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In this paper we construct a special sort of dilation for an arbitrary polynomially 
bounded operator. This enables us to show that the problem whether every polyno- 
mially bounded operator is similar to a contraction can be reduced to a subclass 
of it. 0 1992 Academic Press, Inc. 

1. INTRODUCTION 

Let ti be a separable, infinite dimensional, complex, Hilbert space, and 
let Y(9) denote the algebra of all bounded linear operators acting on &‘. 
An operator T in 9’(Z) is said to be polynomially bounded if there exists 
a constant K>O such that 

IIP(TNI GKsu~{l~(<)l: ItI = l> (1) 

for every polynomial p. For simplicity of reference, we shall denote the 
class of all polynomially bounded operators in Y(X) by PB(X). Since, by 
virtue of von Neumann’s inequality, every contraction Tin Z(s) satisfies 
(1) with K= 1, one may consider the class PB(X’) as a generalization of 
the class of contraction operators. In fact, it is a very important and dif- 
ficult problem, posed explicitly by Halmos in [8], whether every operator 
in PB(Y) is similar to a contraction. (That is, given an operator 
TE PB(&), does there always exist an invertible operator X in Y(Z) such 
that JIXTX-‘I( < 1.) One of the basic tools in the study of contraction 
operators (cf. [15]) is the old and beautiful theorem of Sz.-Nagy [ 143 that 
every contraction has a unitary dilation, i.e., if T is a contraction in Z(X), 
then there exists a Hilbert space X containing 3’ and a unitary operator 
UE 9(X) such that T” = PU”) 2 for every n = 0, 1,2, . . . . where P is the 
orthogonal projection in B(X) whose range is X. It is obvious that only 
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BOUNDED OPERATORS TO CONTRACTIONS 459 

contractions can have unitary dilations, but this leaves open the question 
of what kind of dilation theory might be available for operators in PII( 
The purpose of this paper is to make a start on this problem by construct- 
ing a dilation theory for polynomially bounded operators. We show, in our 
main theorem (Theorem l.l), that every polynomially bounded operator 
has a dilation ? which does have some good properties-namely, f is also 
polynomially bounded, the spectrum G.(P) is the unit circle T in C, and f 
satisfies 

Before stating the main results of this paper we briefly mention some 
notation and terminology. As usual, N is the set of positive integers, @ 
denotes the complex plane, D is the open unit disk in C, and T is the unit 
circle T = XD in C. A subspace JY t S is said to be invariant for an 
operator T in L?(X) if TA c A, and in this situation we denote by TI A’ 
the restriction of T to JI. A subspace 4 is said to be semi-invariant for T 
if there exist invariant subspaces XI II Mz for T such that J# = Jv;@,Jv;, 
and in this situation we denote by T, the compression of T to .&!, i.e., 
T, = P, TI A‘, where P, is the (orthogonal) projection in S?(X) with 
range A. We shall use the notation Ker r and Ran r for the kernel 
and the range of T, respectively. By dim M we denote the orthogonal 
dimension of a Hilbert space Jtd. Finally, if Jz’ is a subspace of X”, we 
denote by ..&!I the subspace XGA. 

We recall that an operator T in L?(S) is called quasinormal if T com- 
mutes with T*T. The structure of quasinormal operators was determined 
by A. Brown in [ 11. Clearly a quasinormal operator T satisfies 

(T*T)(TT*)=(TT*)(T*T). (2) 

Operators T satisfying (2), which we shall call weakly centered operators, 
have been studied in [3,4,5], under the name binormal operators 
(cf. PI). 

THEOREM 1.1. For every polynomially bounded operator in 2’(X) there 
exists a Hilbert space X containing Y? and an operator F.E Y(X) such that 

(a) p is polynomially bounded, 

(b) 2 is a semi-invariant subspace for L?, 
1 

(c) a(T) is the unit circle, and 

(d) p is weakly centered. 

For some time it was an open question whether every power bounded 
operator Tin Y(X) is similar to a contraction (notation TE SC(X)), but 
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this was finally negatively settled by Foguel [6] (see also [7] for a 
somewhat simpler proof). Several authors have addressed the problem 
whether every polynomially bounded operator is similar to a contraction 
(cf. c9, 10, 1111, and we mention in particular, some nice progress made 
by Paulsen [12], but as of this writing, the question remains open. The 
following theorem shows that it suffices to establish this fact for a subclass 
of PB(X). 

THEOREM 1.2. Every polynomially bounded operator in 9(/f) is similar 
to a contraction if and only if every weakly centered polynomially bounded 
operator in 9(X’) whose spectrum is the unit circle is similar to a 
contraction. 

