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Abstract-Results for the initial postbuckling behavior of laminated beams are presented. Shear 
deformation effects are incorporated by relaxing certain assumptions of thin beam/plate theory. The 
analysis used is in the spirit of Koiter [Doctoral thesis, Delft, Amsterdam, English translation 
AFFDL-TR-70-25, (1970)], who developed asymptotic expressions for the potential energy in the 
neighborhood of the critical load in terms of a small parameter, which was identified as the 
amplitude of the buckling mode. The method adopted in the present paper is to use asymptotic 
expansion considerations to differential equations obtained via the principle of stationary potential 
energy. The effect of boundary conditions on the initial postbuckling response is studied by 
considering the two extreme cases of pinned-pinned and fully clamped boundary supports. An 
extensive parametric study is conducted to study the effects of mechanical properties, emerging as 
suitable non-dimensional groups from the derivation of the governing equations, on the initial 
postbuckling response. Finally, the effect of shape imperfections on the response of the beam is 
studied for certain example configurations that exhibit a limit load type of behavior. 

INTRODUCTION 

It is well known that classical thin plate theory, which does not account for transverse shear 
deformation effects, fails to yield reasonable predictions, even for appreciably large aspect 
ratios (span to thickness ratios), by standards established through analysis of beams/plates 
made of isotropic materials, when used to analyze laminated composite plates Cl]. In the 
past decade or so, several research investigations that deal with improving classical plate 
theory to include effects such as shear deformation, have emerged. The results of these 
investigations and their importance to the field are nicely presented in recent articles by 
Reddy [2, 33. 

Buckling and postbuckling of composite beam/plate structures is a subject of continued 
investigation. Amongst the most active in this area are Stein and coworkers at the NASA 
Langley Research Center, who have presented a series of articles aimed at developing 
displacement-based theories to study buckling, vibration and importantly, postbuckling 
behavior of laminated composite beams, plates and shell structures. Their work, and other 
contributions to this topic are presented in refs [4-7). The governing field equations, 
boundary conditions and solution procedure are clearly explained in these articles, and, 
where possible comparison with experiments are reported. 

A finite element study, incorporating a higher-order kinematic model with shear defor- 
mation accounted for, was recently presented by Sheinman and Adan [8]. In solving the 
fully non-linear governing equations, these researchers used a modification of Newton’s 
method and a special finite difference scheme in the solution process. Results for both 
isotropic and anisotropic beams are presented. Reddy and coworkers [g-12] incorporated 
geometrical non-linearity to study stability, vibration and bending problems in laminated 
beams, but emphasis was not on the study of postbuckling behavior. 

The present investigation is concerned with the initial postbuckling behavior of lamina- 
ted beams; the analysis adopted is developed in the spirit of Koiter [13]. The assumptions of 
classical theory are relaxed and a linear through thickness variation in the displacement 
field is assumed; this necessitates the inclusion of shear deformation, through the non- 
vanishing through thickness shearing strain. The motivation for the assumed displacement 
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field stems from the discussion on the rigorous elastic analysis presented in Stoker [ 143 and 
Novoshilov [15]. 

The development of the initial postbuckling analysis, as presented in Koiter L-133, 
basically amounts to developing asymptotic expressions for the potential energy in the 
neighborhood of the critical load in terms of a small parameter, which is identified as the 
amplitude of the buckling mode. Koiter’s original work [13], was extended by Budiansky 
and Hutchinson [163, where a formalism based on the principle of virtual work was used. 
The approach adopted in the present paper is to use asymptotic expansion considerations 
to differential equations obtained via the principle of stationary potential energy. 

The expressions obtained herein, for laminated beams, are specialized, by making 
appropriate substitutions to the mechanical properties, to isotropic beams and the resulting 
expressions are found to be in agreement with previously known results. The effect of 
boundary conditions on the initial postbuckling response is studied by considering the two 
extreme cases of pinned-pinned and fully clamped boundary supports. An extensive 
parametric study is conducted to study the effects of mechanical properties, emerging as 
suitable non-dimensional groups from the derivation of the governing equations, on the 
initial postbuckling response. Finally, the effect of shape imperfections on the response of 
the beam is studied for certain example configurations that exhibit a limit load type of 
behavior. 

