is then important in constructing an efficient score test. 

Based on the validation data, we can use a parametric regression or use a nonparametric regression to 
estimate m(w) or m(w, z). We will discuss the score tests based on two estimates of m which will be 
described in Section 2. In Section 2.1, we will consider the parametric problem, where the regression 
function is linear, and we will construct efficient tests. In Section 2.2, we consider general regression 
functions estimated by nonparametric regression. Here we will construct a version of the score test which 
is almost fully locally efficient, the loss of efficiency being due to edge effects. In Section 3, we consider 
some simple extensions. 

2. Score tests 

To implement the following tests, we do need a validation data set which is not required by the tests of 
Carroll and Stefanski. We assume that W is a d-variate surrogate for the true scalar predictor R. It is 
also assumed that the conditional mean of R given W or (W, Z) is the same for the validation and 
primary study populations. In this section, we state the asymptotic results under the alternatives. The 
proofs of Theorems 1 and 3 are given in Section 4. Theorems 2 and 4 can be obtained by similar 
arguments. 

2.1. Based on linear regression estimate 

Suppose that the regression of R on W is linear, so that R = (Y,) + WTcu, + F, where W and E are 
independent and ,z has mean 0 and constant variance u *. With n, independent observations on (R, W) 
in the validation data, the model becomes 

w IO,i?,.X 1 = %,n, x(d+ l)a(d+ 1)X 1 + EL.,*, x 1’ 

where (Y = (a,,, CX:)~. Then an estimator h,,(w) of m(w) is given by (1, w)&, where & = (5~“;‘~~)-‘~;~5%‘,. 
Define _ 

where s^,, is the sample variance of &i,(w). 

(2.1) 

Theorem 1. Under the local alternatives H,: p, = A/n;/*, the score test based on f,, is asymptotically 
normally distributed with variance 1 and mean 

n,(A) =A~(Po)E[a:Var(W)(YI/(Yg(P,,)}ll’*. 

Next, we consider in addition to R which is observed with error, that we have an auxiliary q-variate 
covariate Z which is observed without error. We have a validation data set containing (R, W, Z) and a 
primary data set containing (Y, W, Z>. Again, it is assumed that there is a linear relationship between R 
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and (W, Z). An efficient score test statistic is defined by fz, = i2,/d1’*, where 

(2.2) 

b=j$, (2.3) 

ti*(p*“+z$q nP ti*(p^, + zITp^*) 
-1 

-&L? 
np j=l g(plo+z~b2) 

&;I( wj, ‘1) -Ai 
[ 
kE 
np j=l R(P^o + z,‘P^2) 

(1,z:)'(1, zi’) 2, 1 nP /&+ (q - u( 6” + z;q)* 
(1, Z:)Tfiz[(y, zj)? 

p j=l g(p^“+qv*) 

and &,,(w, z) is obtained by linear regression of R on (W, Z) using the validation data. Note that 
m(W,Z> = q, + WTcx, + ZTcu2 in this case. 

Theorem 2. Under local alternatives H,: pi = A/n, ‘I* the score test based on f2, is asymptotically normally , 
distributed with variance 1 and mean AX/D’/*. 0 

2.2. Based on nonparametric regression estimate 

We first consider the case of a single covariate in the model, and then proceed to the general case. 
First suppose that there is only a single covariate in the model, so that X = R. We are going to use 

nonparametric (kernel) regression technique to estimate m(w) using the validation data, and then plug in 
the estimated regression function into (1.2). In order to avoid problems with edge effects, we will 
truncate the data to a fixed compact set R. The proposed score test statistic defined in (2.4) below is 
shown to be nearly optimal whether m(w) is a linear function of w or not and whether the measurement 

error is small or not. 
Let R be a set and Z(w E 0) be an indicator function. Let K be a symmetric second order density 

function and h be a window or bandwidth. Define a nonparametric regression estimate fi,,(w) of m(w) 
applicable on the set a: 

i(w) = 

Based on the estimate, define a test statistic 

fin= - l i: ni/* %J~)(~ - Y)‘(“; l ~)/{~,,SY}~ (2.4) 
P j=n,+l 

where s^in is the sample variance of A,,(W)Z(W E 0). Note that in (2.41, we have restricted W to the set 
0, mainly for technical reasons. However, in practice, the validation study is smaller than the primary 
study. If we tried to compute r?r on the range of the validation study, we would likely be extrapolating the 
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kernel estimate outside the (usually) smaller range of the validation study. Thus, restriction to the set 0 

has practical importance as well. 
In the results, we consider two cases. In the first, we use the compactness of J2 explicitly. In the 

second, we do not necessarily require restriction to a compact set, although we believe that it is desirable 

in practice to make the truncation. 
Let f*(w) = (1 - (YJ&(w) + a,fw(w), where (Y, E (0, 11. Let w = (w,, We,. . . , wdjT and z = 

(z,, z2,..., z~>~. Define 

M,(w) = +w/a~,j,x,~ M2(w) = {a*++qbh+ awj}dxd. 