2. SOME PRELIMINARY LEMMAS 

The proofs of these theorems are based on some preliminary lemmas. We 
will omit the proofs of the first two lemmas, since they are straightforward. 

LEMMA 2.1. Suppose TE~‘C(X), and let A? be an invariant subspace 
for T. Then TI 4 belongs to YC(.Af). 

LEMMA 2.2. Suppose TE YC(X). If A? is a semi-invariant subspace for 
T, then the compression TA belongs to YC(Af). 

LEMMA 2.3. Let T, D, and X be operators in Y(X) such that D is a 
unilateral weighted shif of infinite multiplicity with weight sequence (d, > ,“= , 
dejined as 

1 
d, =- 

log 2’ 

log n 

log(n + 1)’ 
n>2 

and Ran X* c Ker D*. Then the operator p in 9’(# 0 X), defined by 

(3) 

belongs to the class PB(Z 0 2) if and only if TE PB(X). 

Proof It is clear that the restriction of a polynomially bounded 
operator to an invariant subspace is also a polynomially bounded 
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operator, so we confine our attention to the other half of the proof. Thus, 
let TE PB(X). It is not hard to see that for every nonnegative integer k, 

where 

G,=O, 

and 

Gk = Tk-IX+ Tk-2XD* + Tk-jXD*z 

+ . . . +TxD*k-2+X~*k-l, k> 1. 

Thus if p is the polynomial p(z) = C”,!, akzk, then 

p(T)= i ak(;k ;lk)(“b” x:=1 akGk). 
k=O P(D*) 

By [13, Proposition21, (1D211=sup{Idkdk+1(:k~~}. Hence 

Thus D2 is a contraction. By a well-known argument (cf. [8]), D is similar 
to a contraction, hence in PB(X), so the same is true of D*. Therefore T 
will be polynomially bounded if and only if there exists K > 0 (independent 
of P) such that IIC[I=i akGkl\ dKsup(Ip(Ol: 151 = 1) =K(lpl(. (Here we 
use the obvious fact that the norm of a 2 x 2 matrix with operator entries 
is less than or equal to the sum of the norms of its four entries.) To 
establish the existence of such a K, note that 

i akGk= i ak i Tk-iXD*i- 1 

k=l k=l i= 1 > 

= i f akTk-iXD*l- 1 

i=l k=i 

(4) 

580/108/Z-16 
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where we have written m =k- i. If we define p(,,) = p, pC1,(z) = 
(P(Z) - P(O)YZ, and, by induction, P&Z) = (P(,- &) - P(,- ,,(O))/z, then 
it is not hard to see that the right hand side of (4) is exactly 

i P(i)(T) xD*‘- 1, (5) 
i=l 

and it is well known (cf. [16, p. 4181) that for all polynomials p and for 
every n 3 2, IIpcnjll < 6 log nllpll. Thus 

G i IlP(i)(T)Il llxD*‘-‘II 
i= 1 

G i MIIxD*i-‘ll llP(i)ll 
i= 1 

~2MlWlI IIPII + i 6~ois4l~ll MIJ’~*i-lll, 
i=2 

(6) 

where M is the polynomial bound of T. By definition of D, there exists an 
infinite dimensional Hilbert space Q and a decomposition S = @ ,“= i ~9~) 
where 4 = Q, n E N, such that relative to this decomposition, D has the 
matrix 

0 

41, 0 
41, 0 

. . 
. . 

(7) 

Furthermore X may thus be regarded as an operator mapping @,“= i 4 
into Z and hence has a matrix X= (Xi, X2, . ..). where X,: 4 + X, n E N. 
Moreover, since Ker D* = Ran X*, it is clear that X, = 0 for all n 3 2. Thus 
II=) *i--l11 = II(d, --.di- ,) .%‘,)I, and it follows trivially from this and (6) 
that 

G ~lI~,II (2 + n2) IIPII. 

Thus, f is polynomially bounded and the lemma is proved. 1 
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3. Two MATRICIAL CONSTRUCTIONS 

Before we can turn to the proof of Theorem 1.1, we need two more 
preliminary results. For the sake of simplicity we shall use the notation 
AC3) for Jdi, 0 4 @A, where .4? is an arbitrary Hilbert space. 

PROPOSITION 3.1. Suppose TE PB(S). Then there exists an operator T 
in .J?(%“‘~‘) such that 

(a) 
(b) 
(c) 
Cd) 

Proof 

X @ (0) @ (0) is invariant for F, 

T= ~I(~O(O)O(O)), 
FE PB(YF’~‘), 

Ran(p) is closed, dim(Ker ?) = so, and dim(Ker T*) = ‘32,. 