PROBLEM FORMULATION 

Perfect beams 
We consider a rectangular and symmetrically laminated uniform beam of length L, unit 

breadth and thickness h, subjected to an axial compressive load P applied at the ends. We 
assume that strains are small compared to unity and that planes normal to the centroidal 
line in the undeformed state remain plane but are not restricted to be normal to the 
deformed centroidal line. Further, we assume that the centroidal line of the beam remains 
inextensible. We choose a Lagrangian description with a fixed right-handed rectangular 
Cartesian frame of reference to be used, with the X-axis coinciding with the centroidal line 
of the beam in the initial undeformed state and the Z-axis normal to it. Let the components 
of the displacement of a particle positioned initially at (X, 21 be denoted by U, W. In the 
Lagrangian description, the Greens strain tensor, referred 
used, whose components are 

to the initial configuration is 

Ex =g+;[(;>‘+(g>‘] 

E 
i au aw auau awaw 

xz=i Z+E+axaz+axaz 1 
-- --. 1 

Consistent with the assumptions stated, we have 

dye 
U(X, 2) = U,(X) - 2 dX 

W(X, 2) = 
duo 

WOW) + 2 W’ 

(1) 

Here, a subscript “0” is used to denote quantities associated with the centroidal line. The 
condition of inextensibility of the centroidal line renders a relation between U,(X) and 
W,(X) in the form 
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Substituting equation (2) in equation (1) and using equation (3), we find that the non-zero 
strain components are as follows: 

(4) 

Notice that if we set W,,(X) - Y,(X) s 0, then the displacement field (2), along with 
equation (3), simplifies the non-linear strain components of the Greens strain tensor to the 
extent that the shearing strain E,, and the transverse normal strain E, are both zero, thus 
reverting to simplifications of classical beam theory. Corresponding to the Greens strain 
tensor, we have Kirchhof’s stress tensor S,,, which will be used in the analysis. Assuming a 
state of plane stress in the XZ-plane and with the assumption on the smallness of E,, we 
invoke Hooke’s law taken in the simple form as suggested by Stein [6] 

Sx = EE,, Sz = E,EZ, Sxz = 2G,,Exz (5) 

where, the stiffnesses E, E, and G,, are thickness-averaged moduli of the laminated beam 
material. Next, we write the potential energy (If) of the beam 

h/2 

(S,E, + S,E, + S,,E,,)dZdX + I-’ 
I 

;d$dX. (6) 
-h/2 

II can be expressed in terms of W,(X), the lateral displacement of the centroidal line and 
Y,(X), and their derivatives by using equations (l), (4) and (5) in equation (6). For the sake 
of brevity, the subscript 0 associated with W,(X) and Y,(X), and their derivatives are 
dropped. Then, carrying out the integration in Z and defining 

we obtain 

I 

h/Z 
Z2dZ=I (7) 

-h/2 

l-I = r 
I 

L [Y&(1 - W:) + 2Y,, W,, W;]dX + F (Y’, - 2’8”: W; + W;) dX 
0 

+ y L(W:W:X+Y:Y;x-2WxW,,YxY,,)dX 
I 0 

+ yfr[(w,-Yx)‘(l- W;)]dX-; (8) 
0 

where, we have retained all the quartic terms entering in equation (6), associated with non- 
quadratic term (in Z) of the expressions for the strains, and k is a shear correction factor. 
( )x indicates differentiation with respect to X (or x in the normalized expressions to appear 
later) of the quantity (quantities) appearing within the parenthesis. The terms entering n 
that are the result of retaining quadratic terms (in Z) in the expression for Ex have been 
neglected. Some of these terms may contribute a quartic (in W,) term to II. However, as was 
shown in a similar study before [ 171, these terms have a negligible contribution to II. Before 
proceeding further, the following non-dimensional quantities are introduced: 