F,(w) = Iafw(w)/awild.,7 and F2(w) = {a2fw(w)/awi awj}dXd. 

Define 

g(w, z)=2zT~,(w)F,T(W)Z+m(w)ZTF2(W+~Zh)2+fW(W)ZTM2(W+~Zh)2 

+ ;h2zTM2( w + [zh) zzTF2( w + jzh) Z) (2.5) 

where 5, l E (0, 1). Let H(w, z) = sup ,<, <,z’F,<w + Szh)z and let G(w, z) = suplf, < ,g(w, z>. 

Theorem 3. Assume that the density fw of W and the conditional mean m of R given W have second 
continuous derivatives and inf w E o f *(w) > 0. Then, under local alternatives p1 = A/n;/*, the test statistic 
Tin is asymptotically normal with variance 1 and mean 

as nP, n, + CC and h + 0, if one of the following holds: 
Case I (Truncation). Let R be a compact set such that 

l suP,ER E(X2 ( w = w) < co; 
l n,. + ~0, h + 0, and nl,hd + co. 

Case II. Note the set R need not be compact. Assume that 
l m has finite second moment; 

1 1 
. E ---Z(WtR)~xPK(z)f(x,W+zh)dxdz -0, p=O,1,2, 

n,.hd f;(W) 1 
E h*/K( z)H( W, z) dz )*I(w En)] -0, 

E 

[i 

&/K(z)G(W. z) dzjlI(W+O. 

We next consider the case when there is an auxiliary covariate Z which is observed exactly. If the 
distribution of R given W is independent of Z, the score test statistic is obtained by replacing A,, with 
,. 

m,, in (2.2). If the distribution of R given W is not independent of Z, we estimate m(w, z) by 
nonparametric multiple regression of R on I/= (W, Z). Let v = (w, z) and define 

m2,,(v) = 5 R,K 
i=l 

( y)/gIK( T). 
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Let 5F be the set in which rFzzn is well defined. Define 

~ 

v 

=E ~*(PO+~=P*) 

i g( PO + ZTP*) 

d(W, z)z(VEq 

1 

_AT E C2(P0 +z’p2> 

8 

iI 

-1 

g( PO + ZTP2) 

(1, Zr)T(l, ZT)Z(l- g’) 

11 

A,, 

A 

P 

=E ~*(PO+zTP2) 

i 

g(p 

0 

+zTp > (1, ZT)Tm(w Z)Z(~E~) . 

2 1 

(2.6) 

An efficient score test statistic is defined by f2,, = i2,,/bg2, where fiV is defined as 6 in (2.3) with the 
sums restricted to the set 55’ and h,, replaced by rFi2,, and 

i,= $ ; )jl2n(qz(~E8')ti(~o+z~~2)(I;-U(~O+zTP"2))/g(~o+Z;lg2). 
P j=l 

We here use the definitions in (2.4) with d replaced by d + a. 
As in Theorem 3, we consider two cases. The first uses the compactness of the set SF explicitly, while 

the second allows possible relaxation of that condition. 

Theorem 4. Assume that the density fV of V and the conditional mean m of R given V have second 
continuous derivatives and inf L ,,f*(v> > 0. Then, under local alternatives PI = A/nb12, the test statistic 
T2, is asymptotically normal with variance 1 and mean A2,/D&/2 as np, nc -+ CQ and h + 0, if one of the 
following holds : 

Case I (Truncation). Let $5’ be a compact set such that 

. SUP,re E(X2 IV= v> < a; 
l n, -+ CQ, h + 0, and n,h(d+q) + m. 

Case II. The set @7 need not be compact in [W(d+q) and assume that 
l m has finite second moment; 

1 1 
0 E --Z(VrC)/xPK(z)f(x,V+zh)dxdz -0, p=O,l,2, 

n h(d+q) f{(V) L’ 1 
E h2/K(z)H(L’, z)dz 

E $-#(i)“(Y, z) dr)li(V EC)] +O. 0 

3. Discussion 

We have shown that validation data enable the construction of efficient score tests for the effect of a 
scalar covariate measured with error, using both parametric and nonparametric techniques. 

We have assumed that validation data are available in which R is measured. In practice, it will more 
often be the case that instead of observing R, we will observe R * = R + 5, where 5 is independent of W 
and Z, see for example Rosner et al. (1990). Our results apply without change to this case by replacing R 
by R * . We consider the test of association for the case when a scalar covariate R is measured with error. 

6 
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When a validation data set is available, we can estimate the mean function m of the true R given (W, 2) 
based on the validation data. It is shown that the estimated score tests yield asymptotically local optimal 
tests. 