Let M be the polynomial bound for T. Define F to be the I-, 
following 3 x 3 operator matrix acting on X” in the usual way: 

It is obvious from the definition that (a) and (b) are valid, so we first show 
that p is polynomially bounded. An easy computation shows that 

P(T) pw(T),/m 
0 
0 

where pLl, is as was defined in the proof of Lemma 2.3. Since IIpC1,ll < 211pll, 
clearly T is polynomially bounded. In order to show that the range of 7 is 
closed, it suffices to prove the same fact for F*. We will prove that T* is 
bounded below on (Ker T*)’ = X 0 (0) @ (0). So, let x E 2”. Then, 

This shows that ?* is bounded below on its initial space and completes the 
proof. 1 

PROPOSITION 3.2. Suppose TE PB(Z), X = SF’(~), and let T’E Z(X) be 
as in Proposition 3.1. Then there exists an operator FE PB(XC3’) such that 

(a) A = (0) 0 X 0 (0) is semi-invariant for F, 

(b) f’,=?++, 
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(c) FE PB(x(3)), 
1 

(d) a(T) is the unit circle, and 

(e) p is weakly centered. 

Proof Note that, by (d) of Proposition 3.1, both the kernel and 
cokernel of i: are infinite dimensional. Let D be a weighted unilateral shift 
of infinite multiplicity in 9’(X) with weight sequence {d,,}z= 1 as defined 
in (3). Then there exist a partial isometry U in Z’(X) with initial space 
Ker T and final space Ker D*, and a partial isometry V in 9’(X) with 
initial space Ker D* and final space Ker p*. Let a be a positive number, 
let A4 be the polynomial bound for T, and let A = aU, C = MV. We define 
F to be the following matrix, acting on X(3) in the usual way: 

(9) 

It is obvious from this definition that conclusions (a) and (b) are valid. 
Since F is polynomially bounded and Ran C* = Ker D*, it follows from 
Lemma 2.3 that the same is true for the compression T, = f.((o)exex) and 
its adjoint. Furthermore, another application of the same lemma (with T: 
replacing T) gives that p* is polynomially bounded, and hence so is ?‘. We 
next show that f is invertible. To accomplish this it suffices to exhibit its 
inverse. Since ran F is closed and T maps (Ker F)’ injectively onto Ran F, 
there exists a bounded linear operator Q E 9(X) such that FQ = PRan T 
and QF = PcKer +. It is obvious that in the polar decomposition 
D = S(D*D)“* = SA of D, S is an isometry with final space Ran D, and A 
is invertible. If we define D1 = SA-‘, then it is easy to verify that the 
operator 

0: 0 0 
(l/a*)A* Q 0 

0 (l/M*) C* D, 

is the inverse of i? 
Next, we prove that a(f) c T. First we note that, since p is polynomially 

bounded, a(f) c D -. On the other hand, 0 4 c(f), so it clearly suffices to 
prove that do(p) c T. But, as is well known, &r( ?) c c,Jf), the 
approximate point_ spectrum of f, so it suffices to show that b,J p) c T. 
Suppose IE, E a,,(T), and let (2,) be a sequence of unit vectors in Xc3) 
such that ll(T-- A,) ?,,I( + 0. Write 2, =x, @ y, @z,. Then a calculation 
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shows that (F - A,,) 2, = ((D - 1,) x, + Ay,) @ ((F - A,) y, + Cz,) 0 
(D* - 2,) z,. Therefore 

ll(D -Ad xn + AYAI + 0, (10) 

ll(T- &I) Yn + CZ”ll -+ 02 (11) 

II@* - u z,I/ + 0. (12) 

Now (10) implies that IlD*((D - &,) x, + Ay,)(l + 0, and since D*A = 0 by 
definition of A, 

II D* Dx, - A,, D*x,IJ -+ 0. 

An easy matricial calculation shows that D*D is invertible, and hence that 

ll((D* D)-’ D* - l/L,) x,1( + 0. 

Thus, if /xJ +O, 1/2.,~o((D*D)-‘D*). But another easy matricial 
calculation shows that (D*D)-’ D* is a backward weighted shift of infinite 
multiplicity with weight sequence {l/d,,),“= 1, and since d,, + 1, one knows 
(cf. [13, Proposition 151) that o((D*D)-’ D*)= [[D-, and hence I&l 2 1. 
Thus either ((x,11 + 0 or 1, E T. In the former case (10) becomes IIAy,ll + 0. 
In this situation write y, = yL@ y,” relative to the decomposition 
X = Ker A @Ran A*. Since y: E Ker A = Ran T*, there exists a sequence 
{u,} E Ran F such that yL.= F*u,, for all n. On the other hand, it is easy to 
see that (11) implies that 

IVY, + CZ”II - l4ll IIYnll -+ 0. 