W X PL2 
w=-, 

L 
x=-, 

L c=m, n*+ 

B= 
L2E h 
zt 

4EZ 
6 = kL’Gx,h 

El ’ (9) 
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n* = 

I 
: c*zu -w:)+2#,w,,wfldx+/3 ‘(+:-2$:wf+w:)dx 

s 0 

+ 6 

I 

: C(wx - tiJ2(1 - w:)l dx + Y j+’ (w,‘w:x + v+f$:x - 2w,wA,$,W 

0 

-f 

I 
‘(w; +tw,*)dx. (10) 

0 

At equilibrium, the first variation of ff* with respect to 6w and SJI must vanish. Thus, by 
setting &I* = 0, integrating by parts and arranging terms, we obtain 

I 

1 

s 

1 
6l-P = L;(w)Gwdx + L,N($) S$ dx + boundary terms -f 0. (11) 

0 0 

Since 6w and SI/ are arbitrary in the interval (0, l), we obtain the coupled ordinary 
differential equations governing beam equilibrium 

L:(w) = 0 and J$W) = 0 (12) 

where 

Ww) = 2(4%5)X + 2(1(1 w2) XX x XX - 4(%%JI,,), - sc4w: - 4w&f), 

- SC- 2WX(% - J1J2 + 2(1 - wM% - tix)lx + m7:wxx - w,~xxwxL 

+ 2YWAWxx - W~W:,L + 4~(2w, + w:), 

and 

Clearly, w(x) = $(x) = 0 is a solution of equation (12) for all values of 6. The value of P 
corresponding to the smallest value of 0 (designated ao) for which non-trivial solutions of 
arbitrarily small amplitude exist is identified as the buckling load. Let us perturb equation 
(12) about the state (cr = go, w(x) = 0, Jl(x) = 0). Thus, let 

U= “ZO E”% 

w(x) = “El fW”(X) 

W) = “Zl ~hlW* (13) 

Here, (swr, stir) is the buckling mode with shape [wr(x), #r(x)] and small amplitude s. 
Substituting equation (13) into equation (12) and grouping together terms according to 
ascending powers of s, we obtain 

&I &(w,) + &(#I) = 0 

W%) + &W;) = 0 

E2 G(w2) + J52W2) = 0 

Uw2) + 4W2) = - ~,w,** 

&J b(wd + ~2W,) = RHSl 

Mw,) + &WJ = RHS2 (14) 

. . . etc. 
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where 

RHS2 = - ($:,,wi,)x - w:,9i,,,, - 2w,rwi,,tii,,, + 2PCwi,(w:, - ‘t%)]z 

+ X(WL - $1,)(%,+1,) - 2w:Jx - Y CWIxhxWIrr - ~1,J/1,,)1xx 

- ~Ck,kh_w~,, - w&Jx - %w~~ - ~VL - 2dw~J~. (1% 

The coupled sets of equations for each order of E can be simplified by eliminating one of the 
variables w(x) or J/(x). Then we obtain a reduced set of equations for a single variable. 
Eliminating $(x), we arrive at the following set of equations: 

&l L(W) = 0 

E2 w72) = - 460, Wl,, + 4c1 Wl,,,, 

2 L,(w,) = &RHSl + RHS2] - [RHS2],, (16) 
where 

L,( ) = (6 - 4a,)( j.5 4(0,6 - l)( ),, + 46( ). (17) 

The first of these equations correspond to classical buckling of a shear deformable 
symmetrically laminated beam. The solution of this equation for appropriate boundary 
conditions at the two ends x = 0 and x = 1, will result in an expression that characterizes 
the effect of shear deformation on the buckling load. Several examples are presented later. 
Solution of successive equations corresponding to higher orders of E will yield the response 
of the beam in the initial stages of postbuckling. Such information is crucial, since the slope 
of the initial postbuckling response path of the perfect beam yields information on the 
degree of imperfection sensitivity of the beam structure [18]. In addition, the present 
solution can be used to check the validity of a fully non-linear numerical solution of a beam 
structure which is commonly carried out by using the finite element method [8], or by other 
techniques such as finite differences. The above formulation is next applied to several 
examples to demonstrate its purpose. 