4. Proofs of Theorems 1 and 3 

Proof of Theorem 1. From (1.31, the test statistics TI = n;1’2C~_~ +i((~~ + W,‘cy,><~ - Y)/lS,S,) is 
asymptotically normally distributed with variance 1 and mean A,(A) under the local alternatives 

p, = A/n;? T o s h ow Theorem 1 it suffices to show that under the null hypothesis p, = 0, pi, - T, -‘O. 

We will show that 

(4.1) 

Similarly, we can show that S, - S,, +‘O. 
Let h = n,,/nl. and W, be the n, X (d + 1) matrix containing the observations from W in the primary 

data and with 1 as the first column. Now 

Var 
j=n,.+l 

)] 

By substituting 9,. by ~~~ + E,. and E(%;T’ZQ = n,E(~,TWc)/nl,, the expectation in (4.2) is given by 

E[ A trace(e:~,(~:T~~)-‘E(~:T~,)(~~T~,)-’~;TE,.)] 

= E[ Aa2 trace((~T~,)-‘E(Fry,))]. 

Note the diagonal of the matrix EI(%$T~.)-l(~,TZQ) - E{(~‘~.)~‘}ET{(~~T~~)} > 0. Therefore, 
(4.2) < Md + l>a2(Var(Y))/ np which converges to 0 as np + 00. Hence, (4.2) = o(1) as rzP + co. Similarly, 
we can show that 

n-l/2 
P 5 

j=n, +1 

(Ijlll(~) - (a” + +YJ)(Y-uy) 5 0. 

Thus D, +‘O as np * ~0. 0 

Proof of Theorem 3. Define 
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and 

Then, 

n-1/2 
P 

k {hil”(H$) - m(y))(y - qI(w, E 0) =A,, -A,,. 

j=n, +l 

To show that A,, = o,(l) and A,, = o,(l), note that HA,,) = E(A,,) = 0 and 

Var(A,,) =Var(Y)E[{A,,(W) -m(W)J2Z(WEO)], 

Var(A,,) = bVar(Y)E[(&,,(w) -m(W)}2Z(WEL?)]. 
P 

Since flw> *‘f(w) for all w E R, by a first order Taylor series, we have that 

Aln(W) =/t(W) 
[ 
&) - +){.fwcw) -fww)~]~ 

W * 
where f*(w) = cr,&,(w) + (1 - aJfw(w>, cy, E (0, 1). Therefore, 

[i 

WV 

2 

=E fw(V 

--m(W) z(WEn)+ 

1 

&{fw(~) -fw(W)}ZI(W~fJ) 
* 

- &{i,(W) -fw(W),{$ -m(W) I(WEfl) 

* W 
1 1 

=B,,+B,,-B,,. 

Note that the following expectations are taken over the set R. By change of variables and a second order 
Taylor series, we have E{$(W)} given by 

/({m(W) +hM,T(W)z+ ;h2zTM2(W+~zh)z}K(z) 

.{fw(w) +hF,T(W)z+ ?h ’ 2zTF2( W+ Szh)z}) di], 

=E(m(W)f&v) ++h’/s(W, z)K(z) dz}, 

where M,, M,, F, and F, are defined in (2.5). Also not that EIk2(W)l is given by 

$&/x’K(z)f(x, W+zh) dx dz 

n,( II,. - 1) h2 
2 

n, 
m(W) + 

U,(W) 1 K(z)g(W, z) dz . 
I 
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Therefore. 

/ 
x2K(z)f(x, W+zh) dx dz 

h2 
2 

2fw(W) 
/ 

K(z)g(W, z) dz 

i 

/ 
K(z)g(W, 2) dz . (4.3) 

By assumptions, there exists a constant c such that 

E(B,,) <cE[ {flv(W) -f~#)}~I(W~fl)] 

2 

= CE --&K’(z)f&v+zh) dz+ fh2/K(z)zTF2(W+[zh)z dz 
1’ 

where 5 E (0, 1). Similarly, 

1 2 

-- 

n, 
fw(W) + ;h2/K(z)zTF2(W+zh)z dz II , (4.4) 

E(B3,) ’ 2cE +d fw(w) I 1 1 
-~ 

I 
xK2(z)f(x, W+ zh) dx dz 

i 

h2 

+ 2fdW) / K(z)g(W, z) dz 
I( 

fh2/K(z)zTF2(W+c$zh)z dz 

h2 

2fdW) / K(z)g(W, z) dz 

/ K(z)zTF2(W+5zh)z dz 11 . (4.5) 

Case I. Note that by assumption fw and m have bounded second derivatives on the set 0. By 
bounded convergence, we can easily show that (4.3), (4.4) and (4.5) converge to 0 as n,. -+ ~0, h + 0, and 

n p, n,.hd + m. 
Case II. By the assumptions, we see that (4.31, (4.4) and (4.5) converge to 0 as np, n, + M, h + 0. 0 
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