Thus 

IITYn+ Cz,l12- l&d2 lIY,l12 -+o, 

and since Ran T is orthogonal to Ran C, 

In particular, for every E > 0, there exists n, E N such that for, n > n,, 

II~Ynl12- M2 lIYnl12<E. (13) 

Note that IJAy,“) = I( Ay,I) + 0. But yi E Ran A*, the initial space of the 
partial isometry (l/u) A, so I( y,“II --+ 0. So (13) becomes 
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and since I/JJ~II --f 0, we have that there exists n, E N such that 

Therefore 

Using (8) we have that 

M200 * 

( ) 

0 0 0 v, 
0 00 

Since v, E Ran Tc Y 0 (O)@ (0), we can write v, as w,@O@O. So we 
obtain that 

2 

J(M*W,ll*- IA.,12 < 2~, i.e., 

(M4- l&l2 M2) IIW”I12<2~, n>n,. 

Since E was arbitrary and M* - l&l* M* > 0, it follows that ljw,)( + 0 and 
the same is true of v, and yi = F*v,. Since yt also tends to 0, we conclude 
that lIy,J( -+ 0 (under the assumption, made earlier, that ljx,(( -+ 0). 

Next, under this same assumption, write z, = z; @zz relative to the 
decomposition X = Ker C @ Ker D *. Then, )ICz~)] = IlCz,)l +O by (11). 
Since (l/M)C is a partial isometry with initial space Ker D*, it follows 
that l/z~lI + 0. On the other hand, z; E Ker C= Ran D, so there exists 
a sequence {u,} c 3? such that z; = Du,. Then (12) gives that 
J(D*Du, - 1, Du,II -+ 0. As was already observed, D*D is invertible, so 

Il(l/i,) u,-(D*D)-' Du,,(I +O. 

Now an easy computation shows that (D*D)-' D is a forward unilateral 
weighted shift of infinite multiplicity with weight sequence {l/d,,}, and it 
has been already observed that the spectrum of this operator is equal to 
D-. Thus either ((u,(( +O or &ET. If Ilu,lj -0, then jlz:,II -+O which, 
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together with the previous conclusions, implies that IlX,lj + 0. Since 
Ila,,ll = 1, n E N, this is a contradiction, and it follows that IzO E U. Thus, we 
have shown that a(F) c T. To prove the opposite inclusion, we note that 
by [13, Proposition 151, a,,(D)= T, and from (9), a,,(D) c c,&f), so 
a(f) = I-. 

Finally, we show that F is weakly centered. A simple calculation shows 
that 

DD*+AA* 0 0 

fp = 0 TP+cc* 0 

0 0 D*D 

and 

0 
A*A + T*T 

0 

By definition of D, there exists an infinite dimensional Hilbert space Y and 
a decomposition X = @ ,“= r 4, where $ = B, n E N, such that, relative to 
this decomposition, D has the matrix (7). We observe that relative to this 
decomposition DD* + AA*, D*D, and C*C + DD* are diagonal operators 
with scalar multiples of 1, as diagonal entries, so DD* + AA* commutes 
with D*D and D*D commutes with C*C+ DD*. Thus it suffices to show 
that TT* + CC* commutes with A*A + T*F. Using (8), we obtain that 

which obviously commutes with A*A + F*T. This completes the proof of 
the proposition. 1 

4. PROOFS OF THE THEOREMS 

Proof of Theorem 1.1. Let T be a polynomially bounded operator in 
Y(H). Then applying Propositions 3.1 and 3.2 we obtain the operator F 
that satisfies (a), (c), and (d) of this theorem. Finally, by Proposition 3.2, 
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X is semi-invariant for f, and by Proposition 3.1, A? is invariant for 
F= TX. Therefore, A? is semi-invariant for ?? 1 

Proof of Theorem 1.2. If every polynomially bounded operator in 
9(X) is similar to a contraction, then the same is true, in particular, for 
every weakly centered polynomially bounded operator whose spectrum is 
the unit circle. To prove the nontrivial implication, let T be a polynomially 
bounded operator in Y(Z). By Proposition 3.1 and Lemma 2.2 there 
exists a certain polynomially bounded operator T in Y(S’@ X’) with 
closed range such that if T is similar to a contraction, the same is true for 
T. Thus, we can apply Proposition 3.2 and conclude that there exists a 
weakly centered polynomially bounded operator f, whose spectrum is the 
unit circle, such that p is a compression of F to a semi-invariant subspace. 
By hypothesis, f is similar to a contraction, so Lemma 2.2 implies that the 
same is true for T and, hence, for T. b 
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