ANALYSIS 

Simply supported beams 
To demonstrate our results, we first consider simply supported beams. For this case, two 

example problems are presented. First, an isotropic beam is analyzed for which E = E, and 

G,, = ’ -, where v is Poisson’s ratio of the beam material and E the Young’s modulus. 
2(1 + v) 

Turning our attention to the reduced set of equations, and considering the lowest-order 
equation L,(w,) = 0, and then using the first set of equations of the sequence (14), we find 
that 

wi(x) = Asin + Bcos(px) + Cx + D 

el(x) = Alsin + Blcos(px) + Ex + 5 (18) 

where, the relation between A and 2, B and B^ etc. are obtained through the coupled 
equations given in the first of the sequence (14), and p is defined as 

P2 
40,6 

=zq- (1% 
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The unknowns A, B, C and D are determined from the boundary conditions, obtained from 
the boundary terms arising in equation (1 I), w,(O) = Jl,,,(O) = w,(l) = #t,,(l) = 0. For 
purposes of normalizing, we set w,(j) = 1. Then we find wi(x) = sin (px), $r(x) = ssin(px), 

where, s = 
1 

and sin(p) = 0 as the condition to determine the buckling load. 

l- 

Thus, p = mr. From this equation and with the definition of p, we obtain 

n2n2 
60 = (20) 

n2n2 
In equation (20), if we take the limit 6 + co, we recover u. = 4, 

n2x2E 
yielding P = --$, 

which corresponds to classical buckling loads predicted from Bernoulli-Navier beam 

theory. Now, b = 12k(3(3, and for a beam of rectangular cross-section, k = 2 as 

shown in Reissner 1191. Noting the relation between G,, and E for isotropic materials 6 
5 L 2 

reduces to 6 = (1 5; . 
0 

With these simplifications affected, relation (20) shows that 

the buckling load is a function of the beam materials Poisson’s ratio and the square of the 

beam aspect ratio 4 
0 

. 

The rest of the sequence of equations (14), can be solved by appealing to the boundedness 
of w(x), e(x) and suppressing secular terms. In doing so, we obtain successively (a,, w2, 4b2), 

(~2, w3, $3) * * * etc. Thus, we obtain 

w(x) = .ssin(px) + s3w3(x) 

#(x) = sssin( px) + E~$~(x) 

n2s 
e = 4(6 + a2) + E2C2 (21) 

where w2 = tj2 = CS~ = 0, s = 
1 

and 

l- 

a2 = 

RI 
hP4 3 

=~+2B6p2 

Expressions (22), characterize the initial stages of postbuckling of the beam. The coeffi- 
cient cr2 in equation (21), contains the parameters that influence the initial slope of the 
postbuckling path due to the incorporation of shear deformation effects. As a check we 
consider the limit b + co, in the expression for e in equation (21). In this limit we obtain 

0 
-_=l+$ g . 
a0 ( > (23) 
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Expression (23) has been derived in Dym [18], who considered the initial postbuckling 
behavior of pinned Bernoulli-Navier beams. Thus, expressions which characterize the 
initial postbuckling response of the beam as derived in the present investigation incorporat- 
ing shear deformation effects, reduces to the results presented in Dym [18], in the limit 
6 --) co; this limit resembles beams of infinite shear rigidity as postulated in classical 
Bernoulli-Navier beam theory. 

Clamped beams 
The effect of boundary conditions on the initial postbuckling response of a beam 

structure can be conveniently addressed by studying the two extreme cases of pinned ends 
and fully clamped ends. For the fully clamped case, equation (18) is subjected to 

w,(O) = w,(l) = $i,(O) = $r,(l) = 0. Then the buckling loads are given by the two equa- 

tJ tions sin z 
0 

=0 and tan(i)=(g). From these, the smallest non-trivial solution is 

obtained as p = 27c, and wi(x) = cos(px) - 1, )(/i(x) = scos(px) - 1, where w,(i) = 1 has 
been used for purposes of normalization. Using p = 27r, in conjunction with equation (19), 
we obtain an expression for the buckling load as 

(24) 

In equation (24), if we consider the limit 6 + co, we obtain the result for the classical 
buckling load predicted using Bernoulli-Navier beam theory; c,, = x2. To obtain b2 for this 
case, the sequence of equations (14), are solved in a similar manner as for the pinned-pinned 
case and doing so, the following results are obtained: 

w(x) = &[cos(px) - l] + &JWa(X) 

$(x) = Es[cos( px) - l] + &3$3(X) 

x26 
Q = (6 + 4n2) + sz02 C-3) 

where w2 = Ic/2 = c1 = 0, s = ’ and 

1 

O2 = - 4(6 + p2) Cp6Q1 + P*VQZ + Qd + p2Q41 

Q2= -; l-f-$+$ > ++$ 

QS=~($-1)+$-1)(+2)+$e 

Q*=~+~+~+f(f-1)(5-2)-386-~+~.(26) 

As before, considering the limit 6 + co, we obtain, for fully clamped beams, 

d -=1+&Z ;. 
=0 ( > 

(27) 

To the best knowledge of the author, expression (27) has not been derived before. It is 
interesting to note that the coefficient of the quadratic terms in equations (23) and (27), scale 
by the same ratios as the fundamental buckling loads, the latter case for clamped boundary 
conditions having a higher value. 
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ItESULTS AND DISCUSSION 

Figure 1 (corresponding to equation (20) with n = 1, and equation (24) with n = 1) is 
plotted to demonstrate the effect of shear deformation on the column buckling loads for the 
pinned-pinned and fully clamped cases. From this figure, we see that corrections to the 
buckling load due to shear deformation effects are significant only for beam aspect ratios 
L 

5; < 10, a result which has been established before [20]. As can be seen from this figure, 

this estimate, however, is strictly correct only for the pinned-pinned case, since for the 
clamped case a realistic regime for not considering shear deformation effects would be 
L 

ii- 
> 20. In addition, since the mechanical properties entering in the definition of S are fixed 

for isotropic beams, the aspect ratio is the only parameter influencing the effect of shear on 
the buckling load. 

In Fig. 2(a), we present the postbuckling paths of pinned beams for different values of 
L 

aspect ratio - 
0 

h . Corresponding results for the clamped case are shown in Fig. 2(b). As 

expected both situations capture the effect of decreasing stiffness, immediately proceeding 
buckling, thus, mimicking the predictions of a full elastic calculation. In addition, the 
clamped case produces a ‘stiffer’* postbuckling path, as one would expect intuitively. To 
exemplify our results for the case of laminated beams, we choose .to study the example 
problem presented in Stein [S]. This structure has a lay-up [O/90/0], and possesses the 
following material properties; E = 19.0 x lo6 psi, E, = 1.89 x lo6 psi. The beam thickness 

(h) is 0.283 in. and 4 = 10. There is some uncertainty in the value of the shear modufus G,,; 

the procedure to determine this value for laminated beams is not well established and in 
many cases the results from a simple experiment are used to ascertain G,. Following the 
suggestion in ref. [6], we use a range of values for G,, that vary between 0.2 x lo6 psi to 
0.9 x IO6 psi. Using these values, the non-dimensional constants y, j3 and 6 for this example 
are 

6 = 0.105( ;)2*0.474( ;) 

/!l= 0.298 ; 
0 

2 

1 

y = 0.009cr0.039. 

0.001 ---- 

/ - T Clamped 
a.oo- / 

* I 

6.00- / 

,Pinned-pi”Md 

(28) 

Fig. 1. The effect of shear deformation for pinned-pinned and clamped isotropic beams. 
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3.2- 

2.9- 

V 

2.6- 

Pinned-pinned 

(4 

5. 8’ - .bO Oh5 O.‘lO Oh 0.‘20 0.‘25 

(b) c 

Fig. 2. (a) Postbuckling paths for pinned-pinned isotropic beams. (b) Postbuckling paths for 
clamped isotropic beams. 

Pinned-pinned 

(4 k (‘9 k 

Clamped 

Fig. 3. (a) The effect of shear deformation for pinned-pinned laminated beams. (b) The effect of 
shear deformation for clamped laminated beams. 

The variation of the buckling load as a function of beam aspect ratio is shown in Fig. 3(a) 
and (b). (In what follows, a figure number that ends with “a” corresponds to pinned-pinned 
conditions and one that ends with “b” is for the corresponding fully clamped case.) Unlike 
for the isotropic case before, the buckling load additionally depends on the properties ratio 

$. Thus, in these figures we have presented results for values of this parameter ranging 

from zero (a value of infinity corresponds to Bernoulli-Navier beam theory for isotropic 
1 1 1 

and laminated beams) to two hundred, for values co, - - and -. Included in these 
40’ 80 200 
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figures are the two curves corresponding to the example problems being studied; a three 
layer laminated beam [O/90/OlT (referred to as TLB), with material properties and geometry 
given before. The curves corresponding to this beam are shown with dots. Because of the 

uncertainty in G,,, the two extreme values of % = 0.01 and 5 = 0 1 are used to 
E . 

compute the data for plotting the curves. The coupled influence of geometry 
( 

via the ratio 

L G 

%- 
and material properties via the ratio --15f, 

E 
is clear from this figure. For example, for the 

3.0 

1 Pinned-pinned 

2.5 __,‘-’ 

t 

to> + 

/* 25 
--c 

2.0 

u 

f 

_-_- __-- c i;,’ H 

1.5 

l- 
---_ 

1.0 7 
-- 

15 

0.0 ’ . \ 
olo Oil 012 0:s o!r 015 

(ai) c 

25.0 

20.0 

15.0 

0 

10.0 

5.0 

0. 8 ‘4 

/ * 
40 

--/ 
/ 

Clamped 
1 L 25 

,’ /’ 

/ /’ 

/ 

,,/ 

L15 

/ ,’ 

A’ ’ 
/ 

/ 
+* 

, 

/= 
i”. 

,--- 
HH 

/ ’ y=5 

+ 
I 

0 0.‘02 0.104 O.‘OS 0.b8 0.10 

u 

25.0 

20.0 

15.0 

u 

10.0 

5.0 

0. 8 

I 
--/’ 
-- 

_-- 
C- 

5 
0 

4 
9 / 

/ -25 

/,’ 

9 

, -/15 

--- L5 
/” 

3 0.102 0.)04 0.b6 0.‘08 0,‘lO 

(bii) c 

(aii) 

Fig. 4. (ai) Postbuckling paths for pinned-pinned TLB example, with % = 0.011, k = j. 

(aii) Postbuckling paths for pinned-pinned TLB example, with % = 0.047, k = 2. 

(bi) Postbuckling paths for clamped TLB example, with % = 0.011, k = 2. (bii) Postbuckling 

paths for clamped TLB example, with % = 0.047, k = 2. 
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TLB, with an aspect ratio of 20, and for pinned conditions, the normalized buckling load G,, 
is approximately between 2.0 and 2.35, whereas classical theory predicts 2.45. Analogous 
values for the clamped case are 5.25, 8.25 and 9.6, respectively. Thus, significant differences 
between the two predictions, with and without shear deformation effects are encountered; 
the discrepancies being larger for the clamped case. From these figures a general trend is 

GXZ evident. The smaller the ratio -, 
E 

the higher the value of i, before which, shear 

deformation effects have to be included for a reasonable prediction. We consider next the 

postbuckling path for the TLB with varying aspect ratio i 
0 

= 5 - 40. These are shown 

in Fig. 4(ai), (aii), (bi) and (bii). A rather surprising result corresponding to the 

pinned-pinned case and for the “stubby” beam of 4 = 5, is evident from Fig. 4(ai) and (aii). 

Unlike the corresponding isotropic counterpart, the slope of the postbuckling path in the 
immediate vicinity of the buckling load is negative. This implies that the corresponding 
geometrically imperfect structure will exhibit a limit load-type behavior, which is un- 
characteristic of beam response. The result of a negative slope holds true for the two 
extreme cases of properties ratios considered (see equation (28) for the mechanical proper- 
ties, which were obtained from ref. [6]), as given in Stein [6]. However, the corresponding 
case with clamped conditions does not show such a trend. As the beam aspect ratio is 
increased, the postbuckling response shows a lower but positive stiffness. Comparison of the 
results presented in these figures with those of Fig. 2(a) shows that incorporation of shear 
deformation effects have resulted in a drastic change in the postbuckling response of a low 
aspect ratio laminated beam, demonstrated via the TLB example. In addition, this example 
demonstrates the effect of boundary conditions on the postbuckling response. The same 
beam structure, when supported with hinged edge conditions behaves quite differently when 
fully clamped. 

From the expressions for the postbuckling response, equations (21) and (25), it is evident 
that the magnitude, and sign, of the coefficient of the quadratic term, e2, dictates the 
response of the structure in the immediate vicinity of the buckling load. Thus, a parametric 

GC* study of Q~ was carried out. In Fig. 5(ai) and (bi), the effect of E on a2 is presented for a 

fixed ratio 2 = 0.1. This latter value for E, is a good estimate for and covers a wide range of 

materials that are used to construct laminates, for example, in the aerospace industry. Each 
curve in these figures corresponds to a particular value of beam aspect ratio. From Fig. 5(ai), 

it is seen that, for some range of $, beams of aspect ratios, 5- 10 exhibit a negative a2. The 

trend is very similar qualitatively and quantitatively, in Fig. S(aii), which is a similar plot to 

EZ that of Fig. 5(ai), for E = 1.0. Thus, for pinned-pinned beams a2 is insensitive to changes in 

the through-thickness modulus E,. Corresponding plots for the clamped case are shown in 
Fig. 5(bi) and (bii). In these, a2 is always positive for the range of aspect ratios studied; the 
particular value increasing with increasing aspect ratio. Unlike the pinned-pinned case, 
however, a2 is found to be sensitive to the value of E,. It is also to be noted that for the 

G,* pinned-pinned case, a2, was an increasing function of E; this trend is reversed for the 

clamped case. Since it was established that a2 is insensitive to the value of E, for the 
pinned-pinned case, its influence on a2 was not investigated further. Figure 6(bi) and (bii), 

show the effect of + on a2 for clamped beams. For very small values of % and for small 

aspect ratios, it is found that a2 does attain negative values for both cases of% = 0.01 and 

0.1. Thus, unlike pinned-pinned beams, clamped beams do show a change in the initial 

postbuckling behavior as a function of through-thickness modulus %. Finally, before 
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E E 

laminated beams. + = 0.1. (bii) The effect of % on 17~. for clamped laminated beams. 2 = 1.0. 

proceeding to discuss imperfect beam behavior, the value of u2 is cross-plotted as a function 
of beam aspect ratio. These results are shown in Fig. 7(ai), (aii), (bi) and (bii). From these 
figures, it is seen that for pinned-pinned beams, the initial postbuckling behavior shows a 
positive slope for beams of aspect ratio in excess of 15, without regard to the mechanical 
properties ratios. Clamped beams, however, have a positive u2 for all but small values of 

aspect ratio; this latter situation being limited in addition to very small values of +, as 

infered from Fig. 6(ai) and (aii). 
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Initially imperfect beams 
When the beam contains an initial imperfection in shape G(x), then the expression for the 

potential energy needs to be modified, and a procedure similar to that of the perfect case 
needs to be affected to obtain the response of the beam structure. However, if it is assumed 
that the imperfection is “small” in the sense that, terms of higher powers of G(x) or its 
derivatives entering in the expression for the potential energy could be neglected, but terms 
with G(x) and e(x) (and/or their derivatives) be retained, then the results of the ensuing 
analysis could be infered from the parameters associated with the preceeding analysis for 
the perfect cases. This inference was first uncovered by Koiter [ 133, whose work exemplified 
the usefulness of an asymptotic postbuckling analysis. Koiter [13] showed that if there was 
an imperfection in the geometry of the structure of small amplitude E and in the shape of the 
buckling mode, and if the corresponding perfect structure obeys the load-deflection result 

then, the load-deflection relationship for the imperfect structure, in the neighborhood of the 
buckling load of the corresponding perfect structure, is given by ref. [18] 

(%I - a)&+a,&2+...=aE 

For the isotropic and laminated beam example studied herein, we find that o1 = 0, so that 
the corresponding imperfect beam obeys the load-displacement relation 

(00 - C7)E + cT2&$ . . . = oz. (29) 

Further, for the isotropic case we found o2 > 0, in which case, the response is imperfection 
insensitive [NJ. In the laminated beam example, however, as we have seen, there are some 
situations corresponding to a particular choice of mechanical properties ratios and geo- 
metry, that corresponds to u2 < 0. In such cases, the structure is found to be imperfection 
sensitive and will reach a maximum load. As an example, consider a pinned TLB, with 
aspect ratio five and containing a shape imperfection in the form of the fundamental 
buckling mode and of small amplitude. The load-deflection relation for such a beam, infered 
from equation (30), valid in the neighborhood of the buckling load of the corresponding 
perfect beam, is shown in Fig. 8(ai) and (aii), for varying values of non-dimensional 
imperfection amplitude (normalized by the beam length). This example demonstrates limit- 
load behavior for a beam idealization of a laminate with the inclusion of first-order shear 

l&n 27:5-w 
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deformation effects. From these figures (or using equation (29)), the maximum load carrying 
capacity of the structure as a function of imperfection size can be obtained. From equation 
(2$), this value is given by 

B - = 1 - 3 - 5 ( > 
w 

m.x (@Z/J. 

=0 

(30) 

Values of t7,, corresponding to Fig. 8(ai) and (aii) are tabulated in Table 1. Also given in 
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Table 1. Effect of imperfections on maximum load for pinned-pinned TLB with i = 5 

Imperfection 
amplitude 

Buckling load 

Figs S(z), 8(aii) 

co - oau, co - Q,, 
- - 

Q,, corr. u,,, corr. 40 
Fig. 8(ai) Fig. 8(aii) Fig%(ai) Fig. 8(aii) 

0.001 0.518, 1.346 0.502 1.326 3.1% 1.5% 
0.005 0.518, 1.346 0.470 1.288 9.2% 4.3% 
0.01 0.518, 1.346 0.441 1.253 14.9% 6.9% 
0.05 0.518, 1.346 0.292 1.074 43.6% 20.2% 

this table are the percent decrease in load carrying capacity for different imperfection 
amplitudes. 

In passing, it is to be noted that a numerical study concerned with postbuckling behavior 
of laminated beams was reported elsewhere [S]. In that study, the range of examples 
studied, which were different from those considered here, did not exhibit limit load type 
behavior. 

CONCLUSIONS 

In this paper, we have presented an asymptotic initial postbuckling analysis of 
pinned-pinned and clamped laminated beams, incorporating first-order shear deformation 
effects. Expressions derived here for the initial postbuckling response of laminated beams 
have been shown to reduce to established results, when specialized to isotropic material 
properties. The coupled influence of mechanical properties and beam aspect ratio is seen to 
introduce limit load-type behavior for certain ranges of values of these parameters for both 
pinned-pinned and fully clamped boundary supports. In these cases, the imperfection 
sensitivity of the beam has been studied and the maximum load carrying capacity calculated 
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as a function of normalized imperfection amplitude. Results of a parametric study of the 
coefficient c2, that characterizes the slope of the initial postbuckling load-displacement 
path has been presented. Mechanical properties of a laminated beam used in tests at the 
NASA Langley Research Center, and referred to as TLB in this paper, have been used to 
demonstrate various findings. The applicability of the presented findings seem to be broad. 
For example, verification of numerical codes written for fully non-linear postbuckling 
analysis of laminated structures, design and testing of laminated structures etc. The effect of 
higher-order shear deformation, modeled along the lines of Reddy [21), on the initial 
postbuckling behavior of laminated beams is currently being pursued, and the results of that 
investigation will be reported elsewhere. 
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